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ABSTRACT
Evolutionary algorithms are very efficient tools to find a
near-optimum solution in many cases. Until now they have
been mostly used to find results but in this article we argue
that evolutionary algorithms can also be used to simulate the
evolution of complex systems. We model complex systems
as networks in which agents are connected by edges if they
interact with each other. It is known that many networks of
this kind exhibit stable properties despite the dynamic pro-
cesses they are subject to. We show here how evolutionary
processes on complex systems can be modeled with a new
kind of evolutionary algorithm which we have presented in
[8]. We will show that some evolutionary processes within
this framework yield networks with stable properties in rea-
sonable time. An understanding of what kind of evolution-
ary processes will produce what kind of network properties
in what time is vital to transfer evolutionary processes to
technical ad-hoc networks in order to improve their flexibil-
ity and stability in quickly changing environments.
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1. INTRODUCTION
One of the most influential scientific revolutions was started

by the book “On the Origin of Species by Means of Natu-
ral Selection” by Charles Darwin in 1859 where he laid the
foundations for the theory of evolution. Approximately 100
years later, some groups of scientists independently devel-
oped computational models that were based on the princi-
ples given by Darwin [5, 7, 10]. These models were named
“Genetic algorithms” or “Evolutionary Strategies” to reveal
their relation to evolution in biological systems. Today, the
notion ’Evolutionary Algorithm’ captures a huge number
of methods which commonly use the idea of non-directed
mutation and selection to optimize a given object. These
methods have been successful in praxis as a black-box opti-
mization tool: Whenever the number of possible instances
of an object -the so called search space- is too big to search
it exhaustively for the optimal candidate, a method based
on evolutionary principles may find a way to a reasonably
good instance without looking at all possible instances.

Summarizing, these methods have mainly been developed
to produce a good and in best cases even optimal result.
Our aim is to understand how self-organization of networks
can be understood as a process that yields stable and of-
ten near-optimal results. In the following we will develop
a philosophical viewpoint why simulating the evolution of
networks can give us very interesting insights into the self-
organization of complex systems in Sec. 2. We will show in
Sec. 3 on very simple examples that different evolutionary
processes can yield the same result but within totally dif-
ferent timescales. In Sec. 4 we will discuss how the under-
standing of evolutionary processes in social and other real-
world networks may be helpful to design self-organization
rules for, e.g., ad-hoc communication networks and other
technical networks that need to be adaptable to changing
environmental demands.

2. A PHILOSOPHICAL VIEW ON THE
EVOLUTION OF COMPLEX SYSTEMS

Complex systems are systems of interacting agents where
the behaviour of the whole system is not deductable from
the behaviour of single agents. An agent is any entity that
has access to a limited resource like money, time or energy,
and that can interact with other entities.

Although complex systems evolve in many different as-
pects we want to concentrate on the evolution of the re-
lations between agents that is often driven by the agents



themselves.We want to understand how this evolutionary
process works such that it results in stable properties that
emerge on the global system-level. Our approach is based
on some assumptions: The first is that all relations in com-
plex systems come with a cost. This is clear for all kind
of communication or transportation systems but also most
social systems can only be maintained if time and energy
is invested into the social relationships constituting it. If
relations come with a cost we can further assume that the
system has to support some function which is needed by
its participants. Without any gain for the agents we would
not expect the agents to invest into the building of such a
system. For example, the functionality provided by com-
munication networks is the connection between numerous
devices, whereas transport networks give the opportunity
to ship goods and persons, and social networks seem to be
an essential basis for all kind of cultural achievements in
humanity. We further assume that the cost of any edge is
paid by those participants of the network that are directly
attached to it. Further, every participant is assumed to be
able to evaluate the network’s functionality from its own
viewpoint, despite the fact that the participant will in most
cases not be able to overview the whole network. Again,
in communication networks this could be done by evaluat-
ing the connection provided to other participants, in trans-
port networks it may be measured by the time it takes to
transport some good from A to B and in social networks
it may be evaluated by a lot of fuzzy feelings that describe
the homophily among the participants on many dimensions.
Certainly, the action of an agent within the system is de-
pending on its evaluation of the current functionality of the
system with respect to herself. We can assume that every
agent requires a minimal functionality of the system: If she
is content with the current functionality she will not invest
more into the building of new relations but maybe she will
try to remove some of the edges to minimize her cost. On
the other hand, if an agent is not content with the function-
ality of the current system she may try to change some of
her relations or to add some relations in the hope that this
increases the functionality experienced by herself in subse-
quent timesteps. This last assumption implicitly contains
that agents act selfishly, i.e., they will not invest in relations
without a gain for themselves.
In summary we assume:

