
Evolving an Ecology of Two-Tiered Organizations
Travis L. Kriplean 

University of Wisconsin-Madison 

kriplean@cs.wisc.edu 
 
 

ABSTRACT 

Evolutionary models typically rely on a single level of evolution 
for training a team of cooperating agents. I present a model that 
evolves at two levels—an “organizational” level and the more 
traditional “individual” level. Each organization contains an 
embedded agent population that goes through a full evolutionary 
process every organizational time-step. The organization’s genetic 
code is essentially a policy that specifies the training process for 
its embedded agents. It also defines the creation of a 
representative team that is compiled after each organizational 
time-step. An organization’s fitness is based on the performance 
of this representative team.  
Categories and Subject Descriptors 
I.2.8-Problem Solving, Control Methods and Search 

General Terms 
Algorithms, Design 

Keywords 
Evolutionary computation, genetic programming, genetic 
algorithms, distributed artificial intelligence, teamwork 

1. INTRODUCTION 
When evolving a team of coordinating agents or co-adapted 
subcomponents, researchers tend to focus on evolution at the 
individual level. Because organizations have a life of their own 
[7], the emphasis on a single level ignores the potential of an 
explicit organization.  

In this paper, I describe a two-tiered model that evolves a 
population of “organizations”, each of which contains a nested 
population of individual agents. The term agent will be used for 
the individuals within an organization. Tier and level are used 
interchangeably to refer to the two evolutionary stages. 

Each organization specifies, through its genetic code, multiple 
sequences of training tasks that its embedded agents go through at 
each time-step. After training the agents, the organization 
assembles the best into a team. The performance of this team on 
the domain problem determines the organization’s fitness.  

The underlying motivation for this model is to create a stronger 
framework for agent-based modeling in the social sciences [1]. 
Explicit representation of organizational processes will allow 
richer social dynamics to be captured. For distributed artificial 
intelligence, the two-tiered model supports the emergence of 
coordination in multi-agent systems where there may be affinities 
between agents trained differently. For example, in soccer, 
training only for goalies, forwards, or sweepers would result in a 
poor team. But with a heterogeneous team, a better outcome is 
expected.  

In the two-tiered model, the organization defines agent-roles and 
is responsible for creating a team. In this way, the organizational 
level is a parallelized search of the space of possible teams, 
distinct from the Punctuated Anytime Learning model [3], where 
the learning system, for the whole population, is periodically 
adjusted during the evolutionary process.  

The model developed here is not oriented to a specific problem 
domain. It should work best in decomposable domains where the 
most successful training process is unclear and the task requires 
heterogeneous agents contributing different skill sets [8, 10]. The 
model allows the emergence of unique systems of agent 
coordination that operate successfully only within the context of 
the organization’s specific policies.  

The study will be organized in three descending grades of 
abstraction: First I describe the two-tiered model in its most 
abstract form: the organizational ontology, relationship between 
the two levels of evolution, and creation of a team. Next, a 
domain-independent implementation is described. Here genetic 
algorithms represent organizations and genetic programs represent 
individual agents. I will then briefly describe the model’s 
application in a predator-prey model. The last section points to 
future work that may improve the current two-tiered model. 

2. THE TWO-TIERED MODEL 
The two-tiered model consists of nested evolutionary 
populations—organizations that in turn contain a population of 
individuals. The central idea is to let the organizations evolve 
training strategies for their agents and then compile an elite team 
for testing on the domain problem.  

2.1 The Evolutionary Scheme  
Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the 
full citation on the first page. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee.  
Genetic and Evolutionary Computation Conference (GECCO)’05, 
June 25-29, 2005, Washington, DC, USA. 
Copyright 2005 ACM 1-59593-097-3/05/0006…$5.00. 

A time-step at the organizational level completely encapsulates a 
full training regime at the individual level. Individuals are 
maintained across organizational generations—there is no agent 
turnover after each organizational time-step. Thus, the 
organization may change while maintaining its members. This 
decision is based on sociological research suggesting that 
intraorganizational dynamics are better modeled by Lamarckian 

mailto:kriplean@cs.wisc.edu


processes [4] and has the added benefit of computational 
efficiency, because agent programs don’t have to be retrained 
from scratch every generation. 

2.2 Reifying the Organization 
The organization becomes important by partitioning its embedded 
agents into sub-populations and specifying sequences of sub-
problems for each to train on at each organizational time-step. 
The two-tiered model draws on layered learning (LL) to assist in 
this training process.  

