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ABSTRACT
We study an infinite population model for the genetic algo-
rithm, where the iteration of the algorithm corresponds to
an iteration of a map G. The map G is a composition of a
selection operator and a mixing operator, where the latter
models effects of both mutation and crossover. We examine
the hyperbolicity of fixed points of this model. We show
that for a typical mixing operator all the fixed points are
hyperbolic.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, And Search - Genetic Algorithms

General Terms
Algorithms, Artificial Intelligence

Keywords
Genetic algorithm, mixing, generic, typical, hyperbolic fixed
point.

1. INTRODUCTION
In this paper we consider a dynamical systems model of

the genetic algorithm (GA). This model was introduced by
Vose (see [10]) by replacing finite population by population
densities modelling an infinite population. The model is
further extended in [3], [6], [7], and [9]. Although the pre-
cise correspondence between behavior of such infinite pop-
ulation Genetic Algorithm and the behavior of the GA for
finite population has not been established in detail, the in-
finite population model has the advantage of being a well
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defined dynamical system. Therefore, the techniques of dy-
namical systems theory can be used to formulate and hope-
fully answer some fundamental questions about the GA. One
such question is the question of convergence. For plausible
crossover, mutation and selection 1, does the algorithm al-
ways converge to a unique solution for all initial states? In
the infinite population model, the iterations of the GA are
represented as iterations of a fixed map G on a space of ad-
missible population densities p. Thus, the question of con-
vergence can be reformulated in this setting as existence of
a globally attracting stable fixed point, that is, a population
p0 such that G(p0) = p0.

The fixed points, p0 such that G(p0) = p0, are fundamen-
tal objects of interest in our study. The behavior of the map
G in the neighborhood of p0 is determined by the eigenval-
ues of the linearization DG(p0). If all the eigenvalues have
absolute value less than one, then all iterates starting near
p0 converge to p0. If there is at least one eigenvalue with
absolute value greater than one, then almost all iterates will
diverge from p0 [4]. Such classification is, however, possible
only if no eigenvalues lie on the unit circle in the complex
plain. Fixed points p0, for which DG(p0) has this property,
are called hyperbolic. If at least one eigenvalue of DG(p0)
has modulus 1, the fixed point is non-hyperbolic.

It is easy to see that hyperbolicity is an open condition,
i.e. if a fixed point is hyperbolic, then all small perturbations
of the map G will still admit a fixed point with eigenvalues
off the unit circle. It follows that for sufficiently large finite
population, the GA will also admit a fixed point. Thus,
hyperbolic fixed points under G predict behavior for finite
population GA.

On the other hand, non-hyperbolic fixed points can dis-
appear under arbitrarily small perturbations. If the infi-
nite population model wants to be a viable model of the
behavior of the finite population GA, non-hyperbolic fixed
points should be rare. It is clear that they must be present
for some admissible maps G, since they occur when a fixed
point bifurcates. Vose and Eberlein [6] considered a class
of mappings G that were a composition of a mutation and
crossover operator, with proportional selection scheme. The
set of fitness functions was parameterized by the positive
orthant. They have shown that for an open and dense set
of such fitness functions, the corresponding operator, G, has

1Wright and Bidwell [8] found counterexamples for mutation
and selection corresponding to distributions that are not
used in practice.



hyperbolic fixed points.
In this contribution we consider a class of mappings G =

M ◦F where F is arbitrary, but fixed, selection operator and
M is a mixing operator from a class described in section 2.
The class of mixing operators we consider include all mixing
operators that are a composition of the mutation a selection
operators as described in Reeves and Rowe [3] and Vose [6].
We show that for an open and dense set of mixing operators,
the corresponding operator G has hyperbolic fixed points.

Due to length limitations we will not provide complete
proofs. Instead, we give outlines of proofs to introduce the
reader to the main structure of the arguments involved. For
more details please see [1]. We start with a preliminary
section introducing notation and the specifics of the map G.

2. PRELIMINARIES
The dynamical systems model of the genetic algorithm

provides an attractive mathematical framework for investi-
gating the properties of GAs. In this paper we study the
model introduced by Vose [6].

