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ABSTRACT
In this paper, we describe a series of simulations that serve as a
verification  of  the  abstract  similarity  between  vehicular  and
animal navigation.  Valentino Braitenberg used this similarity to
illustrate  that  vehicles  controlled  by  very  simple  biologically
inspired  circuits,  manifest  a  wonderful diversity  of  complex
animal behaviors.  By constructing a series of  experiments that
are designed around the possibility of interchanging phenomena
that  affect  vehicles  or  animals,  we  hope  to  show  that  this
analogical similarity is a useful tool.   

Categories and Subject Descriptors
I.2.9& I.6.8 [Computing Methodologies]: Simulated Evolution

of Vehicles –  animation, distributed,  parallel, autonomous
vehicles.

General Terms 
Algorithms, Experimentation.

Keywords
Evolution, divergence, cooperative populaces, adaptive systems,
interference of adaptive systems.

1. INTRODUCTION
Numerous navigation problems have served as testing grounds
for adaptive systems in the existing literature and software base
[2][4].     We  utilize  the  description  of  theoretical  terrestrial
vehicles offered by Valentino Braitenberg in his book Vehicles:
Experiments in  Synthetic  Psychology[1].   In  addition  to  the
vehicular model we will utilize two salient points from this work:
simple  circuits  generate  complex  behaviors  and  navigation  by
animals and vehicles is similar.  It is perhaps important to note
that these were not Braitenberg's central point.  In fact it is clear
his intent was to contrast the simplicity of designing a solution,
with  the  difficulty of identifying a  specific  mechanism that  a
biological nervous system implements to solve the same problem.
To illustrate this point Braitenberg based each of  the chapters in
the  book  on  a  theoretical  vehicle  with  a  simple  biologically
inspired  control  circuit  that  would  manifest  a  familiar  but
complex animal behavior.  If the analogical similarity of vehicle
control and animal behavior is valid, a simulation that contains
this type of vehicle model should be able to facilitate scenarios

where  biological  phenomena emerge  in  vehicles  or  vehicular
phenomena emerge under biological conditions. 

In the first experiment we will attempt to create a scenario where
a group of vehicles demonstrates the same tendency toward self
propagating behaviors that  many natural  populaces exhibit.   In
the  second  experiment we  will  attempt  to  simulate  the
interaction between two biological  phenomena by applying both
to vehicles in a simple environment.  Specifically the phenomena
we simulate are the improvement of an individual by a learning
algorithm and the improvement of a populace by environmental
pressures.   A  secondary  purpose  of  this  experiment is  to
demonstrate the degree to which a simulation that is otherwise a
simplification  (wheels  instead  of  legs  etc.)  can  host  complex
interactions.  The third experimental simulation was designed to
be a reprisal of the environment in the second experiment with
the  addition  of  a  vertical  dimension.   Fortuitously,  when  the
simulation  was allowed  to run  for several  hours  the  populace
demonstrated  both  a  biological  and  vehicular  phenomena:
Speciation and Trains.

1.1 Vehicle of Choice
Braitenberg  vehicles  of  Type  2  (Figure  1)  are  described as
terrestrial  vehicles (operating on a plane) that have two wheels
which are  independently controllable producing the net effect of
directional and velocity control of the entire vehicle. The cars can

be mathematically modeled as system of two functions (one for
each wheel) on some combination of the variables that represent
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Figure 1. Characterized Vehicles.



environmental information. In these models directional change is
equivalent to the difference of the values produced by the pair of
functions,  and  the  sum  of  the  values  represents  travel  or
magnitude. Cars of Type 3c are similar  to Type 2 but have any
number of specialized  sensors to resolve the environment they
inhabit.  With a dedicated simple sensor it is easy to simplify or
circumvent the process of cognition in our models.
1.2 The Paths to Improvement
Learning in  artificial  neural  networks  and simulated  evolution
are both examples of improving systems.  Computerized   vehicle
simulation  gives  us  the  capability  to implement  both  of these
techniques.   At  the  level  of  an  individual vehicle  a  neural
network  can  be  'trained'  or  changed  in  a  way that  produces
improvements of  individual behaviors.  At the population level,
evolutionary  operators  like  transmission of  characteristics,
mutation,  or pressure  exerted  by environmental  conditions  can
result in improvements of the performance of a navigational task.
Performance  in  individuals and  whole  populations  can  be
measured  by  the  same  environmental  variables  like  linear
distance /  time, etc.  Furthermore with the utility .of a flexible
set  of  reliable  navigational  testbeds,  experimentation with
improving systems  can  be  benchmarked  across  disparate
categories of navigational scenarios[4].  Computerized simulation
allows  complete  transparency  and  control  of  the  set  of
information  that  constitutes  an  artificial  environment.
Furthermore an experimenter is at liberty to manipulate access to
that  information  by  instantiated  objects  operating  in  the
simulated  environment.  These  two  controls  allow  us  to
benchmark  the  number  of  exposures  to  stimuli  an  improving
system  receives before  performing a  behavior.   Additionally
graphical  rendering  of the  computerized  simulation  offers  the
possibility  of  repeated  visual  demonstration  of  emergent
behaviors or morphological changes.    Vehicles are guided by
independent instantiated objects created from behavioral classes
which serve  to compartmentalize  variable  information  in  both
simulation  engines.   This  fact  not  only  facilitates  processing
collision and sensation determinations, it  guarantees uniformity
of test conditions.
1.3 Methods
Two simulators were employed during these experiments: A Java
based  two  dimensional  vehicle  simulator  created  by  Shawn
O'Neil, and  Conitec's  3d  GameStudio  version  A6.   The
GameStudio itself is proprietary but an executable version of the
3d  simulation,  and  an  appletized  version  2d  simulator  are
available at http://myweb.nmu.edu/~ckowall.  In all  comparative
or combined simulations vehicle properties were held constant in
that the types of sensors and means of expressing affect on the
environment were identical.  