It has been shown that LL improves the training process in 
domains decomposable into hierarchically structured sub-
problems [5, 14, 15]. In LL, a population of agents is trained on a 
series of sub-problems before confronting the domain problem. 
The sub-problems themselves are user-defined (domain 
decomposition is not machine learned [14]) and should be 
relevant to “solving” the domain problem.  

A few terms need to be introduced at this point. Defined sub-
problems will be referred to as tasks. For example, tasks relevant 
to soccer might include dribbling, passing, defending, and 
shooting. The sequence of tasks used to train a population of 
agents is called a layered learning track (LL-track). I call the 
association of agents with a LL-track a role regime (RR), because 
training on a LL-track prepares its agents to assume a role (figure 
1). Drawing on soccer again, agents trained on the LL-track 
dribble-pass-shoot might reasonably be considered learning the 
agent-role “forward.”   

An essential responsibility of the organization is to specify the RR 
by defining LL-tracks from an available set of tasks. If there were 
only a single RR, then the agents would be homogenous with 
respect to training, a weakness in complex domains. Thus, in the 
two-tiered model, each organization establishes multiple RRs. 
The organization’s definition of the RRs, and the subsequent 
administration of this training policy, is called the training 
regime. 

Using multiple RRs is similar to the idea of mixed increments, 
where a set of populations trained on different tasks are combined 
to form a team [16]. However, the mixed-increments approach 
doesn’t construct sequences of tasks to be trained on.  

To summarize, the training regime, defined in the organization’s 
genetic code, specifies multiple RRs, each containing agents 
trained on a LL-track.  

2.3 Team Creation and Organization Fitness 
At every evolutionary step, each organization needs to be 
evaluated. As the two-tiered model is meant to evolve successful 

teamwork, the fitness of an organization is based on the 
performance of a representative team drawn from its embedded 
agents. After each organization administers its training regime, 
the organization compiles a team by drawing on the best 
individuals from each RR, where the number of agents drawn 
from each is specified in the organization’s genetic code and is 
bounded by a maximum team size (figure 2).  

Figure 2. The organization specifies the role-regimes 
and the number of agents to use from each.

After the organization has assembled its representative tour de 
force, it needs to be tested on the domain problem itself. This test 
entails a final evolutionary training process in and of itself. The 
evaluation system’s population is seeded with multiple clones of 
the star team. Then a team-based evolutionary process takes 
place, where inter-role coordination may be learned.  The 
organization’s fitness is based upon the quality of the final 
generation of these teams. 

3. IMPLEMENTATION 
In this section I present a domain-independent implementation of 
the two-tiered model. Genetic algorithms (GA) represent 
organizations and genetic programs (GP) represent the individual 
agent. The system is built on Breve, a 3d simulation environment 
for artificial life investigations [6]. I use the Push programming 
language to represent the individual agents’ genetic code. Push is 
a Lisp-like, stack-based language designed specifically for 
evolutionary computation systems [12, 13]. Breve interfaces well 
with Push.  

Figure 1. A role-regime (RR) consists of a sub-
population and a layered-learning track (LL-track). 

3.1 Representations 
The particular evolutionary algorithms used at each level of the 
two-tiered model are described in this section. At the individual 
level, agents are modeled as genetic programs. GP is an attractive 
choice for the individual because of the flexibility that it gives per 
domain. 

The organization is represented as a GA. A GA is an apt data 
structure for the organization because it is essentially a policy that 
negotiates the construction and the training of a team (Table 1).  

Table 1. An Organization’s Genetic Code (* means >0) 

Organization := (RR)*
RR := ((NumAgents) & (LL-Track))
LL-Track := (Task)*
Task :=  pre-defined task identifier
NumAgents :=  agents to use from this RR  



Evolution at the organizational level is a search of the space of 
possible teams. The size of this space is: 

  ( asksAvailableTTasksPerRRTeamSizeTotalRR 22 loglog2 ×+ )  

3.2 Evaluation of the Organization 
This section addresses the details of the evolutionary process that 
takes place after an organization administers its training regime 
and a representative team is selected. The result of this process 
determines the fitness of the organization. This evolutionary stage 
starts with a population seeded by clones of the organization’s 
representative team and trains on the full domain problem.  

