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ABSTRACT
An algorithm independent metric is introduced that mea-
sures the dispersion of a uniform random sample drawn from
the top ranked percentiles of the search space. A low disper-
sion function is one where the dispersion decreases as the
sample is restricted to better regions of the search space.
A high dispersion function is one where dispersion stay con-
stant or increases as the sample is restricted to better regions
of the search space. This distinction can be used to explain
why the CMA Evolution Strategy is more efficient on some
multimodal problems than on others.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization—Global Optimization

General Terms
Measurement

Keywords
Dispersion, CMA-ES

1. INTRODUCTION
It is well known that all search algorithms have some par-

ticular bias: since there is no general purpose search method
that works well on all problems, all search methods must be
biased to solve particular types of problems. But rarely do
the developers of new heuristic search methods document
on which types of problems their algorithm is likely to yield
good performance. Of course there are exceptions. For ex-
ample, Hansen and Kern [10] noticed that the performance
of an Evolution Strategy with Covariance Matrix Adapta-
tion, or CMA-ES, could fail if the underlying structure of
a multimodal test problem was unpredictable. Since we do
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not have good general metrics that allow us to classify op-
timization problems into different subclasses, it is difficult
to explain why some problems are apparently more difficult
than others.

One common observation is that some test functions, such
as Rastrigin’s, are considered difficult because they are highly
multimodal, but they display an underlying unimodal struc-
ture that in fact makes the test function relatively easy. Ad-
dis et al. points out that certain multimodal test functions
can be seen as perturbations of a more simple underlying
structure that has a low number of local optima [1]. Fur-
thermore, it is the underlying problem structure that makes
these problem easier or more difficult, not the actual number
of local optima [15].

Covariance Matrix Adaptation uses principle components
analysis to determine the variance associates with different
samples of points from the search space, including the best
points in the current offspring population as well as points
along a defined “path” or trajectory as the search progresses.
This makes CMA-ES extremely good at detecting and ex-
ploiting local structure. It is also insensitive to rotations
of the search space that can cause serious degradation in
performance for many other local search methods and evo-
lutionary algorithms. CMA-ES has proven to be very effec-
tive on many well known test functions, and on several real
world applications.

Despite the emphasis on exploiting local information in
CMA-ES, Hansen and Kern have empirically shown that
CMA-ES also performs well on multi-modal functions where
there exists a “global topology.” CMA-ES is more prone to
fail when the global structure is less predictable [10]. Re-
cently, several different research communities have started
to pay attention to how the features of the “global topol-
ogy” in multimodal optimization problems can impact the
performance of search algorithms. However, concepts aimed
at defining “global topology” are often vague and are also
often intractable in the general case because they require
knowledge that would seem to require enumeration of much
of the search space.

In this paper we introduce the dispersion metric, then use
this to classify functions as high or low dispersion functions.
We then use this classification to predict the efficiency and
effectiveness of CMA-ES. We show that CMA-ES works very
well on low dispersion functions, but has difficulties with
high dispersion functions.

The dispersion of a function measures how close together
a sample of points are, where the sample of points is con-
structed so as to represent an aspiration threshold expressed
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as a target percentile of the search space. For example, we
can measure the dispersion over points estimated to be in
the top 5% of the search space and compare this to points
estimated to be in the top 0.5% of the search space. Disper-
sion can be computed using a relatively modest number of
samples from the objective function.

We also explore how and why function dispersion affects
the performance of CMA-ES. Our results indicate that the
adaptive step-size heuristic, called cumulation, does not func-
tion as intended when the best regions of the search space
are too spread out (i.e., too disperse).