The genetic algorithm searches for solutions in the search
space Ω = {1, 2, . . . n}; each element of Ω can be thought of
as a ”species.” We consider a total population of size r with
r >> n. We represent such a population as an incidence
vector:

v = (v1, v2, ..., vn)

where vi is the number of times the species i appears in the
population. It follows that

P

i
vi = r. We associate each

population with a probability distribution over Ω. That
is, a population is identified with the population incidence
vector

p = (p1, p2, ..., pn)

where pi = vi

r
is the proportion of the i-th species in the

population. In this representation, the iterations of the ge-
netic algorithm yield a sequence of vectors p ∈ Λ where

Λ = {(x1, x2, ..., xn) ∈ R
n|
X

xi = 1

and xi ≥ 0 for all i = 1, . . . , n}.

Note that Λ ⊂ R
n is the unit simplex in R

n. Not every
point x ∈ Λ corresponds to a population incidence vector p,
since these have non-negative rational entries with denomi-
nator r. However, as the population size r gets arbitrarily
large, population incidence vectors become dense in the sim-
plex. Thus Λ may be viewed as a set of admissible states
for infinite populations.

Let G(p) represent the action of the genetic algorithm
on p ∈ Λ, where G : Λ 7→ Λ is a differentiable map ([6]).
The map G is a composition of three operators: selection,
mutation, and crossover. We will now describe each of these
in turn.

We let F : Λ 7→ Λ represent the selection operator. There
are many possible models for the selection operator and our
results do not depend on this choice of selection operator.
Possible choices include proportional, tournament, or rank
selection (see [6]). The i-th component, Fi(p) represents the
probability that an individual of type i will result if selection
is applied to p ∈ Λ. We extend the domain of definition of F
to the positive orthant in R

n, R
n+ and define F : R

n+ 7→ Λ
by

F (x) :=
F (x)

P

i
Fi(x)

.

We let U : Λ 7→ Λ represent mutation with a positive
mutation rate. Here U is a matrix with Uij > 0 for all
i, j, where Uij represents the probability that item j ∈ Ω
mutates into i ∈ Ω. That is, Uk(p) is the probability an
individual of type k will result after applying mutation to
population p.

Let crossover, C : Λ 7→ Λ, be defined by

C(p) = (pT C1p, . . . , pT Cnp)

for p ∈ Λ, where C1, . . . , Cn is a sequence of symmetric
non-negative matrices. Here Ck(p) represents the proba-
bility that an individual k is created by applying crossover
to population p. Recall that an operator A : R

n 7→ R
n is

quadratic if there exist matrices A1, A2, . . . , An such that
A(x) = (xT A1x, . . . , xT Anx). We denote a quadratic oper-
ator with its corresponding matrices as A = (A1, . . . , An).
Thus C = (C1, . . . , Cn) is a quadratic operator ([5]).

We combine mutation and crossover to obtain the mixing
operator M = C◦U . Thus the k-th component of the mixing
operator

Mk(p) = pT (UT CkU)p

represents the probability that an individual of type k will
result after applying mutation and crossover to population p.
Observe that mixing is also a quadratic operator from Λ to
Λ ([5]). This motivates the definition of a mixing operator.
Let An×n represent the set of n×n matrices with real valued
entries. We call a quadratic operator, M = (M1, . . . , Mn),
a mixing operator if the following properties hold:

1. Mk ∈ An×n is symmetric for all k = 1, . . . , n;

2. Mk > 0 for all k = 1, . . . , n;

3.
Pn

k=1
[Mk]ij = 1 for all j = 1, . . . , n and i = 1, . . . , n.

Let M be the set of quadratic operators M satisfying (1)-
(3). Observe that M ∈ M maps Λ to Λ. This is easily seen
since, for x ∈ Λ, M(x) = (xT M1x, . . . , xT Mnx), and

X

k

[M(x)]k = xT

 

X

k

Mk

!

x = xT ·
“

X

xi,
X

xi, . . . ,
X

xi

”

= xT · (1, . . . , 1) = 1.

Finally, we define

G = M ◦ F, for M ∈ M (1)

to be the complete operator for the genetic algorithm, or a
GA map.

