
Use of Domain Information to Improve the Performance of
an Evolutionary Algorithm

Ricardo Landa Becerra
Evolutionary Computation Group (EVOCINV)
CINVESTAV-IPN, Computer Science Section,

Electrical Engineering Department
México, D.F., 07300, MEXICO

rlanda@computacion.cs.cinvestav.mx

Carlos A. Coello Coello
Evolutionary Computation Group (EVOCINV)
CINVESTAV-IPN, Computer Science Section

Electrical Engineering Department
México, D.F., 07300, MEXICO

ccoello@cs.cinvestav.mx

ABSTRACT
The main goal of this thesis work is to explore the ca-
pacities of cultural algorithms to add domain knowledge
in evolutionary computation. Within our objectives is to
develop a cultural algorithm for constrained optimization,
and other for multiobjective optimization. With a proper
desing of the belief space we expect to obtain competitive
results compared with other state-of-the-art evolutionary al-
gorithms, but reducing the number of fitness function eval-
uations needed. In this paper we focus in the algorithm for
constrained optimization, because the development of the
algorithm for multiobjective optimzation is an early stage.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Constrained

optimization, Global optimization; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search—
Heuristic methods

General Terms
Algorithms, design

Keywords
Constraint handling, optimization, cultural algorithms, dif-
ferential evolution

1. INTRODUCTION
In evolutionary computation it is common that the only

information available about the problem we are solving is the
evaluation of the objective function at a given point. This
is good when we need generality, because no other specific
characteristics of a problem are involved in its performance.
However, incorporating domain knowledge to evolutionary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

algoritmhs may improve their performance if we want to
use them only in a certain class of problems (as constrained
optimization problems we deal in this paper).

Sometimes we don’t have the characteristics of the prob-
lem we want to solve before the execution of the algorithm.
An alternative are cultural algorithms, that extract domain
knowledge from the problem during the evolutionary pro-
cess.

The remainder of this paper is organized as follows. In
Section 2, we provide some basic concepts related to cul-
tural algorithms. In Section 3, we describe the basic dif-
ferential evolution algorithm. In Section 4, we describe our
proposed approach for constrained optimization. In Sec-
tion 5, we show some results of the algorithm for constrained
optimization using a well-known benchmark. Finally, in Sec-
tion 6, we draw our conclusions and ennumerate the work
that remains to be done.

2. CULTURAL ALGORITHMS
Cultural algorithms are techniques that add domain knowl-

edge to evolutionary computation methods. They are based
on the assumption that domain knowledge can be extracted
during the evolutionary process, by means of the evaluation
of each point generated [6]. This process of extraction and
use of the information, has been shown to be very effec-
tive in decreasing computational cost while approximating
global optima, in unconstrained, constrained and dynamic
optimization [2, 3, 8].

Cultural algorithms consist of two main components: the
population space, and the belief space [6]. The population
space consists of a set of possible solutions to the problem,
and can be modeled using any population-based technique,
e.g. genetic algorithms. The belief space is the informa-
tion repository in which the individuals can store their ex-
periences for the other individuals to learn them indirectly.
In cultural algorithms, the information acquired by an indi-
vidual can be shared with the entire population.

Both spaces (i.e., population space and belief space) are
linked through a communication protocol, which states the
rules about the individuals that can contribute to the belief
space with their experiences (the acceptance function), and
the way the belief space can influence to the new individuals
(the influence function).

When designing a cultural algorithm, the first key factor
is the popolation space. As we said before, any population-

Generate initial population
Evaluate initial population
Initialize the belief space
Do

For each individual in the population
Apply the variation operator influenced by a

randomly chosen knowledge source
Evaluate the child generated
Replace the individual with the child, if the child

is better
End for
Update the belief space with the accepted

individuals
Until the termination condition is achieved

Figure 2: Pseudo-code of the cultured differential
evolution.

based technique can be used as a population space, but the
robustness of search engine may be very helpful in obtainig
good results.

Differential evolution [5] is a recently developed evolution-
ary algorithm, focused on the solution of real paramenter op-
timization problems. Differential evolution has been found
to be a very robust optimization technique [9]. However,
this is the first proposal that uses differential evolution as
the population space of a cultural algorithm.

