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ABSTRACT
I introduce a generalization of probabilistic modeling and
sampling for estimation of distribution algorithms (EDAs),
that allows models to contain features, additional level(s)
of abstraction defined in terms of the problem’s base-level
variables. I demonstrate how a simple feature class, variable-
position motifs within fixed-length strings, may be exploited
by a powerful EDA, the Bayesian optimization algorithm
(BOA). Experimental results are presented where motifs are
learned autonomously via a simple heuristic. The effective-
ness of this feature-based BOA is demonstrated across a
range of problems where such motifs are relevant.
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1. MOTIVATION AND METHOD
An Estimation of Distribution Algorithm (EDA) builds a

probabilistic model over the space of solutions to an opti-
mization problem, and generates new solutions by sampling
from the probability distribution encoded by its model - that
is, generating assignments for a set of random variables. But
where do these random variables come from? Typically, they
correspond to a prespecified encoding (e.g., the characters
in a fixed-length string). In this paper, I describe how the
modeling and sampling stages for EDAs may be generalized
to contain an added level of abstraction, features.

Linkage-learning EDAs mine population-level statistics to
uncover interactions between variables - a feature-based EDA
may also uncover interactions between features. To illus-
trate, I show how a simple feature class, variable-position
motifs within fixed-length strings, may be exploited by the
Bayesian optimization algorithm (BOA) [2], creating the
feature-based BOA (fbBOA).
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Assume learning over the bits in a fixed-length binary
string, (X1, X2, ..., Xn) - I will refer to these henceforth as
“base-level” variables.1 The BOA models a population as
a Bayesian network among these variables. To sample new
solutions, nodes of the network are ordered topologically,
and values are sequentially assigned to variables according
to the conditional probabilities encoded by their parents’.

Henceforth let a feature be some well-defined Boolean
predicate over the space of solutions - for modeling purposes,
such features may simply be added as random variables to
the Bayesian network (since base-level variables are a par-
ticular kind of feature, this is a generalization of standard
modeling). However, sampling from a distribution subject
to an arbitrary predicate is a hard problem in general. The
main contribution of this paper is a heuristic to use for this
kind of sampling in a population-based learning context.

A feature’s grounding may be defined with respect to
(wrt) a particular solution x - some set of variables S will
be said fix a feature on x if the feature is present in every
solution with the same assignments as x for all variables in
S. Such a set is minimal if none of its subsets fix the feature
on x. A feature’s grounding wrt a solution x may now be
defined as the union of all minimal sets of variables which
fix it on x. By this definition, the grounding of a feature
wrt a solution where the feature is absent is the empty set.

To illustrate, consider the feature “contains the substring
11”, defined over length-8 binary strings (X1, X2, ..., X8).
The grounding wrt 10110111 is {X3, X4, X6, X7, X8}, since
the minimal fixing sets for this string are {X3, X4}, {X6, X7},
and {X7, X8}. The definition of a grounding allows us, given
a solution x where a feature is present, to generate new so-
lution where the feature is present in the same way that it
is present in x, which is important given that there may be
many ways for a feature to be present, in contrast to as-
signment of a variable, which may only be carried out in a
single way. Setting a feature to true thus corresponds to set-
ting all variables in the grounding of some solution - if this
is not possible another solution is drawn, without replace-
ment (note that this process may fail). To set a feature
to false, the distribution is transformed by eliminating the
groundings of all solutions with the feature from considera-
tion (this fails if doing so would reduce the set of possibilities
to empty). If assigning a feature fails, it is simply skipped.

To demonstrate feature-based modeling and instance gen-

1Note that generalizations to other structures, including
variable-sized and shaped program trees [1], are possible,
and are not incompatible with the methods presented here.
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eration, it is necessary to define some features. I will illus-
trate with the exploitation of useful motifs (repeated sub-
strings), which are identified using a simple randomized search
combined with a heuristic scoring function. These are learned
dynamically - a number of random substrings (correspond-
ing to the size of the population) are uniformly sampled and
admitted if they score above a threshold (0.4 in all exper-
iments). The scoring metric is the product of two factors,
information gain (based on the frequency of a motif in the
population) and spread (based on the frequency of a mo-
tif across different positions where it might occur). Infor-
mation gain is conditional on the features already created,
which greatly reduces the number of features created at a
time (typically to five or less in the experiments).

2. EXPERIMENTS AND CONCLUSIONS
The simplest of the test problems is OneMax, where fit-

ness is given by Hamming distance to the string of all ones.
A more difficult problem, 3-deceptive, may be obtained by
considering groups of three successive variables to form a
“trap”, leading away from the global optima (details in [2]).

Other problems considered are the TwoMax, or Twin-
Peaks problem, which has two global optima (all ones and
all zeros), and a global minimum when the string is half
ones and half zeros. A more challenging synchronization
problem is the one-dimensional Ising model, where the string
is considered to be a ring, and fitness is subtracted for each
transition between a one and a zero in successive elements
(TwoMax and the Ising model are described in detail in [3]).

A third set of problems which incorporate hierarchical dif-
ficulty are are hierarchical if-and-only-if (H-IFF), and hier-
archical exclusive-or (H-XOR), described in [4]. It is im-
portant to note that H-XOR represents a problem where
repetition is not strongly present in the optima.

Results are shown in the figures. In these experiments,
model-building used Bayesian networks with local structure
(decision trees), learned via the Bayesian-Dirichlet metric -
see [2] for details. Following the methodology used in [2],
the population size is set empirically for each algorithm,
problem, and size, to be the minimum necessary in order to
achieve convergence to the optimum in all 30 independent
runs. All other BOA-related parameters are fixed (for the
BOA and the fbBOA) as in [2]. When running the fbBOA,
substring features were learned after each generation.

In conclusion, I have described how the modeling and sam-
pling which takes place in an EDA may be generalized to
encompass abstract features, and presented experimental re-
sults to demonstrate the method’s effectiveness. I am cur-
rently using this work as a springboard to develop EDAs
for learning computer programs that exploit domain knowl-
edge and operator semantics to reduce the search space, in
combination with techniques developed in [1].
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Figure 1: Performance on TwoMax, Ising, H-IFF,
and H-XOR. Results for OneMax and 3-deceptive
were qualitatively similar to TwoMax.
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