In addition to the above model, the following notation and
terminology will be used. For an n×n matrix A, let det(A)
denote the determinant of the matrix A. The characteristic
polynomial for the matrix A is denoted det(A − λI), where
I is the n × n identity matrix. The eigenvalues of a matrix
are the roots of det(A − λI). We call an eigenvalue simple
if it is a root of det(A − λI) with multiplicity one. Let
spec(A) denote the set of eigenvalues of A. A matrix A is
symmetric if Aij = Aji for all i, j. The transpose of a matrix
A is denoted AT . We use the notation A > 0 to indicate
that Aij > 0 for all ij. For a matrix A, rank(A) denotes
the dimension of the range of A, or the number of linearly
independent columns of the matrix. Let ‖A‖ denote the
norm of the matrix A. Let S1 denote the unit circle in C.



3. MAIN RESULTS
Before we present the main result, we introduce key defi-

nitions.

Definition 1. If f(p) = p, a point p is called a fixed
point of f .

Definition 2. A fixed point p for f : R
n 7→ R

n is called
hyperbolic if the Jacobian Df(p) has no eigenvalues on the
unit circle. A fixed point p is non-hyperbolic if spec(Df(p))∩
S1 6= ∅.

Definition 3. A map G is hyperbolic if all fixed points
are hyperbolic.

Definition 4. A property is typical, or generic, if it holds
for an open and dense set of parameter values.

We now present our main result.

Theorem 1. Let G = M ◦ F be a GA map (1). For a
typical mixing operator, G is hyperbolic.

To prove the above theorem, we will need the following
two propositions.

Proposition 1. Let G = M ◦ F be a GA map (1). The
set of mixing operators M , for which the fixed points of G
are hyperbolic, forms an open set in M.

The proof of this proposition is based on the fact that

det(DG(p) − λI) = det([DM ◦ F (p)]DF (p) − λI)

is a continuous function of M and, therefore, if λi /∈ S1,
then small perturbations do not change this fact. The proof
of proposition 1 is relatively easy. The proof of the following
proposition, 2, is considerably more difficult.

Proposition 2. Let G = M ◦ F be a GA map (1). The
set of mixing operators for which the fixed points of G are
hyperbolic, forms a dense set in M.

To prove this proposition, we will assume we have a fixed
point p of G with one or more eigenvalues on S1. We first
characterize perturbations, Mε ∈ M, that preserve the fixed
point.

We construct P(p) to simplify the characterization of the
perturbations of M with the fixed point preserving charac-
teristic. Let P(p) represent quadratic operators

P = (P1, . . . , Pn)

for which the following properties hold:

1. Pi ∈ An×n is symmetric for all i = 1, . . . , n;

2. Mi ± Pi > 0;

3.
P

i
Pi = 0;

4. [F (p)]T PiF (p) = 0 where p is the fixed point.

It is easy to see that P(p) 6= ∅.
For P ∈ P(p), let Mε := M + εP . In Lemma 1 we show

that Mε is a quadratic operator on Λ and Mε ∈ M. There-
fore, Gε = Mε ◦ F is a GA map.

Lemma 1. Let G = M ◦ F be a GA map (1). Assume
p ∈ Λ has G(p) = p. If P ∈ P(p), then for sufficiently small
ε > 0, Mε = M + εP satisfies

1. Mε ∈ M

2. Gε(p) = Mε ◦ F (p) = p.

That is, G(p) = p = Gε(p).

We observe that

Gε =Mε ◦ F

=(M + εP ) ◦ F

=(M ◦ F ) + ε(P ◦ F )

=G + ε(P ◦ F ).

Thus,

DGε(p) =D[G + (εP ◦ F )](p)

=DG(p) + H

where H ∈ An×n. In order to trace the effects of perturba-
tions of M on the derivative DGε, we define

H = {H ∈ An×n|H = D(P ◦ F )(p) for P ∈ P(p)}

Observe that conditions (3) and (4) for defining the class
P(p) restrict the admissible set of perturbations P . It can
be shown that this restriction implies that each H ∈ H
has rank at most n − 1. Therefore, we can only perturb
spec(DG(p)) in n − 1 directions. This makes the proof of
density non-trivial.