2. DEFINING FUNCTION DISPERSION
This paper introduces an algorithm independent metric

that measures the dispersion of a function. Dispersion is
measured based on a sample drawn from the best points in
the search space. The sample of points is constructed such
that they represent an aspiration threshold expressed as a
target percentage of the search space. This allows us to use
the dispersion metric in two ways: First, we can compare the
dispersion of different functions at a particular threshold;
second, we can calculate the dispersion of a single function
at different thresholds. In the second case, we might measure
the dispersion over points estimated to be in the top 5% of
the search space and compare this to points estimated to
be in the top 0.5% of the search space. A low dispersion
function is defined to be one where the dispersion measure
decreases as the sample is restricted to better regions of
the search space. A high dispersion function is one where
dispersion stays relatively constant or even increases as the
sample is restricted to better regions of the search space.

The dispersion metric gives us a means to determine a
significant feature of the global topology of a function. Are
the best points in the search space, including the best lo-
cal optima for multimodal functions, localized or disperse in
the search space? Some highly multimodal functions have
dispersion measures that are approximately the same as a
simple unimodal sphere function: when this is the case, em-
pirically experiments confirm that low dispersion functions
are easy to optimize.

To make the dispersion metric useful, we define it to be a
function based on a sample of the search space. There exists
other recently introduced metrics that attempt to measure
similar trends in the global topology, but these measures
have the unrealistic requirement that the search space be
enumerated, or at least that the best local optima are lo-
cated and enumerated. These metrics are briefly reviewed
in the next section.

We calculate dispersion by drawing a uniform random
sample of points from the search space and calculate ap-
proximate thresholds that breaks the sample into subsets
representing the best X% of the seach space. For exam-
ple, if we sample 100,000 random points, we can define a
10% threshold to be the maximum fitness of the best 10,000
points. A 1% threshold is the maximum fitenss of the best
1,000 points. As the percentage decreases, the threshold also
decreases. Figure 1 shows an example of this technique for
one-dimensional versions of the Rastrigin function and the
so-called Schwefel function. Notice that the threshold leaves
only the best local optima.

In this way, a threshold is determined by a sample size,
sv, and a percentage p. At this threshold, dispersion refers
to the average pair-wise distance between the best p × sv

points in the sample. In practice, computing the average
pair-wise distance of p × sv points can be computationally
costly. For example, if sv = 100, 000 and p = 0.01, then
sv×p = 1000. This implies computing the distance between
1, 0002/2− 1, 000 = 499, 000 points.

To make the dispersion calculation more efficient, we de-
fine sb = sv×p to be a fixed sample size. Our dispersion met-
ric is: given an objective function, f(�x), a fixed sample size,
sb, and a variable sample size, sv, dispersion(sb,sv,f(�x)) cal-
culates the average pair-wise distance between the best sb

points of the random sample, sv. The variable sample size,
sv can be expressed as a function of the fix sample size sb

and the desired percentage, p: sv = sb/p. For example,
given a fixed sample size of sb = 100, a variable sample of
size sv = 100/0.01 = 10, 000 is needed to create a p = 0.01
threshold. Below is the dispersion pseudo code which em-
phasizes clarity instead of efficiency.

Dispersion(sb,sv,f(�x))

input
Integer sb – the fixed sample size
Integer sv – the variable sample size
f(�x) – the objective fitness function

variables
allPoints – a vector of random {�x, f(�x)} pairs.
bestPoints – a vector of the best {�x, f(�x)} pairs.

for i = 1 to sv do
Create a random point, �x.
Evaluate its fitness, f(�x).
Add {�x, f(�x)} to allPoints.

end for

bestPoints← best sb points of allPoints
return average pairwise distance(bestPoints)

Decreasing the threshold can change the dispersion met-
ric of a function at a particular threshold. To understand
why this happens, consider the one dimensional Rastrigin
and Schwefel problems shown in Figure 1 . The horizontal
line represents the threshold and the gray regions specify the
basins of attraction that are below threshold. Notice that on
the Rastrigin function, lowering the threshold implies that
the basins of attraction that we are measuring will get closer
together. This means that the expected pairwise distance
between the best points of our sample will decrease. On
the Schwefel function, however, as the threshold decreases,
the distance between basins of attraction actually increases.
This implies that lowering the threshold will cause the dis-
persion to increase.