In this team-based evolutionary stage, crossover is restricted to 
members drawn from the same RR. Because all the agents, no 
matter which RR they belong to, have access to the same function 
set, the restriction is made only to protect the integrity of roles 
[8]. Each RR might be viewed as its own species because of this 
breeding restriction,.  

3.3 GA Considerations for the Organization 
If standard GA techniques were used in the reproduction stage at 
the organizational level, each organization would be severed from 
its embedded agents as each new generation of organizations is 
created. Because one of the underlying ideas of this model is that 
agents adapt to their organizations, even as the organizations 
themselves change, these standard GA techniques are too 
disruptive for the agents.  

I use what I’ll call a stable GA. Here, every organization’s genetic 
code is guaranteed to be represented in the next generation to 
some extent, coupled with the same agents. For every 
organization, its genetic code is subject to standard GA operators 
like mutation and crossover, with a chance for direct copying. 
Other unique genetic operators, such as task-exchange and RR-
exchange, are implemented. Aside from being less disruptive, the 
stable GA maintains greater organizational diversity, at the 
expense of focused exploitation of rich areas of the organization-
fitness landscape. 

4. PRELIMINARY RESULTS 
In this section, I describe an implementation of the two-tiered 
model for a classic predator-prey model, the pursuit problem. This 
section should be read as a clarification of the concepts 
underlying the two-tiered model rather than a demonstration of its 
potency. The results for the current implementation are 
inconclusive for reasons described later. 

4.1 The Pursuit Problem 
The pursuit domain is popular for testing new techniques in 
distributed artificial intelligence. In the classic pursuit problem 
[2], four predators try to capture one prey. The environment is a 
grid and capture occurs when the predators surround the prey on 
all four sides. Each square of the grid can only be occupied by a 
single agent and movement is constrained to up, down, left, and 
right. The prey is generally slower than the predators, moves 
randomly, and probabilistically stands still. 

Because of the freedom of Breve, I elected to implement the 
domain in a different fashion: the geography is continuous, agents 

move simultaneously, and capture is defined as any agent 
touching the prey (which moves faster than the predators). The 
prey reacts to the predators by actively avoiding them, with a 50-
50 chance of moving directly away from the nearest predator or 
towards the nearest edge at a 45° angle with the directly-away-
from-predator vector, but only if the nearest predator is within a 
certain radius.  

4.2 Description of Agent Function Set 
The predators, as genetic programs, have access to both basic 
operations and domain-specific functions. The basic operations 
include standard Boolean functions, float operations, and vector 
operations (cross- and dot-product, add, subtract, divide, and 
multiply). Additionally, a function outputting the angle between 
two vectors is available. Agents can query for their own position 
and velocity. The most important domain-specific functions are 
vector-to-prey and orthogonal-vector-to-prey.  

Each predator can refer to one another by name (name-based 
sensing) as well as relationally (deictic-sensing, e.g. “nearest-
agent”) [8]. Using the name-based sensing functions, predators 
can query for another predator’s location or velocity. Using the 
deictic-sensing functions, predators can query for the nearest 
predator based on the following criteria: overall, to the right, left, 
front, and back. These are calculated after the world-axis is 
rotated with respect to the predator’s direction vector so that 
“facing” has meaning. In the future, role-based deictic sensing 
will be enabled, where each predator is able to deictically sense 
according to a specified RR. 

On every simulation iteration, after the prey behaves, each 
predator’s program is executed. The output of the program 
determines the predator’s behavior—the top of the vector stack is 
the predator’s direction and the top of the float stack is the 
predator’s speed, capped at a maximum. 

4.3 Available Tasks for Pursuit 
Organizations were allowed to construct three RRs with three 
tasks each. The available tasks include “approach”, “circle”, 
“spiral”, and “spread”. In “approach”, a predator’s fitness is based 
on final proximity to the prey, with maximum fitness assigned to 
predators that touch the prey. “Circle” uses a predator’s positional 
history to calculate a fitness based on each successive angle 
change (relative to the prey), where changes in the distance to the 
prey are penalized. “Spiral” is basically the same as “circle”, 
except that proximity to the prey is rewarded. The last task is 
called “spread”—this is a team-based task that penalizes 
deviations from equal angle spacing (in relation to the prey) 
between each predator in the final configuration.  

4.4 Evaluation of the Organization 
In this implementation of the pursuit problem, during the 
evolutionary process that results in a fitness assignment to the 
organization, every team gets a chance to capture the prey as 
many times as possible within a given time frame. If the team 
successfully captures the prey, positions are reset and the team 
can capture it again before time expires. The fitness of an 
organization is the total prey captures during the last generation. 