3. DIFFERENTIAL EVOLUTION
Differential evolution is an evolutionary algorithm origi-

nally proposed by Price and Storn [5], whose main design
emphasis is real parameter optimization. Differential evolu-
tion is based on a mutation operator, which adds an amount
obtained by the difference of two randomly chosen individ-
uals of the current population, in contrast to most of the
evolutionary algorithms, in which the mutation operator is
defined by a probability function.

The basic algorithm of differential evolution is shown in
Figure 1, where the problem to be solved has n decision
variables, F and CR are parameters given by the user, and
xi,j is the i-th decision variable of the j-th individual in the
population.

4. THE PROPOSED APPROACH FOR
CONSTRAINED OPTIMIZATION

We have already developed a cultural algorithm for con-
strained optimization. Our proposed approach uses differen-
tial evolution in the population space. A pseudo-code of our
approach (called cultured differential evolution) is shown in
Figure 2.

In the initial steps of the algorithm, a population of popsize

individuals is created, as well as a belief space. For the off-
spring generation, the variation operator of the differential
evolution algorithm is influenced by the belief space.

Since we want to solve constrained optimization problems,
the objective function by itself does not provide enough in-
formation as to guide the search properly. To determine if a
child is better than its parent, and, therefore, it can replace
it, we use the following rules:

1. A feasible individual is better than an infeasible one.

l1 u1 l2 u2 · · · ln un

L1 U1 L2 U2 · · · Ln Un

dm1 dm2 . . . dmn

Figure 3: Structure of the normative knowledge

2. If both are feasible, the individual with the best ob-
jective function value is better.

3. If both are infeasible, the individual with less amount
of constraint violations is better.

The amount of constraint violation is measured with nor-
malized constraints, with the use of the following expression:

viol(xj) =

constr
X

c=1

gc(xj)

gmaxc

where gc(x) are the constr constraints of the problem, and
gmaxc is the largest amount of violation of the constraint
gc(x) found so far.

4.1 The Belief Space
In our approach, the belief space is divided in four knowl-

edge sources, described next.

4.1.1 Situational Knowledge
Situational knowledge consists of the best exemplar E

found along the evolutionary process. It represents a leader
for the other individuals to follow.

The variation operators of differential evolution are influ-
enced in the following way:

x
′

i,j = Ei + F ∗ (xi,r1 − xi,r2)

where Ei is the i-th component of the individual stored in
the situational knowledge. This way, we use the leader in-
stead of a randomly chosen individual for the recombination.
This has the effect of pushing the children closer to the best
point found.

4.1.2 Normative Knowledge
The normative knowledge contains the intervals for the

decision variables where good solutions have been found, in
order to move new solutions towards those intervals. Thus,
the normative knowledge has the structure shown in Fig-
ure 3.

In Figure 3, li and ui are the lower and upper bounds,
respectively, for the i-th decision variable, and Li and Ui

are the values of the fitness function associated with that
bound. Also, the normative knowledge includes the values
dmi, to influence the mutation operator adopted in differ-
ential evolution. The values dmi store the largest difference
|xi,r1 − xi,r2| found during the application of the variation
operators at the previous generation.

The following expression shows the influence of the nor-
mative knowledge on the variation operators:

x
′

i,j =

8

<

:

xi,r3 + F ∗ |xi,r1 − xi,r2| if xi,r3 < li
xi,r3 − F ∗ |xi,r1 − xi,r2| if xi,r3 > ui

xi,r3 + ui−li
dmi

∗ F ∗ (xi,r1 − xi,r2) otherwise

Generate initial population of size popsize
Do

For each individual j in the population
Generate three random integers, r1, r2 and r3 ∈ (1, popsize),

with r1 6= r2 6= r3 6= j
Generate a random integer irand ∈ (1, n)
For each parameter i

x
′

i,j =

xi,r3 + F ∗ (xi,r1 − xi,r2) if rand(0, 1) < CR or i = irand

xi,j otherwise
End For

Replace xj with the child x
′

j , if x
′

j is better

End For
Until the termination condition is achieved

Figure 1: Pseudo-code of the differential evolution algorithm adopted in this work (this version is called
DE/rand/1/bin)

e1 · · · ei · · · ew

ds1 ds2 · · · dsn

dr1 dr2 · · · drn

Figure 4: Structure of the history knowledge

We introduce the scaling factor ui−li
dmi

for the mutation to

be proportional to the interval of the normative knowledge
for the i-th decision variable.