The point estimate of dispersion given in dispersion pseudo
code is not invariant with respect to scale. That is, it is
possible for two algorithms with completely different un-
derlying structures to have similar dispersion measures for
a given sample size. However, decreasing the aspiration
threshold will change this point estimate, and this change
is a more accurate measure of the underlying topology. We
calculated the dispersion of several classic benchmark test
functions: Sphere, Rastrigin, Schwefel, Rana, F101, Ackley,
Bohachevsky, Griewank, and Shaffer [18][10]. We computed
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Figure 1: A decrease in fitness threshold will tend
to decrease the dispersion on the Rastrigin function
(the top figures) and increase the dispersion of the
Schwefel function (the bottom figures).

the dispersion of the best sb = 100 points for a set of in-
creasing sample sizes; starting with sv = 100 ·20 we doubled
the sample size each iteration until we reached sv = 100 ·212

samples (e.g. 100, 200, 400, 800, ..., 204800, 409600). This
yields both a point estimate of dispersion at a particular
threshold as well as information about how the dispersion
changes as the threshold decreases. In order to make cross-
function comparisons more meaningful, we rescaled the best
100 points based on the boundaries of the function such
that the new minimum and maximum parameter values are
0 and 1 respectively. Then, we computed the distance for
all (1002/2− 100) = 4, 900 pairs of points and averaged this
number. We repeated this 30 times for each function in 20,
50, and 100 dimensions. Figure 2 shows the average disper-
sion as a function of sample size for several 50 dimensional
functions. The solid horizontal line indicates the average
dispersion of the first 100 random points, denoted disper-
sion(100, 100). We found that as we increased the sample
size, the dispersion increased on the Schwefel, Rana and
F101 functions. The opposite was true for all the remaining
functions. Increasing the sample size actually decreased the
dispersion of these functions.

We computed the change in dispersion for each bench-
mark function by subtracting the lowest threshold disper-
sion value in our set from the average dispersion value when
no selection is applied. Specifically, we computed the value:
dispersion(100, 409600) - dispersion(100, 100). On functions
where the dispersion increases as we decrease the threshold
(by increasing the sample size sv), we should get a positive
number. When the dispersion decreases as we decrease the
threshold, we will get a negative number. Figure 3 shows
the change in dispersion for several benchmark test prob-
lems. This allows us to clearly distinguish between low and
high dispersion functions. For the remainder of the paper,
low dispersion is associated with functions whose change in
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Figure 2: The dispersion of each test function com-
puted for different sample sizes (×100). The hori-
zontal indicates the dispersion of each sample before
selection is applied: dispersion(100, 100). Because we
rescaled the boundaries of each function such that
the range was (0, 1), the initial dispersion using the
first 100 points is the same for all functions.

dispersion is less than zero. Low dispersion functions include
the Schaffer, Rastrigin, Bohachevsky, Ackley, and Griewank
functions. The Schwefel, Rana, and F101 are referred to as
high dispersion functions.

2.1 Related Work
Lennard-Jones clusters are a popular benchmark test func-

tion for configuration optimization problems [4]. The goal
is to find the atomic cluster with the smallest potential en-
ergy. The potential energy of the system is modeled based
on the distance between all the molecules of the cluster. The
Lennard-Jones potential is,

E =

NX
i<j

 „
1

rij

«12

−
„

1

rij

«6
!

where rij is the Euclidean distance between the centers of
atoms i and j, and N is the number of atoms in the cluster.
The search space contains a large number of equivalent solu-
tions because there are N ! ways to order the N atoms in any
local minima [8]. The 38 atoms test problem is particularly
interesting because it has been shown to be more difficult
than larger clusters because it has two very competitive so-
lutions that have a distinctly different atomic structure [6]
resulting in two distinct clusters of local optima.

