
On the Analysis of the (1+1) Memetic Algorithm

Dirk Sudholt∗
Fachbereich Informatik
Universität Dortmund

44221 Dortmund, Germany

Dirk.Sudholt@udo.edu

ABSTRACT
Memetic algorithms are evolutionary algorithms incorporat-
ing local search to increase exploitation. This hybridization
has been fruitful in countless applications. However, theory
on memetic algorithms is still in its infancy.

Here, we introduce a simple memetic algorithm, the (1+1)
Memetic Algorithm ((1+1) MA), working with a population
size of 1 and no crossover. We compare it with the well-
known (1+1) EA and randomized local search and show that
these algorithms can outperform each other drastically.

On problems like, e. g., long path problems it is essential
to limit the duration of local search. We investigate the
(1+1) MA with a fixed maximal local search duration and
define a class of fitness functions where a small variation of
the local search duration has a large impact on the perfor-
mance of the (1+1) MA.

All results are proved rigorously without assumptions.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Theory, Algorithms, Performance

Keywords
Hybridization, local search, running time analysis, theory

1. INTRODUCTION
Memetic algorithm is a term for a hybridization of evolu-

tionary algorithms and local search. Combining these two
types of algorithms, the hope is to preserve good properties

∗supported by the Deutsche Forschungsgemeinschaft (DFG)
as part of the Collaborative Research Center “Computa-
tional Intelligence” (SFB 531).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

of two algorithms and to create a more powerful hybrid al-
gorithm. This approach has led to many implementations
of memetic algorithms that have shown their usefulness in
many applications, see Moscato [6] for an overview.

Due to the rapid development in this research area, it is
hard for theory to keep up with the state-of-the-art. An ex-
ample of a theoretical analysis on memetic algorithms is the
work of Merz [5] based on an empirical approach. However,
rigorous theoretical results are rare and difficult to obtain.

The purpose of this paper is to build a rigorous theory
on memetic algorithms, i. e., a theory not based on assump-
tions. Such a theory has been established for simple evolu-
tionary algorithms such as the (1+1) EA (see, e. g., Droste,
Jansen, and Wegener [2]) and for population-based evolu-
tionary algorithms (see Witt [8] for a rigorous analysis of a
(μ+1) EA and Jansen and Wegener [4] for a rigorous anal-
ysis of genetic algorithms with crossover).

When dealing with a new class of algorithms, it makes
sense to start with a simple algorithm. Thus, we define
the so-called (1+1) Memetic Algorithm ((1+1) MA) work-
ing with a population of size 1 and no crossover. We will see
that the analysis of this simple memetic algorithm provides
valuable insights into the interaction of mutation and local
search. Furthermore, this work can be used as a basis for
results on more complex algorithms.

In order to establish a rigorous theoretical foundation, it
is necessary that we come to proven results. We start defin-
ing functions where the (1+1) MA outperforms other algo-
rithms and functions where the (1+1) MA is outperformed
itself. The existence of such functions follows from the NFL.
However, there is an essential qualitative difference between
a mere proof of existence and the concrete presentation of
such functions, not only because the NFL does not tell us
about the size of the performance gaps. We want to make
the next crucial step towards a theoretical foundation and
analyze functions causing severe performance gaps. That
way we can learn from the characteristics causing these per-
formance gaps, develop the methodology to analyze memetic
algorithms, and come to sorely needed proven results.

This paper is structured as follows. In Section 2 we de-
fine the three algorithms considered here: the (1+1) MA,
the (1+1) EA, and randomized local search. Section 3 in-
troduces a construction plan that is used in Sections 4 and 5
to define functions with specific properties. In Section 4 we
define three functions and prove that each algorithm beats
the other two algorithms drastically on one function. In Sec-
tion 5 we consider the (1+1) MA with maximal local search
duration d(n). A class of functions is presented where only

493

specific values of d(n) for the (1+1) MA lead to an efficient
optimization while even small deviations from these values
are likely to lure the (1+1) MA into a trap.

2. DEFINITIONS
The algorithms considered in this work are defined for the

maximization of a function f : {0, 1}n → R ∪ {−∞}.
Randomized local search (RLS) is initialized with a search

point x ∈ {0, 1}n chosen uniformly at random and then re-
peats the following two steps. First, an offspring y is created
from x by flipping one bit in x chosen uniformly at random.
Then the offspring y replaces its parent x iff f(y) ≥ f(x).

The (1+1) EA works like RLS except that the offspring
y is created by a mutation operator flipping each bit in x
independently with a fixed mutation probability pm.

The (1+1) MA uses a generic local search procedure de-
fined as follows. H(x, y) denotes the Hamming distance of
two search points x, y.