4.1.3 Topographical Knowledge
The usefulness of the topographical knowledge is to cre-

ate a map of the fitness landscape of the problem during
the evolutionary process. It consists of a set of cells, and
the best individual found on each cell. The topographical
knowledge, also, has an ordered list of the best b cells, based
on the fitness value of the best individual on each of them.
For the sake of a more efficient memory management, in
the presence of high dimensionality (i.e., too many decision
variables), we use an spatial data structure, called k-d tree,
or k-dimensional binary tree [1]. In k-d trees, each node can
only have two children (or none, if it is a leaf node), and
represents a division in half for any of the k dimensions.

The influence function tries to move the children to any
of the b cells in the list:

x
′

i,j =

8

<

:

xi,r3 + F ∗ |xi,r1 − xi,r2| if xi,r3 < li,c
xi,r3 − F ∗ |xi,r1 − xi,r2| if xi,r3 > ui,c

xi,r3 + F ∗ (xi,r1 − xi,r2) otherwise

where li,c and ui,c are the lower and upper bounds of the
cell c, randomly chosen from the list of the b best cells.

4.1.4 History Knowledge
This knowledge source was originally proposed for dy-

namic objective functions, and it was used to find patterns
in the environmental changes [8]. History knowledge records
in a list, the location of the best individual found before each
environmental change. That list has a maximum size w.

The structure of the history knowledge is shown in Fig-
ure 4, where ei is the best individual found before the i-
th environmental change, dsi is the average distance of the
changes for parameter i, and dri is the average direction if
there are changes for parameter i. In our approach, instead

of detecting changes of the environment, we store a solution
if it remains as the best one during the last p generations.
If this happens, we assume that we are trapped in a local
optimum.

The expression of the influence function of the history
knowledge is the following:

x
′

i,j =

8

<

:

ei,1 + dri ∗ F ∗ |xi,r1 − xi,r2| if rand(0, 1) < α

ei,1 + dsi

dmi

∗ (xi,r1 − xi,r2) if rand(0, 1) < β

rand(lbi, ubi) otherwise

where ei,1 is the i-th decision variable of the previous best e1

stored in the list of the history knowledge, dmi is the maxi-
mum difference for the i-th variable, stored in the normative
knowledge, lbi and ubi are the lower and upper bounds of
the variable xi, given as input for the problem, and the
function rand(a, b) returns a random number between its
two arguments, say a and b.

4.2 Main Influence Function
The main influence function is responsible for choosing

the knowledge source to be applied to the variation oper-
ator of differential evolution, based on the success rate of
knowledge sources at the given generation. This way, the
use of different knowledge sources responds to the dynamics
of the evolutionary process.

At the beginning, all the knowledge sources have the same
probability to be applied, %pks = 1

4
, because there are 4

knowledge sources; but during the evolutionary process, the
probability of the knowledge source ks to be applied is:

%pks = 0.1 + 0.6
vks

v

where vks are the times that an individual generated by the
knowledge source ks outperforms its parent in the current
generation, and v are the times that an individual generated
(by any knowledge source) outperforms its parent in the
current generation. The lower bound of %p is the arbitrary
value 0.1, to ensure that any knowledge source has always a
probability > 0 to be applied. If v = 0 during a generation,
%pks = 1

4
, as in the beginning.

5. SOME RESULTS
To validate our approach, we adopted the well-known

benchmark originally proposed in [4] and extended in [7]
which has been often used in the literature to validate new

Best Mean Worst St. Dev.