A funnel is a topographical feature that is used to explain
why some Lennard-Jones cluster instances are more difficult
than others [6]. The exact definition of a funnel is vague.
Doye describes a funnel as “a set of downhill pathways that
converge on a single low-energy structure or set of closely
related low-energy structures” [5]. An alternative defini-
tion suggests that a funnel “consists of a collection of local
minima such that all monotonically descending sequences of
successively adjacent local minima entering the funnel ter-
minate at the funnel bottom”.[3]

It has been suggested that many applications in computa-
tional biology are more difficult because the energy function
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Figure 3: The change in dispersion of each test func-
tion.

Figure 4: The disconnectivity graph for the Rastri-
gin (left) and Schwefel (right) functions.

appears to have multiple local optima that form distinct,
spatially separate clusters in the search space [17] and that
this has more impact on problem difficulty than the number
of local optima [15].

Doye and Wales use disconnectivity graphs to visualize
the funnel structure of various energy landscapes [6]. The
disconnectivity graph is actually a tree whose leaves are the
local optima. Two or more leaf nodes are connected by a
node if they exist in the same basin of attraction. Doye uses
different energy levels to define basins of attraction. A split
in the tree implies that every local optima below this point is
reachable by a path whose fitness does not exceed the given
energy threshold. In other words, the minimum saddle point
of the path connecting two local optima is lower than the
energy threshold. Figure 4 shows the disconnectivity graphs
for the one dimensional Rastrigin and Schwefel functions.
Notice that the Rastrigin function has a single dominate
stem. This is indicative of a single funnel topology. On
the other hand, the Schwefel function has several stems that
split early at high energy levels and has at least two funnels.

Disconnectivity graphs have been applied to discrete opti-
mization problems where landscape concepts, such as local
optima, basins of attraction, and saddle points are clearly
defined [7]. Flamm et al. extend these critical definitions
so that disconnectivity graphs, which they call barrier trees,
can be generated for highly degenerate discrete problems [7].

Locatelli et al. offers a different view of funnel landscapes
[13]. A graph is defined where the nodes of the graph are
the local optima of the function and an directed edge is

Figure 5: Locatelli’s view of a funnel landscape.

extended from node X to node Y if f(X) > f(Y ) and X
and Y are adjacent local optima. Local optima that are
within distance r of each other are said to be adjacent. A
funnel bottom is a node with no outgoing directed edges. An
example of this graph for the one dimension Rastrigin and
Schwefel functions is given in figure 5. One drawback to this
method is that Locatelli’s graphs will change dramatically
depending on what distance measure r is used.

One problem with disconnectivity graphs, barrier trees,
and Locatelli’s method is that they all requires locating the
relevant local minima in the search space. This cannot be ef-
ficiently done for “black box” optimization problems where
the underlying mathematical function is unknown or does
not exist. Even when derivative information exists and can
be used to catalog all the local optima and saddle points,
these methods are limited to relatively small problems. Doye
et al. admit that finding all the minima for large clusters is
impossible: “We therefore stopped searching once we were
confident that we had obtained an accurate representation
of the low-energy regions of the [ Potential Energy Surface]
” [4]. Hallam and Prügel-Bennett point out that exhaustive
enumeration of the search space raises concerns regarding
the usefulness of barrier trees [9]. To mitigate this problem,
they use a branch and bound technique to find only the best
local optima. But this technique is still limited to relatively
small problems. Hallam and Prügel-Bennett construct bar-
rier trees for MAX-SAT problems with 40 variables.

Our dispersion metric is appealing because it requires a
relatively modest number of samples to observe a noticeable
change in dispersion, even on problems with 500 parame-
ters. Furthermore, disconnectivity graphs and barrier trees
do not directly address the distance between local optima
but rather the barrier height between local optima.