4.5 Results 
In my initial tests in the pursuit domain, the two-tiered model 
performs about the same as scratch-GP (single level GP without 
any task-decomposition). This is most likely due to the current 
implementation of the mutation operator. The mutation operator 
adds a new random subtree to the program instead of 
probabilistically morphing each expression in the program.  

This version of the mutation operator takes the potency out of LL. 
LL depends on each task being relevant to the next one in the 
sequence, but this mutation operator hampers the hierarchal 
sequencing of tasks. This leads to the domination of an easy-to-
find local optimum, the charge-the-prey-no-matter-what strategy. 
Constraining the number of tasks per RR to one (simulating 
mixed-increments [16]) or the number of RRs to one, with three 
tasks in the RR (a version of LL), also leads to performance 
equivalent to scratch-GP, even though these strategies have been 
shown to be successful in other domains [14, 15, 16].  

A drawback of the two-tiered model, typical of explicit evolution 
of heterogeneous systems [10], is simply computational effort —
evolution on two levels, especially with embedded GP systems, is 
very computationally intensive.  

5. FUTURE EXTENSIONS 
There are many improvements that can be made to the current 
two-tiered model. This section presents the most promising. First, 
there is no inter-agent communication right now. Despite some 
evidence that shows communication isn’t always necessary [11], I 
see this as a serious block to the evolution of teamwork. A 
blackboard should be added for agents to communicate with one 
another.  

Another potential improvement aims at mitigating the credit-
assignment problem, a recurring issue in team-based evolution. I 
chose to blanket fitness assignment in team-based evolution 
because, in heterogeneous systems, where an agent might perform 
an essential role, yet whose behavior cannot be objectively 
measured, assigning fitness at an individual level is harmful and 
unfair. However, I witnessed the credit-assignment problem 
frequently, where freeloaders were evaluated just as favorably as 
the predators that actually made the prey react. In order to try to 
deal with this problem, bonus points might be given to agents that 
impact the situation in some way. For instance, in the pursuit 
domain, those predators that make the prey react would get more 
credit than those that didn’t. While these reactive behaviors may 
be detrimental to the goals of the team, giving them credit will 
reduce the number of agents who don’t do anything even 
remotely connected to the task.  

A third extension centers on the type of trainable teamwork the 
organization can specify. The only chance (before training on the 
domain problem) that agents get to develop teamwork is within 
each RR; this is to say, the current model only supports intra-role 
training of teamwork. Only after the final team has been selected 
and the organization is being evaluated do agents of different 
roles interact. However, heterogeneous teamwork requires solid 
inter-role coordination, where helpful decompositions of the 
domain problem might involve agents of different roles. A major 
extension of the two-tiered model would be to add an inter-role 
training layer, where an organization might specify training tasks 
that combine multiple roles. Another approach would borrow an 

idea from cooperative coevolution [9], where intra-role training 
occurs in the context of non-evolving stand-in representatives of 
other roles. Thus, although the role evolution is self-contained, 
the agents would have the chance to adapt to agents of other roles. 

A final extension would allow the organization to create its own 
tasks by selecting from an available set of task templates and 
generating a fitness function based on an arbitrary composition of 
available fitness functions. For an example, a specification of the 
“spiral” task may be accomplished by using a template that 
records positional history and then composing a fitness function 
based on angular change per step and distance to prey.  

6. CONCLUSION 
Although results in the pursuit domain are inconclusive, the two-
tiered model has the potential to provide evolutionary systems 
with greater traction in complex domains, where unknown 
combinations of heterogeneous agents perform well.  

7. ACKNOWLEDGMENTS 
I’d like to thank my advisor, Professor Robert R. Meyer, for the 
time, help and direction he’s provided and Jon Klein for his quick 
responses to Breve implementation requests. I’d also like to thank 
Anton Vaynshtok, Fred Moore, Beth Schewe, and three 
anonymous reviewers for helpful comments on earlier drafts.  

8. REFERENCES 
[1] Axelrod, R. The Complexity of Cooperation. Princeton 

University Press, Princeton, NJ, 1997. 
[2] Benda, M., Jagannathan, V., and Dodhiawalla, R. On 

Optimal Cooperation of Knowledge Sources. Technical 
Report BCS-G2010-28, Boeing AI Center, Boeing Computer 
Services, Bellevue, WA, August 1985. 