Procedure 1 (Local Search(y)).
While ∃z : H(z, y) = 1 and f(z) > f(y) {

y := z.
}

Return y.

Note that common local search strategies like random hill
climbing, steepest ascent, and first ascent fit into this frame-
work. The results of this paper hold for all these strategies.

The difference between the local search strategies of RLS
and the (1+1) MA’s local search procedure is that in a re-
gion of search points with equal fitness, a so-called plateau,
RLS can move around since search points with equal fitness
are accepted. The (1+1) MA’s local search procedure, how-
ever, stops since only search points with larger fitness are
accepted.

The (1+1) MA is defined as follows. In this simple form
it represents an Iterated Local Search algorithm (see [1]).

Algorithm 1 ((1+1) Memetic Algorithm).

1. Choose x ∈ {0, 1}n uniformly at random.
x := Local Search(x).

2. y := x. Flip every bit in y with probability pm.
y := Local Search(y).

3. If f(y) ≥ f(x), x := y.

4. Continue at line 2.

A common choice for pm is pm := 1/n implying that one
bit flips in expectance. In the following we investigate values
for pm with ε/n ≤ pm ≤ 1/2 for some constant 0 < ε ≤ 1.
Obviously, values larger than 1/2 do not make sense since
individuals with a large Hamming distance to the current
search point are preferred. If the mutation probability is
very small, say pm = o(1/n), then most mutations will not
flip any bit in the parent. While RLS and the (1+1) MA can
use local search strategies to have progress, the (1+1) EA
has a large waiting time until it finds a new search point.
Thus, it makes sense to restrict pm to values pm ≥ ε/n.

Next, we will define notions to classify the performance of
an algorithm.

Definition 1. An event E occurs with overwhelming
probability if the probability P (E) converges to 1 exponen-
tially fast with the search space dimension n, i. e., P (E) =

1 − 2−Ω(nε) for some constant ε > 0.
We say that an algorithm A is efficient on a function f

iff A finds a global optimum on f in polynomial time with
overwhelming probability.

We say that an algorithm A fails on a function f iff A
does not find a global optimum in exponential time with over-
whelming probability.

For the (1+1) MA, we have to take into account all steps
of the local search process. Note that the (1+1) MA’s local
search procedure performs up to n fitness evaluations per
step while (1+1) EA and RLS use only one fitness evalu-
ation per step. Our notions of efficiency are not affected
by polynomial factors, though, as we do not differentiate
between polynomials of different orders. This perspective
resembles the one taken in complexity theory and is explicit
in the notion of NP-completeness and the Church-Turing
thesis.

In Sections 4 and 5 we will define functions where cer-
tain subfunctions are embedded. Amongst others, we will
make use of so-called long path problems introduced by Horn,
Goldberg, and Deb [3]. A long path of Hamming neighbors
is embedded into a fitness function such that on the path
the fitness is strictly increasing and all other search points
give hints to reach the start of the path.

Long paths can be generalized to so-called long K-paths
where the probability to take a shortcut on the path by
mutation decreases rapidly with increasing K. This gener-
alization was informally described in [3] and then formally
defined by Rudolph [7].

Definition 2. Let K, N ∈ N with (N − 1)/K ∈ N. The
long K-path of dimension N is a sequence of bitstrings from
{0, 1}N defined recursively. The long K-path of dimension
1 is defined as P K

1 := (0, 1). Let P K
N−K = (v1, . . . , v�) be the

long K-path of dimension N − K. Then the long K-path of
dimension N is defined by prepending K bits to the search
points from {v1, . . . , v�}: let S0 := (0Kv1, 0

Kv2, . . . , 0
Kv�),

S1 := (1Kv�, 1
Kv�−1, . . . , 1

Kv1), and B := (0K−11v�,
0K−212v�, . . . , 01

K−1v�). The search points in S0 and S1 dif-
fer in the K leading bits and the search points in B represent
a bridge between them. The long K-path of dimension N is
constructed by concatenating S0, B, and S1.

We cite two important properties of long K-paths that
will be referred to in Section 5. Proofs are given in [2].

Lemma 1.
1. The length of the long K-path is (K + 1)2(N−1)/K −

K + 1. (We will often choose N := (K2 + 1) yield-
ing an exponential length.) All points on the path are
different.

2. Let x be a point on the long path. For all 0 < i < K
the following holds. If x has at least i successors on
the path, then the i-th successor has Hamming distance
i of x and all other successors of x on the path have
Hamming distances different from i.

The second property is important, stating that unless an
algorithm performs jumps of at least K bits, the algorithm
cannot take shortcuts on the long K-path.