Several test function characteristics have been identified
that help explain why some problems are more challenging
than others. Dispersion is another way of distinguishing
multimodal problems that compliments other characteris-
tics. For example, Salomon [16] and Whitley [18] both no-
ticed that many of the benchmark problems are separable.
Salomon [16] rotated some of the common separable bench-
mark problems to create similar landscapes with a high de-
gree of parameter interaction. He found the breeder genetic
algorithm (BGA) was significantly less effective when the
coordinate system is rotated in n−dimensional space. Sa-
lomon used the degree to which a problem is separable to
explain under what conditions the BGA was likely to per-
form well.

In the same way, we use the dispersion metric to identify
the types of multimodal problems for which CMA-ES is most
likely to be successful.

480



3. THE CMA EVOLUTION STRATEGY
The canonical evolution strategy is an iterative process

where a population of μ distinct parents produce λ offspring
based on mutation distributions that are centered around
the parents. Only the best μ offspring are chosen to be the
parents of the next generation. This is known as a (μ, λ)
selection strategy.

One common belief is that population-based methods are
better at optimizing multimodal functions because they tend
to explore more of the fitness landscape before their popu-
lation converges to a more compact and globally compet-
itive region search space. This approach is appealing be-
cause, by comparing the values of each candidate solution,
population-based algorithms have a better perspective of the
entire search space than purely local search methods.

Hansen et al. interpret any Evolution Strategy that uses
intermediate recombination as a local search strategy [12].
Intermediate recombination creates a single parent based on
the average position of the current population. Sometimes
a weighted average is used to determine the position of the
best parent. The next generation of offspring are based on
a mutation distribution that surrounds this single parent.
Once the initial mutation distribution has decreased, this
variation of the traditional evolution strategy will behave
much like a local search algorithm. In this paper, we use the
default log-weighted intermediate recombination for CMA-
ES, denoted (μW , λ)-CMA-ES.

Ostermeier et al. introduce cumulative step-size adapta-
tion, or CSA, as a means of adapting a global step-size [14].
CSA uses information from previous generations as a reli-
able way of evolving step sizes. The sequence of consecutive
steps is called cumulation.

The evolution path is a vector that points in the recent
overall direction search has taken. Assuming that 〈�xg〉 is the
mean of generation g, then the evolution path is calculated
as

�pg+1 = (1− c) · �pg +
p

c(2− c)) ·
√

μ

σg

`〈�xg+1〉 − 〈�xg〉´
where 〈�xg + 1〉 − 〈�xg〉 is the vector representing the current
step. The relative importance of previous steps is weighted
by c, the cumulative time parameter. When c = 1, no his-
tory is considered and only the most recent step contributes
to the current cumulation. The value for c is usually on

the order of 1/
√

n to 1/n. The value
p

c(2− c)) ·
√

μ

σg is a
normalization constant [12].

Hansen et al. reasons that if the evolution path is longer
than expected, the search steps are probably parallel and
the mutation strength should increase. Otherwise, the evo-
lution path is shorter than expected, meaning the steps are
likely anti-parallel. The mutation strength should decrease.
The expected length under random selection is simply the
expected length of a random normal vector (E||N(0, I)||).
Hansen et al. uses the following approximation.

E||N(0, I)|| = χn =
√

n

„
1− 1

4n
+ 1− 1

21n2

«

Given this estimation, the strategy parameter defining the
global step size is updated as follows:

σg+1 = σg · exp
c

d

„ ||�pg+1|| − 1

χn

«

Here, d is the damping factor, whose default is 1.

Covariance Matrix Adaptation, or CMA, uses a covariance
matrix to explicitly rotate and scale the mutation distribu-
tion [12]. Hansen and Ostermeier define the reproduction
phase from generation g to generation g + 1 as:

x
(g+1)
k = 〈x〉(g)

μ + σ(g)B(g)D(g)z
(g+1)
k

where z
(g+1)
k are randomly generated from an N(0, I) dis-

tribution. This creates a set of base points that are rotated
and scaled by the eigenvectors (B(g)) and the square root

of the eigenvalues (D(g)) of the covariance matrix C. The

single global step size, σ(g), is calculated as described in the
CSA algorithm and is used to scale the distribution. Finally,

the points are translated to center around 〈x〉(g)
μ , the mean

of the μ best parents of the population.
To compute covariance, CMA-ES uses a time dependent

portion of the evolution path. The evolution path updates
after each generation using a weighted sum of the current

path, p
(g)
c , and a vector that points from the mean of the μ

best points in generation g to the mean of the μ best points
in generation g + 1. A principle components analysis on the
evolution path is used to update the covariance matrix.