Lemma 2. Let G = M ◦ F be a GA map (1). Assume
G(p) = p for p ∈ Λ, and that DG(p) has at most one simple
eigenvalue λ0 of norm one. Then, there exists Mε ∈ M such
that Gε(p) = p and spec[DGε(p)] ∩ S1 = ∅.

To find this perturbation, we consider DG(p) in the Jor-
dan normal form, denoted [DG(p)]J . The class of matri-
ces H becomes the class HJ in the new basis. We find
HJ ∈ HJ , such that spec(DG(p)J + HJ) ∩ S1 = ∅. Since
spec(DG(p)J + HJ) = spec(DG(p) + H), we then calcu-
late H corresponding to HJ to determine the appropriate
Mε ∈ M.

For repeated eigenvalues, the argument showing HJ exists
becomes very complicated. In this case we address collec-
tions of eigenvalues on S1 of multiplicity greater than one
through use of the lemmas below.

Lemma 3. Let G = M ◦ F be a GA map (1) with fixed
point p. If DG(p) has eigenvalue λ0 ∈ S1 and multiplicity
k > 1, then there exists P ∈ P(p) such that DGε(p) has
eigenvalue λ0 ∈ S1 with multiplicity at most 1.

The rank of the perturbation matrix H plays a critical
role in the proof of Lemma 3.

Lemma 4. Let G = M ◦ F be a GA map (1). There
exists a perturbation Mε ∈ M of M with Gε = Mε ◦ F and
DGε(p) = DG(p) + H such that H is of rank n − 1.

That such an H exists can be shown by explicitly forming
an operator P ∈ P so that the corresponding H ∈ H has
rank(H) = n − 1.



Lemma 5. Let G = M ◦ F be a GA map (1). For each
H ∈ H there exists an interval [0, δH ], δH > 0, such that for
all δ ∈ [0, δH ], δH ∈ H.

We finally prove Lemma 3 using the analytic function
g(c) = det(DG(p) − λ0I + cH) in combination with the
results of Lemma 5.

Recall that λ0 ∈ S1 is the eigenvalue of DG(p) with
multiplicity k > 1. Since the polynomial g : R 7→ C,
g(c) = det(DG(p) − λ0I + cH), defines an analytic func-
tion in c, either

1. g(c) ≡ 0;

2. g(c) has isolated zeros ([2]).

By Lemma 4, we can choose H to have rank n − 1. Thus 0
is a simple eigenvalue of H. For large values of c, we have
0 ∈ spec(cH) but for µ ∈ [spec(cH)\{0}], |µ| > K for some
large K. If ‖DG(p)‖ << K, then we can view DG(p) as a
small perturbation of cH. Two possibilities arise:

(a) There exists c ∈ R such that g(c) = det(cH +DG(p)−
λ0I) 6= 0.

(b) For all c ∈ R, g(c) = det(cH + DG(p) − λ0I) = 0.

Case (a) implies (2), i.e. g has isolated zeros. Since g(0) = 0,
there is δ arbitrarily close to 0 such that g(δ) 6= 0. The proof
now follows from Lemma 5. In case (b), we note that since H
had the simple eigenvalue 0, λ0 must be a simple eigenvalue
of (cH + DG(p)) for large c. This proves Lemma 3 in case
(b).

4. CONCLUSIONS
This paper investigates the hyperbolicity of fixed points

for the infinite population genetic algorithm as represented
by the GA map(1). We show that for an open and dense set
of mixing operators in M, the fixed points of the GA map
are hyperbolic. This implies that for most mixing operators
the behavior of the infinite population model in the neigh-
borhood of fixed points is a good predictor of the behavior
of finite, but large, population models. In particular, for
most mixing operators these fixed points perturb into fixed
points of the finite population model, and furthermore, the
stability properties of the fixed points in infinite and finite
population models are the same.

With the exceptional set of those mixing operators for
which these statements are not true is nowhere dense. This
means, in particular, that an arbitrarily small perturbation
of such exceptional mixing operators leads to a regular op-
erator.

Since the local dynamics around fixed points perturbs
from infinite population model to a finite population model,
we conclude that the GA map can serve as a good approxi-
mation of the finite population model.
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