2. EXPERIMENTS AND
DEMONSTRATIONS
2.1 Contagion of Behavior.
Memes  and  virii have  similar  transmission  operations  in  that
they require a host, as well as temporal and spatial proximity to
propagate.  Braitenberg characterized his vehicles' behaviors with
anthropomorphic titles like 'Love' or 'Hate' to describe 'seeking' or
'avoiding'.   This  lead  to  the  conjecture  (on  the  part  of  the
investigator)  that  the  most  successful,  or  likely  to  proliferate,
behavior  modifying virulent effect  is  Braitenberg's  'Love'.
Because a host infected with the characteristic of 'Love' will tend
to transport and transmit the effect to others that can serve as a
host, it  will  be  particularly virulent.  To test  this  we created a

simulation  by  modifying the  Java  based  Braitenberg  vehicle
simulator.  In this scenario all  cars sense and carry blue lights;
the only environment cues consists of blue lights that are carried
by other vehicles.  If two vehicles are at the same location at the
same time the one that has traveled further will transmit its look
up table  (the  cars  are  controlled  by a  discretized mechanism)
(Table 1) to the other vehicle.  Physical morphology was held

 Table 1. Look up table for clockwise "Orbiter" vehicle

Left sensor Right sensor Action

0 0 Turn right

0 1 Go forward

1 0 Turn left

1 1 Turn left
constant and the two conic sections that represented the area of
sensation  (of  blue  lights)  had  an  area  of  mutual  inclusion
(analogous to predators' eye positions).  This overlap is important
because it allows the deduction of additional location data by the
control mechanism.   If an example  of all  256 possible  vehicle
look up tables that can represent behavior driven by two binary
stimuli (eyes) acting on two binary responses (wheels) are placed
into the same environment the population becomes dominated by
a broad class of 'seekers'.  'Orbiter' and 'Wall-follower' behaviors
came  in  a  distant  second but  persisted  well  into  many trials
because  the  cars  were  mobile  enough  to  avoid  seekers  and
accumulate  travel  credit.  Other  persistent population  elements
included  'Travelers'  or  'Traveling Avoiders'  that  move forward
without  stimuli  and  turn  away  from  those  lights  they  do
encounter.  One could easily speculate that if the width and offset
of the  cones of sensation could be transmitted  or mutated that
speciation along the lines of predators and prey  would occur.  In
the third experiment we will show just that type of divergence.

2.2 Interference by Improvement Systems.
Subsequent efforts included developing code that allowed cars to
be  operated  by   feed  forward  multi-layer  neural  networks.
Training  algorithms  including  back-propagation of  errors
method,  an  on-line  adaptive  resonant  training  algorithm,  and
natural  selection  (randomized  static  networks  selected  by
performance and environmental conditions for representation in
future populaces)  were all  tested [3].  All neural cars had four
input, four hidden, and two output nodes with hyperbolic tangent
threshold functions.  Because the operation of selecting members
of the populace for replication does not interfere directly with the
on-line  selection  of  connection  weights in  the  network  that
guides  individual vehicles  it  was possible  to test  the  effect  of
their  operation on a  single   populace over the  same period of
time.   The navigation task was composed of: starting at one of a
hundred starting points, avoiding a barrier composed of red lights
(that would destroy vehicles that collided with them), ending at a
set of blue lights (that count cars that collided with them).  All
cars  were  configured  with  two sensors  for  red  lights  and  two
sensors for blue lights.  First we tested a set of 100 look up table
driven cars  of the  same sensor  layout as  the  neural  model  of
which 0 succeeded.  This result  is easily analyzed, because the
pan and breadth of the cone of sensitivity of the red  (avoidance)
sensors spanned the narrow opening in the barrier  composed of
red  lights.   The  discrete control architecture  is  not  capable  of
temporarily 'ignoring' the negative stimuli on the way to the goal
so vehicles with this type of 'brain' usually come to rest jambed in
the opening refusing to advance but remaining fixed on the goal.