1. Relations between agents in complex systems come
with a cost.

2. The emerging complex system provides some function-
ality that is dependent on the actual topology, i.e., the
question of who is connected to whom.

3. Every agent can measure the functionality the sys-
tems provides to her, i.e., the evaluation function of
the functionality of a network and the corresponding
complex system is depending on the evaluating agent.
It may thus very well be that the same topology is
evaluated very differently from different agents.

4. Agents can only change their own edges, i.e., they can
decide which relations to build and to remove.

5. Agents act selfishly.

In the following, we will model complex systems as networks
where the participants are represented by nodes, and edges

between nodes represent relations between the correspond-
ing agents. Note that we will only represent one relation in
one network despite the fact that normally agents can be re-
lated in various aspects. The evolution of complex systems
is reduced to the evolution of the topology of the network,
i.e., the dynamic changes of edges within the network.

Combining the above given assumptions on complex sys-
tems and agents in complex systems, it is most surprising
that many dynamic - and thus evolving - networks display
some very stable, global properties. We want to illustrate
this statement with two examples.

2.1 Small Worlds in Social Networks
A social network is defined as a set of persons who are

connected by social relations. Looking at diverse social net-
works like coauthorship networks, email contacts or film ac-
tor networks [1, 11, 2, 4] one can always find that they
constitute so-called ’small worlds’, i.e., the network is small
in the sense that only a small number of edges is needed to
walk from one node to another. This alone is not very in-
teresting since any balanced tree or random graph will also
have a small diameter which is scaling with O(log n) where
n is the number of nodes in the network. But if we look a bit
closer, social networks are more or less like grids, i.e., most
of the relations emerge in local clusters. A pure grid network
would show a much higher diameter than all of the social
networks do, e.g., the diameter of a two-dimensional grid
scales with O(

√
n). Thus, small-worlds are special because

they combine two properties that were thought to be contra-
dicting each other: localness of edges and a small diameter.
Both characteristics are only functions of the current topol-
ogy of the network and are important, e.g., for the velocity
with which a virus spreads [11, 9]. The question is now how
these systems can develop and maintain these characteris-
tic, global properties despite the dynamic and indepedent
decisions of people within these social networks.

2.2 Power-Law Networks
Another example for a stable property of many evolving

networks is that the degree distribution is power-law shaped:
The degree of a node is defined as the number of relations
it participates in. The probability P (k) to find a node with
degree k is proportional to k−γ in a power-law, where γ
is some constant. This distribution says that most nodes
have a very small degree, while little of them have a huge
degree. This property influences heavily the robustness and
attack-sensitivity of a network and can be seen, e.g., in the
Internet or the WWW [3]. How can this property evolve on
a global scale if every decision of homepage designers and
router engineers is made independently?

In [8] we have presented a formal framework for the evolu-
tion of networks that is based on the theory of evolution as
given by Darwin and on the assumptions given above. It is
a kind of specialized evolutionary algorithm that describes
the self-organized and selfish evolution of networks in such
a way that it is still amenable to mathematical analysis. We
will show that with this framework we can try to describe
what kind of rules will help to evolve a network’s topology
with stable properties in reasonable time and which will not.
Of course, we are just at the beginning of this kind of re-
search, so the example on which we base our discussion is
simple.
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Figure 1: The framework for the evolution of net-
works. The model begins with a graph G0 = (V, E0).
In each time step t one of the nodes evaluates the
fitness of the network Gt with respect to itself, given
by the value of f(Gt, v). If this is higher than a given
minimal value fmin, the node will change its current
neighborhood Nt(v) to a neighborhood given by the
changing rule C+(v). If the evaluation yields a value
smaller or equal than the minimal value fmin the
node changes its current neighborhood according to
C−(v).

