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ABSTRACT
XCSF is an extension of XCS in which classifier prediction is
computed as a linear combination of classifier inputs and a
weight vector associated to each classifier. XCSF can adjust
the weight vector of classifiers to evolve accurate piecewise
linear approximations of functions. The Widrow-Hoff rule,
used to update the weight vectors, prevents (when some
conditions hold) XCSF from exploiting the expected piece-
wise linear approximation. In this paper we replace the
Widrow-Hoff rule with linear least-squares and we show that
with this improvement XCSF can fully exploit its general-
ization capabilities.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Learning Classi-

fier Systems

General Terms
Theory, Experimentation, Algorithms

Keywords
learning classifier systems, XCSF, least-squares, generaliza-
tion, function approximation

1. INTRODUCTION
XCSF is a model of learning classifier system, introduced

by Wilson [10], that extends the typical concept of classifiers
through the introduction of a computable classifier predic-
tion. XCSF has been successfully applied to some function
approximation problems, evolving accurate solutions [10].
However, a recent work [7] shows that XCSF may be unable
to fully exploit its expected generalization capabilities when
some condition on the inputs domain holds; in [7] the rea-
son of this unexpected behavior has been addressed to the
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Widrow-Hoff rule used in XCSF for updating the weights of
classifiers. In this work we introduce a version (XCSFls) of
XCSF by replacing the Widrow-Hoff rule, in the update pro-
cedure, with linear least-squares. The experimental results
reported show that XCSFls can fully exploit the expected
linear approximation. Moreover results show that XCSFls
can evolve solutions that are significantly more accurate and
more compact compared to the ones evolved by XCSF.

The paper is organized as follows. We begin in Section 2
with a description of XCSF [10] and then in Section 3 we
introduce XCSFls. In Section 4 we describe how experi-
ments have been performed to compare XCSF and XCSFls.
Then we discuss the the experimental results in Section 5.
Finally in Section 6 we summarize the work and we discuss
the results obtained.

2. THE XCSF CLASSIFIER SYSTEM
XCSF differs from XCS in three respects: (i) classifiers

conditions are extended for numerical inputs, as done in
XCSI [9]; (ii) classifiers are extended with a vector of weights
w, that are used to compute classifier’s prediction; finally,
(iii) the original update of classifier prediction must be mod-
ified so that the weights are updated instead of the classifier
prediction. These three modifications result in a version of
XCS, XCSF [10], that maps numerical inputs into actions
with an associated calculated prediction.
Classifiers. In XCSF, classifiers consist of a condition, an
action, and four main parameters. The condition specifies
which input states the classifier matches; as in XCSI [9], it is
represented by a concatenation of interval predicates, int i =
(li, ui), where li (“lower”) and ui (“upper”) are integers,
though they might be also real. The action specifies the
action for which the payoff is predicted; when XCSF is used
as function approximator (as in this paper) there is only
one dummy action which has no actual effect. The four
parameters are: the weight vector w, used to compute the
classifier prediction as a function of the current input; the
prediction error ε, that estimates the error affecting classifier
prediction; the fitness F that estimates the accuracy of the
classifier prediction; the numerosity num, a counter used to
represent different copies of the same classifier.
Performance Component. XCSF works as XCS. At each
time step t, XCSF builds a match set [M] containing the clas-
sifiers in the population [P] whose condition matches the
current sensory input st. As in XCS, in XCSF the system

prediction is computed by the fitness-weighted average of



all matching classifiers. However, in contrast with XCS, in
XCSF classifier prediction is computed as a function of the
current state st and the classifier vector weight w. Accord-
ingly, in XCSF system prediction is a function of the current
state st, defined as:

P (st) =

P

cl∈[M]
cl.p(st)× cl.F

P

cl∈[M] cl.F
(1)

where cl is a classifier, cl.F is the fitness of cl ; cl.p(st) =
cl .w0 × x0 +

P

i>0 cl .wi × st(i) is the prediction of cl com-
puted in the state st (where cl.w i is the weight wi of cl

associated to the input i and x0 is a constant input). Next,
XCSF performs the dummy action with no actual effect and
a reward P is returned to the system.
Reinforcement Component. XCSF uses the incoming
reward P to update the parameters of classifiers in the match
set [M]. The weight vector w of the classifier in the match set
[M] is updated using the Widrow-Hoff rule. For each clas-
sifier cl ∈ [M ], each weight cl.w i is adjusted by a quantity
∆wi computed as:

∆wi =
η

|~xt−1|2
(P − cl.p(st−1))xt−1(i) (2)

where η is the correction rate and ~xt−1 is defined as the
input state vector st−1 augmented by a constant x0 (i.e.
~xt−1 = 〈x0, st−1(1), st−1(2), . . . , st−1(n)〉) and |~xt−1|

2 is the
norm of vector ~xt−1 for further details refer to [10]. The
values ∆wi are used to update the weights of classifier cl as
cl.w i ← cl.w i + ∆wi. Finally, prediction error and classifier
fitness is updated as in XCS.
Discovery Component. The genetic algorithm in XCSF
works as in XCSI [9]. On a regular basis depending on the
parameter θga, the genetic algorithm is applied to classifiers
in [M]. It selects two classifiers with probability proportional

to their fitness, copies them, and with probability χ performs
crossover on the copies; then, with probability µ it mutates
each allele. Crossover and mutation work as in XCSI [9,
10]. The resulting offspring are inserted into the population
and two classifiers are deleted to keep the population size
constant.

3. LINEAR LEAST-SQUARES FOR XCSF
The Widrow-Hoff update used in XCSF can converge very

slowly when some conditions on the distribution of the clas-
sifiers inputs hold. In [7] is analyzed in detail the slow
convergence of the Widrow-Hoff rule, showing how it may
prevent XCSF from exploiting its generalization capabili-
ties. Overall the experimental results reported in [7] show
that XCSF may evolve a piecewise constant approximation
of the target function, instead of the expected linear ap-
proximation. We refer the reader to [7] for details and dis-
cussion about this analysis. In the following we describe
as Widrow-Hoff update can be replaced using linear least-
squares in order to eliminate these drawbacks.
Linear least-squares have been already used in reinforce-
ment learning [2, 1] as an alternative to the Widrow-Hoff
rule. Linear least-squares are in fact more efficient than
Widrow-Hoff since they need fewer data samples to con-
verge [2] and their convergence speed is not influenced by
the input distribution [4]. The Widrow-Hoff update used
in XCSF [10] can be viewed as a gradient descent of the

following error function:

ξ(~w) = 1
2
e2(t) where e(t) = f(xt)− cl.p(xt) (3)

in linear least-squares this error function is replaced by,

ξ(~w) = 1
2

Pt

i=1 e2(i) where e(i) = f(xi)− cl.p(xi). (4)

Let Xt = [ ~x1, ~x2, . . . , ~xt]
T be a vector of inputs until time t,

and let ~f(t) = [f( ~x1), f( ~x2), . . . , f(~xt)] be the vector of all
the desired outputs. The weight vector ~w that minimizes the
error function in Equation 4, is the solution of the following
equation:

(XT
t Xt)~w = X

T
t

~f (t). (5)

The solution of the previous equation can be calculated in a
robust way by applying the Singular Value Decomposition
to (XT

t Xt) [8]. The update procedure described so far re-
quires to store all the inputs and the desired outputs, but
we’re interested in an incremental update procedure. For
this reason we implement the linear least-squares by keep-
ing, for each classifier, a vector Xn

t of the last n visited
inputs and a vector Y n

t of the corresponding desired out-
puts. At each time step t, weight vector ~w∗

t is calculated as
the solution of

(Xn
t )T

X
n
t

~w∗

t = (Xn
t )T

Y
n

t , (6)

and then the solution ~w∗

t is used to update the current
weight vector as follows:

~wt = (1 − η) ~wt−1 + η ~w∗

t . (7)

Under this formulation it’s possible to use a small window
of data (i.e. a small value of n), by choosing an adequate
value of the learning rate η.
We dub XCSFls the version of XCSF obtained replacing the
Widrow-Hoff rule with the linear least-squares. In this paper
all the experiments performed with XCSFls have been done
using the last n = 50 visited input and the corresponding
desired outputs.