Second we tested  a  set  of 100 neural  network controlled  cars
with  random  connection  strengths  and  analog  sensors.   On
average  three  of  100  random weighted  networks  guide  their
vehicles to the blue lights.   Third we tested an on-line trained
network identical at incept to the cars with randomized starting
weights.   Feedback was  provided to the  training algorithm by
signal  from the  sensors  themselves.   If  a  behavioral  change
coincided with an increase of signal from the 'goal' sensor, it is
reflected  in  a  reduction  of  the  size  future  weight  changes.
Conversely the increase of signal from 'obstacle' lights results in
an increase in the step size of future weight changes.  On average
seventeen of 100 cars with on-line learning reached blue lights
within 20000 simulation cycles.  In the fourth test 100 untrained
randomized neural cars were used to isolate an average of three
successful  weight  configurations  that  were  proportionately
represented in a populace of 100 offspring that were then started
at  each  of the  100  starting  points  yielding  an  average  of  10
successful navigations.  In the fifth test both selection and on-line
training were applied to the same cars.  After one generation of
elite selection  15 of 100 trained cars completed the navigation
task.   Although  the  results are  inconclusive,  they  essentially
show the two methods of improving the populace interfered with
each others' operation in  spite  of the  fact  they do not  directly
interact.  It is important to recognize that the initial  connection
weight state of the second or selected generation was not random
but  of  the  starting  states of  successful  members  of  the  first
populace.  In the sixth test 100 initially randomized connection
weight  configurations  were  tested  and  selected  producing  an
average of three cars that  were then  proportionally represented
by 100 offspring which were trained by the online learning while
being tested.  Strangely the second populace failed to reach the
success rate  of the  untrained  selected  populace,  by producing
only an average of 7 successful cars.  It is tempting to say that
effects like overspecialization by selection (combined with of the
variance in starting position) and the non-linear effect of the on-
line  learning  algorithm  produced  the  observed  loss  of
improvement  performance  when  improvement  algorithms  are
combined (test 6 & 7)  but a causal explanation is beyond the
scope  of  this  paper.    Future  work  will  include  tests  of
Lamarckian style  transmission  of  trained  weight  strength
configurations that may offset the observed interference.

2.3 Emergent Specialization in Small
Populaces.
In the  third  experiment, a  navigational  scenario,  like  the  one
employed  in  the  second  experiment (complete  with  small
opening)  was  created  with  Conitec's  3d  GameStudio  World
Editor.  In this test the wall separating the starting position of the
cars and the goal locations did not destroy the car but  instead
operated as a simple obstacle.   For the sake of simplicity cars
were  controlled  by a  look up table.  The  genome of the  three
dimensional cars includes physical features like sensor angle and
range as well as values in the output column of the look up table
(the rotational  velocity of a  wheel  given a sensor  state).    An
aggregate  fitness  function  was  composed  of  functions  on
variables like the average distance to the objective and a constant
valued reward  for reaching the  goal.   Selection was based  on
randomly  selected tourney  style  elimination  and  replication.
Both  the  elimination  and  replication  were  executed  when  the
population was in a target range from 25-50.  Because Conitec's
SDK allowed rapid  modification and observation  by means  of
sending  a  virtual  avatar  to  'witness'  the  scene  of  the  cars
operation,  many different  modifications to the  fitness  function,

evolutionary algorithm, and navigation task  were tested.  In one
long  running  scenario  two  characteristic  subgroups  emerged:
wall/traffic jam avoiders with widely separated collision sensors,
and followers that had crossed collision detectors with reversed
logic  such  that  when  they  were  born  (at  the  same  location)
following an avoider they would lock their sensors on the back of
that vehicle and follow it to the goal! (Figure 2) It appears that
we  have  observed  the  emergence  of  train  cars   amongst  a
populace  of  cars.   Although  the  phenomena is  unstable  and
suffers severe periods of negligible performance (in terms of the
populaces ability to reach the goal) it is perhaps of more interest
to observe emergence than improvement.

2.4 Future Work
Future work will concentrate on using locally (node) referenced
records of neural activity as an input set for networks that adjust
the connection weights in an underlying behavior response neural
network,  and  using  evolutionary  scenarios  to  select  amongst
populations of vehicles with meta-level networks.
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Figure 2. Emergent Cooperative Species.