When a larger population (λ) is used, the best μ individ-
uals may help describe the topology around the mean of the
current generation [11]. This may increase the accuracy of
the covariance matrix estimation. In order to exploit this
information, CMA-ES uses a rank-μ-update, that calculates
the covariance of the steps that lead to the best μ individu-
als:

Z(g+1) =
1

μ

X
B(g)D(g)z

(g+1)
i (B(g)D(g)z

(g+1)
i )T

This information, along with the evolution path, p
(g)
c , is used

to update the covariance matrix. Assuming Z(g+1) is the
covariance of the steps leading to the best μ individuals,
and P(g+1) is the covariance of the evolution path, the new
covariance matrix is

C(g+1) = (1− ccv)C(g) + ccv

“
αcvP

(g+1) + (1− αcv)Z(g+1)
”

,

where ccv and αcv are constants that weight the importance
of each input.

4. GLOBAL SEARCH WITH CMA-ES
Hansen and Kern found that a large population size and

rank-μ updates improved the performance of CMA-ES on
multimodal functions. They state that, “If the local op-
tima can be interpreted as a perturbations of an underlying
unimodal function, then larger populations can detect this
global topology” [10]. Furthermore, they state, “A strong
asymmetry of the underlying function jeopardizes a success-
ful detection and can lead to failure”.

We proposal that dispersion is one way to quantify and
identify functions with underlying unimodal surfaces. We
also predict that asymmetric functions will tend to have
higher dispersion.

The distribution used by CMA-ES is initially isotropic.
As a result, the initial value of σ is critical for exploration.
Hansen and Ostermeier suggest that the quality of solutions
found by CMA-ES using a small initial step-size are often
determined by the location of the starting point [12]. Hansen
and Kern further emphasize that small initial step-sizes can
have a considerable impact on the performance of CMA-
ES[10]; they set the σ0 between 20% and 40% of the length
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of the constrained region of the search space. Auger and
Hansen also test CMA-ES on multimodal functions and set
σ0 = 50% of the constrained region [2]. Hansen et al. sum-
marizes that “A larger step-size improves the global search
performance of a local search procedure”[12]. In this paper,
we use an initial step-size suggested by Auger and Hansen
which is σ0 = (U − L)/2, where L and U are the lower and
upper bounds of the constrained search space.

Each test function is usually bound constrained. As im-
plemented here, the test functions have a boundary penalty
to insure that a solution is in the feasible region. This
method, described by Hansen et al. [10], is the standard way
of handling boundary conditions when testing CMA-ES on
multimodal functions [10, 2]. The penalty is proportional
to the number of parameters that fall outside the boundary.
Therefore, the penalty for a point where one parameter is
outside the feasible region is less than a point where all the
parameters are outside the feasible region.

Hansen and Kern [10] summarize that a larger population
size considerable improves the performance of CMA-ES on
all problems with one notable exception, the Griewank func-
tion. Here, they found that a larger population performed
better in lower dimensions, but a smaller population was
more effective in higher dimensions. One explanation for
this is that the Griewank function actually gets easier as
dimensionality increases [18]. We can also use dispersion
to explain this apparent anomaly. In low dimensions (e.g.
two), the dispersion of the Griewank function is much higher
than the sphere function. However, referring back to Figure
3, we can see that the dispersion of Griewank and the sphere
are nearly indistinguishable. This is not a shortcoming of
our metric, but rather an indication of how smooth the high
dimensional Griewank actually is.