[3] Blumenthal, H.J. and Parker, G.B. Co-Evolving Team 
Capture Strategies for Dissimilar Robots. In AAAI Fall 
Symposium (Arlington, Virginia, Oct. 21-24, 2004). AAAI 
Press, 15-23. 

[4] Bryce, D. and Singh, J. The Future of the Firm from an 
Evolutionary Perspective. In DiMaggio, Paul (ed.) The 21st 
Century Firm: Changing Economic Organization in 
International Perspective. Princeton University Press, 
Princeton, NJ, 2001, 160-85. 

[5] Hsu, W. and Gustafson, S. M. Genetic Programming and 
Multi-Agent Layered Learning by Reinforcements. In 
Proceedings of the Genetic and Evolutionary Computation 
Conference. (New York, USA, July 9-13, 2002). Morgan 
Kaufmann Publishers, New York, 2002, 764-771. 

[6] Klein, J. BREVE: A 3d Simulation Environment for the 
Simulation of Decentralized Systems and Artificial Life. 
Proceedings of Artificial Life VIII, the 8th International 
Conference on the Simulation and Synthesis of Living 
Systems. (U. of New South Wales, Sydney, Australia, Dec. 
9-13, 2002). MIT Press, Cambridge, MA, 2002, 329-35. 

[7] Levitt, B. and March, J. Organizational Learning. In Annual 
Review of Sociology, 14 (1988), 319-40. 

[8] Luke, S. and Spector, L. Evolving Teamwork and 
Coordination with Genetic Programming. In Genetic 



Programming 1996: Proceedings of the First Annual 
Conference. (Stanford University, CA, July 28-31, 1996). 
MIT Press, Cambridge, MA. 1996, 141-9. 

[9] Potter, M. A. and De Jong, K.A. Cooperative Coevolution: 
An Architecture for Evolving Coadapted Subcomponents. In 
Evolutionary Computation, 8(1), 2000, 1-29.  

[10] Potter, M.A., Meeden, L.A., and Schultz, A.C. Heterogeneity 
in the Coevolved Behaviors of Mobile Robots: The 
Emergence of Specialists. In Proceedings of the Seventeenth 
International Joint Conference on Artificial Intelligence. 
(Seattle, WA, Aug. 4-10, 2001). Morgan Kaufmann 
Publishers, San Francisco, CA, 1337-43.   

[11] Sen, S., Sekaran, M., and Hale, J. Learning To Coordinate 
Without Sharing Information. In Proceedings of the National 
Conference on Artificial Intelligence. (Seattle, WA, July 31-
August 4, 1994). AAAI Press, 426-31. 

[12] Spector, L., Klein, J., Perry, C., and Feinstein, M. 
Emergence of Collective Behavior in Evolving Populations 

of Flying Agents. In Proceedings of the Genetic and 
Evolutionary Computation Conference. (Chicago, IL, July 
12-16, 2003). Springer-Verlag, Berline, 2003, 61-73. 

[13] Spector, L., Perry, C., Klein, J., and Keijzer, M. Push 3.0 
Programming Language Description. 
http://hampshire.edu/lspector/push3-description.html, 2004. 

[14] Stone, P. and Veloso, M. Layered Learning. In Proceedings 
of the Eleventh European Conference on Machine Learning. 
(Barcelona, Catalonia, Spain, May 30-June 2, 2000). 
Springer Verlag, 369-381. 

[15] ----Multiagent Systems: A Survey from a Machine Learning 
Perspective. In Autonomous Robotics, 8 (3). July 2000. 

[16] Winkeler, J. and Manjunath, B.S. Incremental Evolution in 
Genetic Programming. In Proceedings of the Third Annual 
Conference on Genetic Programming. (U. of Wisconsin, July 
22-25, 1998). Morgan Kaufmann Publishers, San Francisco, 
CA, 403-411. 

 

http://hampshire.edu/lspector/push3-description.html

	INTRODUCTION
	THE TWO-TIERED MODEL
	The Evolutionary Scheme
	Reifying the Organization
	Team Creation and Organization Fitness

	IMPLEMENTATION
	Representations
	Evaluation of the Organization
	GA Considerations for the Organization

	PRELIMINARY RESULTS
	The Pursuit Problem
	Description of Agent Function Set
	Available Tasks for Pursuit
	Evaluation of the Organization
	Results

	FUTURE EXTENSIONS
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