3. A FORMAL FRAMEWORK FOR THE
EVOLUTION OF NETWORKS

The above given assumptions lead us to the following for-
mal framework (s. Fig. 3): Let G = (V, E) be a graph with
a set of nodes V and a set of edges E ⊆ V × V where any
single edge e = (v, w) ∈ E describes a certain relation be-
tween two nodes v and w. Gt describes the graph at time
step t.

In this first approach we will use a fixed number of nodes,
dynamic aspects on the set of nodes are discussed in [8].
Let f(G, v) be an evaluating function on G, dependent on
v, that describes the functionality of G to node v. Let fmin

describe the minimal functionality that node v wants to get
from G. Further, we will assign two adaptation rules to any
node v, denoted by C+ and C−. Let G0 be the graph before
the evolution starts and t be set to 0. The evolution of a
network is then given by the following iterative procedure:

1. Choose one of the nodes v ∈ V uniformly at random.

2. Evaluate the functionality of Gt with respect to node
v by f(Gt, v). If this value is lower than the minimal
functionality fmin(v) required by v, apply C−. Oth-
erwise apply C+. Gt+1 is then built from Gt with the
changes implied by either of these rules.

3. Set t to t + 1

3.1 Is this an evolutionary algorithm?
We claim that the given framework is part of the huge fam-

ily of evolutionary algorithms: The process is an iteration of
evaluation of the functionality of a system and change (mu-
tation) of the system. On this abstract level, the framework
certainly looks like an evolutionary algorithm, e.g., a (1,1)
evolutionary algorithm. Of course, the evaluation function

builds the strongest deviation from other evoluationary al-
gorithms since it is depending on the evaluating node. Thus,
the system is not evaluated from the outside but from the
inside and this can lead to very opposing values of the ob-
jective function on the same instance of the network. Why
should one use such a personalized evaluating function in-
stead of one global objective function? It is clear that we can
always build a global objective function that is, e.g., given
by the sum, minimum or average over all values f(G, v) of all
nodes v in the network. If we were only interested in the re-
sult of the optimization process, i.e., the one topology that
optimizes the objective function for the system on a whole,
one should certainly use a normal evolutionary algorithm
with a big population size and the objective function should
be given by any meaningful combination of the single values
of the evaluation function of all nodes. But since we are in-
terested in the process that yields stable and near-optimal
results, we also have to simulate the mechanism. That is
why we propose the above given framework to model the
evolution of complex systems and claim at the same time
that it preserves the most prevalent principles that build
the basis of other evolutionary algorithms.

3.2 An illustrating example
The following simple example will illustrate the proce-

dure: Let T be a connected tree, i.e., a graph without cycles
where we can walk from every node to every other node.
The distance d(v, w) of two nodes in a tree is given by the
minimal number of edges to be traversed to get from v to w.
The eccentricity ecc(v) of a node v is defined as the maximal
distance it has to any other node:

ecc(v) = maxw∈V d(v, w) (1)

The diameter D(G) of a graph G is defined as the maximal
distance within the graph. Let now the tree be, e.g., some
overlay graph in a P2P-system where it is vital that no two
nodes have a distance greater than 2, i.e., the diameter of
the emerging tree should be at most 2. Then, we can formu-
late the functionality of any given tree with respect to some
given node v to be the node’s current eccentricity. The min-
imal functionality is then given by the requirement that the
node’s current eccentricity is not greater than 2. Thus, as
long as the eccentricity of a node is greater than 2, some
rule C+ for the improvement of the current topology has to
be applied. Rule C− will be omitted such that a node with
an eccentricity of at most 2 will change nothing. We will
now show that the design details of the improvement rule
C+ are vital for the evolution of the system.