In order to understand the relationship between dispersion
and the performance of CMA-ES, we ran CMA-ES with sev-
eral different population sizes on all of the benchmark test
functions described earlier. Our hypothesis is that CMA-
ES will perform relatively well on the test functions that we
categorized as low dispersion and will be less effective on
the high dispersion functions.

Figure 6 shows the convergence of CMA-ES on six of
the test functions. In every case, we used restarts to en-
sure that each instance of CMA-ES ran for exactly 200, 000
evaluations. The population size was varied using λ =
50, 100, 250, 500. On all the high dispersion functions, the
larger values of λ produced the most effective solutions.
However, none of these represent solutions that are close to
the optimal. This is consistent with the observations made
by Hansen et al.[10]; when the underlying problem struc-
ture is less predicable, the performance of CMA-ES suffers.
CMA-ES was much more successful on the low dispersion
functions. The Schaffer and Bohachevsky were easily solved
for all values of λ. On Rastrigin’s function, CMA-ES was
more successful with larger values of λ, but was able to get
relatively close to the optimal solution even for small pop-
ulation sizes. Referring back at Figure 3, we can see that
dispersion gives a reasonable prediction of how well CMA-
ES will perform on multimodal surfaces.

In the conclusion of their paper, Hansen and Kern suggest
starting with a small population and increasing its value
with each restart of CMA-ES [10]. Auger and Hansen have
implemented this strategy, which they refer to as IPOPCMA,
where the population doubles each time a restart occurs [2].

Starting with the default population size of λ = 4+3·log(n),
each restart was initialized with a population size twice that
of the previous instance. For example, in 20 dimensions,
the population sequence would be 12, 24, 48, 96, 193, 348, ....
The authors assert that this essentially makes CMA-ES
parameter-free because the population size does not need
to be tuned for each problem [2].

Looking at the convergence graphs for the Shaffer and
Bohachevsky functions in Figure 6, it is not too surprising
that this type of strategy would perform well on these func-
tions where smaller population sizes are equally effective,
and therefore, preferred because they have a faster rate of
convergence. But when the test suite contains mostly uni-
modal and low dispersion multimodal functions, this average
behavior can be misleading. On high dispersion functions,
incrementally increasing the population size incurs dramatic
increase in convergence time. For example, Hansen et al.
found that CMA-ES used over 250,000 evaluations in or-
der to solve the 10 dimensional Schwefel function. Simi-
larly, Auger and Hansen found that when they increased the
maximum number of evaluations from 300, 000 to 900, 000
the performance of the 30 dimensional Rastrigin function
greatly increased.

One conclusion here is that on high dispersion functions,
where larger values of λ are likely to be the most effective,
IPOPCMA will require an unrealistic number of evaluations
just to start using a more effective value for λ. While this
efficiency may be satisfactory on some problems, it infeasible
for others.

5. UNDERSTANDING CONVERGENCE
On high dispersion functions, the performance of CMA

can sometimes be quite poor; the solutions are less effective
when compared to other functions and there is a noticeable
increase in the overall efficiency. Intuitively, it makes sense
that finding the global optimum of a high dimension, high
dispersion function is difficult. There are simply too may
“funnels” that can trap even the most effective search algo-
rithm. On low dispersion functions, like Rastrigin’s, every
starting position is in the only (and optimal) funnel.

Although we can reason why CMA-ES is less effective,
there does not appear to be an easy explanation as to why it
is also less efficient in terms of convergence. Figure 7 shows
the normalized mean convergence of CMA-ES with a popu-
lation size of λ = 500 on four 20 dimensional benchmark test
functions: Ackley, Rastrigin, Schwefel, and the Rana func-
tion. Notice that for the high dispersion Rana and Schwefel
functions, it takes well over 100,000 evaluations to converge.
Although λ = 500 seems too large for a 20 dimension prob-
lem, we have already seen that the best solutions on high
dispersion functions are likely to be discovered with larger
populations.