4. DESIGN OF EXPERIMENTS
In each experiment reported in this paper XCSF has to

learn to approximate a target function f(x); each experi-
ment consists of a number of problems that XCSF must solve
For each problem, an example 〈x, f(x)〉 of the target func-
tion f(x) is randomly selected; x is input to XCSF whom

computes the approximated value f̂(x) as the expected pay-
off of the only available dummy action action; the action is
virtually performed (the action has no actual effect), and
XCSF receives a reward equal to f(x). XCSF learns to ap-
proximate the target function f(x) by evolving a mapping
from the inputs to the payoff of the only available action.
Each problem is either a learning problem or a test problem.
In learning problems, the genetic algorithm is enabled while
it is turned off during test problems. The covering operator
is always enabled, but operates only if needed. Learning
problems and test problems alternate.

XCSF performance is measured as the accuracy of the
evolved approximation f̂(x) with respect to the target func-

tion f(x). To evaluate the evolved approximation f̂ (x) we
measure the mean absolute error (MAE) defined as:

MAE =
1

n

X

x

|f(x)− f̂ (x)|



where n is the number of points for which f(x) is defined.
To evaluate instead the generalization capabilities of the sys-
tem we measure also the average size of population evolved
(calculated as the number of different classifiers) and the av-
erage generality of classifiers in the solution evolved (where
generality is calculated as the size of the interval covered
from its condition). All the statistics reported in this pa-
per are averaged over 50 experiments. All the experiments
reported have been conducted on xcslib [6].

5. EXPERIMENTAL RESULTS
We compare XCSF with XCSFls on the following func-

tions:

fs3(x) = 100
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Equation 8 and Equation 9 are Koza’s Sinus Three
and Sinus Four [5] adapted to the integer domain
D = {950 ≤ x ≤ 1050, x ∈ IN}, following what done by [10]
for the sine function; Equation 10 is taken from [11] and
adapted for integers.
In all the experiments we use the following parameter set-
ting: N = 400, β = 0.2; α = 0.1; ν = 5; χ = 0.8, µ = 0.04,
θnma = 1, θdel = 50; θGA = 50; δ = 0.1; GA-subsumption
is on with θsub = 50; while action-set subsumption is off;
the parameters for integer conditions are m0 = 20, r0 = 10;
the parameters for the piecewise linear approximations are
η = 0.2 and x0 = 1000 [10]; each experiment consists of
50000 learning problems. For each experiment we use a dif-
ferent value of error threshold ε0.
In the first set of experiments we compare the performance
of XCSF and of XCSFls on the function fs3(x) when ε0=10.
Both the systems evolve solutions with an average error
below the target threshold (Table 1); but when the error
threshold ε0 is lowered to 5 we can observe that XCSF evolve
solutions with an average error higher than the ε0, while
XCSFls is able to evolve accurate solutions with respect to
the target threshold. It’s even more interesting to discuss
the others distinctive features of the solutions evolved by the
two systems: the average size of population and the aver-
age generality of classifiers. Experimental results in Table 1
show that XCSFls evolves solutions that are definitely more
compact of the ones evolved by XCSF (e.g. in the case
of function fs3(x) we can see that populations evolved by
XCSF have size double or even more than the ones evolved
by XCSFls). Moreover the generality of classifiers evolved
by XCSFls is sensibly greater than the corresponding one
evolved by XCSF.
In Figure 1 we report the approximation evolved by XCSF
and by XCSFls in the case of fs3(x) with ε0 = 10. In Fig-
ure 1a we observe that approximation evolved XCSF have
an higher variance compared to the one evolved by XCSFls
reported in Figure 1b. The difference between the two ver-
sions of the system is even more evident in Figure 2 that
shows the classifiers evolved in the best solution (i.e. the so-
lution with the lowest average error over all the 50 runs) by
XCSF (Figure 2a) and by XCSFls (Figure 2b). Classifiers
evolved by XCSF cover only small intervals over the input

range and overall the approximation is definitely piecewise
constant. XCSFls instead fully exploits the linear approxi-
mation, evolving classifiers that cover large parts of the func-
tion domain.
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Figure 1: Comparison of XCSF and XCSFls applied
to fs3(x) with N = 400 and ε0 = 10: (a) XCSF ap-
proximation; (b) XCSFls approximation;