3.3 The first rule: 2nd neighbors that are non-
leaves

Let v be a node with an eccentricity greater than 2. Sec-
ond neighbors of v are those nodes with distance 2 to v. We
will call this latter set the second non-leaf neighbors of v.
The goal is to decrease the eccentricity of v in the long run
and to maintain the connectedness of the tree. A simple rule
to maintain the connectedness is to choose one of the second
neighbors w, build an edge between v and w and remove the
edge between v and that first neighbor z that is connected
to both, v, and z.
To decrease the eccentricity of v in the long run we should
not accept any new edge that increases the eccentricity of
v. It is clear that any second neighbor of v that happens



to be a leaf (a node with only one edge) will increase the
eccentricity of v. Thus, the first rule C+ = R1 is: If your ec-
centricity is greater than fmin then first choose uniformly at
random one of those second neighbors w that are non-leaves.
Let z be the node that is connected to both, v and w. Build
an edge between v and w and remove the edge betweeen v
and z if the eccentricity of v in this case is not increased
compared to the eccentricity in the unchanged graph.

As we could show in [8] this rule will certainly lead to a
graph with the wanted diameter of 2, but expectedly it will
take exponential time to accomplish this:

Lemma 1. Rule R1 will build a tree with a diameter of
no more than 2 within expectedly Ω( 1

n
2n) time steps.

3.4 The second rule: Regard all distances
As we could also show in [8], a slightly changed improve-

ment rule C+ will reduce the number of time steps needed
significantly. In this rule, denoted by R2, an edge (v, z) is
only replaced by an edge to a second neighbor w if the dis-
tance from v to all other nodes is strictly decreased in the
new tree. We can show that the expected runtime to evolve
a tree with the wanted diameter of 2 is then bounded by
O(n5).

Lemma 2. Rule R2 will build a tree with diameter of no
more than 2 within expectedly O(n5) time steps.

Note, that both rules will stop the evolution of the net-
work when the diameter of the emerging network has reached
a value of at most 2: If no node has an eccentricity of more
than 2 - which is certainly true if the diameter is at most
2 - than no node will try to change its local neighborhood
anymore.

4. DISCUSSION
These two examples have shown that the careful design of

evoluationary rules within the formal framework given above
can lead to the emergence of a topology with a wanted prop-
erty, in this case a low diameter. Of course, this example is
very simple but it shows that a network can evolve to a state
with a global and stable property without the guidance of
any outstanding supervisor. We have also shown that the
details of a rule are extremely influential on the expected
runtime of the system until the stable property emerges.

Our goal for the future is to find out what kind of simple
rules will evolve what kind of network structures in what
time. In this paper, the functionality of the network was
chosen to be the short paths it provides between all pairs
of nodes. Other possible functionalities provided by differ-
ent kind of networks are: Attack resistance, redundancy of
pathways to avoid congestion, or simply providing a commu-
nication backbone with minimal costs. To build new rules
for evolving networks with these functionalities, we will first
have to create appropriate evaluating functions that mea-
sure the effectiveness of a network’s structure with respect
to these functionalities. This sketches one field of further
research for us. In this article, we have also simplified the
model by using a uniform cost function for the edges and a
fixed number of nodes in the network. Further research will
show whether we can introduce more realistic edge costs,
e.g., the geometrical distances of agents as an approxima-
tion for edge costs, and what happens if the node set changes
dynamically.

We hope that a simulation of the evolution of networks
with the rules deducted from experiments and analysis will
tell us how self-organization works in real-world networks
and complex systems. What could it help to understand
these mechanisms? We have two visions what could be done
with this knowledge:
The first is that a thorough understanding of these mecha-
nisms makes it possible to construct small self-organizing
communication devices that build their own ad-hoc net-
work such that certain wanted properties of the topology
will arise.
Whereas the first vision is technical and may be fulfilled in
some years, the second is more visionary: Gleich anticipates
in [6] that a new profession should arise, the ’networker’.
The networker is a person that is familiar with the emer-
gent properties of networks and their underlying complex
systems and is able to recognize processes that will lead to
wanted and unwanted events. He or she is the coordinator
that supports the building of new edges where needed and
will guide information flow through the network. Such a
person will need to learn more about the mechanisms that
are underlying network evolution. As we said above, the
change of relations in complex systems is only one part of
the whole evolution of complex systems. But since all pro-
cesses on the system make use of these relations, the net-
work’s topology and its evolution build the basis that needs
to be understood first and we hope that we can make some
first progresses here.
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