TF Optimal CDE SR CDE SR CDE SR CDE SR

g01 -15 -15.000000 -15.000 -14.999996 -15.000 -14.999993 -15.000 0.000002 0.0
g02 0.803619 0.803619 0.803515 0.724886 0.781975 0.590908 0.726288 0.070125 0.020
g03 1 0.995413 1.000 0.788635 1.000 0.639920 1.000 0.115214 0.00019
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 0.000000 0.00002
g05 5126.4981 5126.570923 5126.497 5207.410651 5128.881 5327.390497 5142.472 69.225796 3.5
g06 -6961.8138 -6961.8139 -6961.814 -6961.8139 -6875.940 -6961.8139 -6350.262 0.000000 160
g07 24.3062091 24.306209 24.307 24.306210 24.374 24.306212 24.642 0.000001 0.066
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.000000 0.000000
g09 680.630057 680.630057 680.630 680.630057 680.656 680.630057 680.763 0.000000 0.034
g10 7049.25 7049.2481 7054.316 7049.2483 7559.192 7049.2485 8835.655 0.000167 530
g11 0.75 0.749900 0.750 0.757995 0.750 0.796455 0.750 0.017138 0.00008
g12 1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.0
g13 0.0539498 0.056180 0.053957 0.288324 0.067543 0.392100 0.216915 0.167095 0.031

Table 1: Comparison of the results obtained by our cultured differential evolution approach (CDE), and the
stochastic ranking approach (SR)

constraint-handling techniques. For a further description
of those problems, refer to [7]. We compare against the
most competitive evolutionary algorithm for constrained op-
timization: the stochastic ranking approach [7].

The results shown in Table 1 were obtained by the cul-
tured differential evolution only with 100,100 evaluations
of the fitness function, whereas the stochastic ranking ob-
tained its results with 350,000 evaluations. We can see that
the approximations of the optimal values obtained by the
cultured differential evolution are very competitive in most
of the cases, and are obtained with a low number of fit-
ness function evaluations. This can be attributed to a faster
exploration of the influenced operators by the belief space.
The robustness is a feature of the search engine (i.e. dif-
ferential evolution), also increased by the knowledge sources
that allows exploitation, such as the situational knowledge.

6. CONCLUSIONS AND FUTURE WORK
Until now, we have developed a cultural algorithm for

constrained optimization. With it, we obtain competitive
results with a considerably lower number of fitness function
evaluations. In addition to the standard benchmark, we
carried out some more experiments, that will be published
soon.

We are currently developing the cultural algorithm for
multiobjective optimization that we projected since the beg-
gining of the work. We expect to have similar performance
to the algorithm for constrained optimization. In order to
verify this hypothesis, it is necessary to make some exper-
iments with a proper benchmark, and compare the results
with other state-of-the-art algorithms.

Acknowledgements
The first author acknowledges support from CONACyT to
pursue graduate studies at the Computer Science Section at
CINVESTAV-IPN. The second author gratefully acknowl-
edges support from CONACyT through project 42435-Y.

7. REFERENCES
[1] J. L. Bentley and J. H. Friedman. Data Structures for

Range Searching. ACM Computing Surveys,
11(4):397–409, December 1979.

[2] C.-J. Chung and R. G. Reynolds. CAEP: An
Evolution-based Tool for Real-Valued Function
Optimization using Cultural Algorithms. Journal on

Artificial Intelligence Tools, 7(3):239–292, 1998.

[3] X. Jin and R. G. Reynolds. Using Knowledge-Based
Evolutionary Computation to Solve Nonlinear
Constraint Optimization Problems: a Cultural
Algorithm Approach. In 1999 Congress on

Evolutionary Computation, pages 1672–1678,
Washington, D.C., July 1999. IEEE Service Center.

[4] Z. Michalewicz and M. Schoenauer. Evolutionary
Algorithms for Constrained Parameter Optimization
Problems. Evolutionary Computation, 4(1):1–32, 1996.

[5] K. V. Price. An introduction to differential evolution.
In D. Corne, M. Dorigo, and F. Glover, editors, New

Ideas in Optimization, pages 79–108. McGraw-Hill,
London, UK, 1999.

[6] R. G. Reynolds. Cultural algorithms: Theory and
applications. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 367–377.
McGraw-Hill, London, UK, 1999.

[7] T. P. Runarsson and X. Yao. Stochastic Ranking for
Constrained Evolutionary Optimization. IEEE

Transactions on Evolutionary Computation,
4(3):284–294, September 2000.

[8] S. M. Saleem. Knowledge-Based Solution to Dynamic

Optimization Problems using Cultural Algorithms. PhD
thesis, Wayne State University, Detroit, Michigan,
2001.

[9] R. Storn. System Design by Constraint Adaptation and
Differential Evolution. IEEE Transactions on

Evolutionary Computation, 3(1):22–34, April 1999.