One reason the convergence is slow is that CMA-ES tends
to “waste” evaluations on points that are infeasible, even on
low dispersion functions like Rastrigin and Ackley. This is
because the initial σ value will often create points that are
outside the boundary of the problem. Of course, this evalu-
ations are not wasted in the sense that they are not useful,
but they cannot offer any improvement in fitness and can
therefore can be seen as inefficient. On average, over 10% of
the 200, 000 evaluations used on the 20D Rana and Schwefel
functions were infeasible. This is almost three times higher
than that of the low dispersion functions we tested. This
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(×1000) for select functions.

means that CMA-ES requires almost 20, 000 evaluations just
to find the boundaries of the problem.

One enticing potential remedy to this problem is to sim-
ply re-sample each infeasible point until it becomes feasible.
But in high dimensions, sampling a point in the feasible
space using a large σ is too improbable to be a practical
solution. Unfortunately, decreasing σ will also decrease the
effectiveness of CMA-ES.

A high percentage of infeasible offspring does not suffi-
ciently account for the inefficient behavior of CMA-ES on
high dispersion functions because this also occurs on low
dispersion functions. There must be other factors that de-
crease efficiency. Recall that CMA-ES uses a distinct global
step size, σ, to appropriately scale its covariance matrix dis-
tribution. Hansen and Ostermier state that this is necessary
for two reasons [12]. First, the learning rate on the covari-
ance matrix is too slow. Second, the optimal step length
cannot be approximated well by the the covariance matrix
alone. This is why the actual sample population created by
the distribution defined by the covariance matrix is rescaled
based on the current step size, σ. When search is mak-
ing progress, the evolution path is longer than expected,
and σ grows. On the sphere function, for example, σ will
increase as CMA-ES approaches the minima during explo-
ration. Once the algorithm begins to exploit a local optima,
the evolution path is likely to be smaller, and σ will shrink.
This creates a region of higher density during exploitation.

We looked at the values of σ as a function of time on
the standard test functions described earlier. The step-size
adaptation on the low dispersion functions behaved much
like that of the sphere. This is not too surprising because we
know that the underlying topology is unimodal. However,
we found that on the higher dispersion functions, the step-
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size grew rather large, on average between two and three
times its initial value. At the same time, the actual distri-
bution of offspring was decreasing. This has two important
implications. First, the distribution of the covariance matrix
is responsible for the decrease in actual sample distribution.
This is a concern because Hansen et al. asserts that the
distribution defined by the covariance matrix is sub-optimal
in value and often too slow [12]. Second, if σ is steadily in-
creasing, the cumulative path length is remaining above its
expected length. This implies that the adaptive cumulation
heuristic cannot decide when to stop exploring.

6. DISCUSSION AND CONCLUSION
We have defined a new metric, dispersion that quantifies

the proximity of the best regions in the search space. On low
dispersion functions, the best regions of the search space be-
come more localized as the sample size increases (threshold
decreases). The opposite is true for high dispersions func-
tions: as the sample size increases, the best regions of the
search space tend to become more disperse.

Several researchers have noticed that CMA-ES is inef-
ficient and ineffective on multimodal functions where the
underlying structure of the problem is unpredictable. Dis-
persion quantifies “underlying” topology. This allows us to
separate functions into high and low categories and predict
how efficient and effective CMA-ES will be. Future work will
extend this by looking at how other evolutionary algorithms
perform on high dispersion problems.

We have identified two reasons why CMA-ES is less effi-
cient on high dispersion functions. First, many of the initial
offspring are not in the feasible region. CMA-ES can waste
up to 20% of its evaluations simply finding the boundaries of
the problem. This is really a constraint handling problem,
yet it is not clear how to address this issue in order to im-
prove the efficiency of CMA-ES. Second, and probably more
serious, we found that the step size adaptation mechanism
does not work as expected on high dispersion functions. In-
stead, the distribution defined by the covariance matrix is
primarily responsible for the decrease in the actual distribu-
tions that creates the offspring.
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