The experiments on the function fs4(x) and on the function
fabs(x) (not reported here for brevity) shows exactly the
same behavior discussed for the function fs3(x); however all
the experimental results are summarized in Table 1.
Statistical Analysis. We apply a one-way analysis of
variance or ANOVA [3] to test whether the differences in
approximation accuracy and generalization capabilities ob-
served for the two versions of XCSF (Table 1) are statisti-
cally significant. Then, we apply a series of (typical) post-
hoc procedures (namely Tukey, Scheffé, and Bonferroni) to
analyze the differences between XCSF and XCSFls. First we
analyze the mean absolute error (MAE). The ANOVA test
performed on the data of mean absolute error shows that the
two versions of XCSF perform significantly different, with a
confidence level of the 99.99%. Also the three subsequent
post-hoc procedures (Scheffé, LSD, and Tukey) show that
the performance of XCSF and XCSFls is significantly dif-
ferent. Then we apply the same analysis to the data of the
population size and to the data of classifiers’ generality ob-
taining the same results: the difference between XCSF and
XCSFls both in terms of size of the evolved solutions both in
terms of generality of the classifiers in the final populations
is statistically significant, that is, least-squares approach sig-
nificantly improves the generalization capability of XCSF.



XCSF XCSFls

f(x) ε0 MAE ± σ |[P ]| ± σ G([P])±σ MAE ± σ |[P ]| ± σ G([P])±σ

fs3(x) 10 8.6 ± 1.1 47.2 ± 3.4 4.1 ± 3.5 6.0 ± 0.3 21.8 ± 3.8 12.6 ± 4.3
fs3(x) 5 8.0 ± 1.1 55.8 ± 5.0 3.3 ± 2.9 3.2 ± 0.2 24.5 ± 3.5 8.5 ± 3.5
fs4(x) 10 11.2 ± 1.6 49.1 ± 4.3 3.9 ± 3.1 6.6 ± 0.4 24.0 ± 3.3 9.4 ± 3.4
fs4(x) 5 11.7 ± 1.7 48.9 ± 4.3 4.0 ± 3.1 3.6 ± 1.4 29.7 ± 4.2 6.5 ± 3.0
fabs(x) 5 4.1 ± 0.5 45.1 ± 4.2 4.5 ± 4.1 2.4 ± 0.2 22.1 ± 3.6 15.0 ± 2.5

Table 1: Generalization with XCSF and XCSFls: f(x) is the target function; ε0 is the error threshold; MAE±σ
is the value of the average mean absolute error with the standard deviation; |[P ]|±σ is the average size of the
evolved solution with the standard deviation; G([P ])± σ is the average generality of classifiers in the evolved
solution with the standard deviation. Statistics are averages over 50 runs.
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Figure 2: XCSF and XCSFls applied to fs3(x): (a)
best population evolved by XCSF and (b) best pop-
ulation evolved by XCSFls. Segments identify the
approximations provided by classifiers.

6. CONCLUSIONS
The Widrow-Hoff update used in XCSF may interfer with

the generalization capabilities of the system and may pre-
vent the reproduction of general and accurate classifiers [7].
In this work we introduced XCSFls a new version of XCSF
in which the Widrow-Hoff update is replaced by a linear
least-squares based update. Here we presented a simple ex-
periment showing that while XCSF evolves an unexpected
piecewise constant approximation, XCSFls can effectively
exploit linear approximation, evolving also a more compact
solution. Then we reported the statistical analysis per-
formed on a larger number of experiments: our analysis
showed that (i) XCSFls evolves solution statistically more

accurate than the ones evolved by XCSF (ii) linear least-
square approach lead to an higher and more effective gen-
eralization; i.e. the solutions evolved by XCSFls are more
compact than the ones evolved by XCSF and are formed by
classifiers with an higher average generality.
The least-squares approach discussed in this work requires
more computational resources of the original Widrow-Hoff
approach: XCSFls needs not only a larger amount of mem-
ory for storing the last visited inputs, but also more compu-
tational time in order to solve at each step the Equation 6
for each classifier in the match set. Anyway these additional
computational resources could be dramatically reduced by
implementing a recursive version of linear least-squares that
requires a smaller amount of memory and computational
time.
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