494

3. A COMMON CONSTRUCTION PLAN
The functions defined in Sections 4 and 5 are constructed

by a common construction plan. A function g defined on
a bitstring of length N is to be maximized and we want
the optimization of g to start with a bitstring containing
almost only zeros. Hence, we embed the function g into a
function f . The function f is defined on a larger bitstring
where N bits are appended to the bits of g.

The following function ZZO (zeros, zeros, ones) gives hints
to turn the first N bits into zeros and the last N bits into
ones.

Definition 3. Let |x|i be the number of bits with value i
in x. Let x ∈ {0, 1}n be divided into two halves, x = x′x′′

with x′, x′′ ∈ {0, 1}N . Then we define ZZO : {0, 1}n → R as

ZZO(x) :=

8><
>:
|x′′|0 − 3N if x′ 	= 0N , x′′ 	= 0N

|x′|0 − 2N if x′ 	= 0N , x′′ = 0N

|x′′|1 − N if x′ = 0N .

In a typical run of one of the algorithms considered here,
the algorithm starts with an initial search point x where
x′′ 	= 0N and then maximizes the number of zeros in x′′.
Once x′′ = 0N , the number of zeros in x′ is maximized and
once x′ = 0N , the number of ones in x′′ is maximized. Note
that ZZO is unimodal, i. e., there is a path of Hamming
neighbors with strictly increasing fitness that leads to the
global optimum 0N1N .

Now we embed the function ZZO into a function such
that the fitness depends on the function g once the right
half contains only ones. ZZO gives hints to maximize the
number of ones in the right half only if the left half consists
of zeros. Thus, the first search point where g comes into
play is likely to contain (almost) only zeros.

Lemma 2. Let x ∈ {0, 1}n be divided into two halves, x =
x′x′′ with x′, x′′ ∈ {0, 1}N . Let g : {0, 1}N → R

+ ∪{−∞} be
an arbitrary function and f : {0, 1}n → R∪{−∞} be defined
as

f(x) :=

(
ZZO(x) if x′′ 	= 1N

g(x′) if x′′ = 1N .

A search point x is called well-formed iff all bits in its right
half have value one. Consider an algorithm A ∈ {RLS,
(1+1) EA, (1+1) MA} on f with mutation probability pm :=
Θ(1/n). Then with overwhelming probability the following
statements hold.

1. The embedded function g is first evaluated with a well-
formed search point x = x′1N where either x′ = 0N or
x′ is a mutant of 0N .

2. If, in addition, g(0N) ≥ 0, the algorithm accepts some
well-formed search point y = y′1N within O(n2) fitness
evaluations.

Proof. We investigate a typical run of the algorithm and
show that the claimed events occur in a typical run. Events
preventing a run from being typical are called errors. Show-
ing that the sum of all error probabilities is exponentially
small completes the proof.

By Chernoff’s bounds, A is initialized with some search
point x = x′x′′ where |x′′|1 ≤ 2N/3 with overwhelming
probability. (If the complementary event occurs, this is con-
sidered an error and the run is not typical.) The probability

that at least N/3 = Ω(n) bits flip in one single mutation is
exponentially small. The probability that this happens at
least once in cn2 steps for some c > 0 is still exponentially
small and this is considered an error, too.

If |x′′|1 ≤ 2N/3, the only search points with a larger num-
ber of ones in the right half that can be reached by local
search or mutations of less than N/3 bits contain only zeros
in the left half. Once the left half consists of zeros, these
values must be maintained until a well-formed search point
is reached. Now, consider the variation step creating the
first well-formed offspring y = y′1N . Then y′ results from
0N by the very same variation, thus either y′ = 0N or y′ is
a mutant of 0N .

We now prove that the time bound cn2 holds with over-
whelming probability. The (1+1) MA reaches a search point
x = 0Nx′′ with |x′′|1 ≥ N − 1 during the initial local search
process within (c − 1)n2 fitness evaluations if c ≥ 5/2. For
RLS and the (1+1) EA, the probability to increase the fit-
ness is bounded below by Ω(1/n) if f(x) < −1 for the
current population x. By Chernoff’s bounds, the proba-
bility to have less than 3N − 1 fitness-increasing steps in
(c−1)n2 steps is exponentially small if c > 0 is chosen large
enough. Thus, all three algorithms reach either x = 0N x′′

with |x′′|1 = N − 1 or some well-formed search point in
(c− 1)n2 fitness evaluations with overwhelming probability.

If the current population is x = 0Nx′′ with |x′′|1 = N −1,
the probability to create its well-formed Hamming neigh-
bor 0N1N as an offspring is Ω(1/n) for all three algorithms.
Thus, as long as no other well-formed search point is ac-
cepted, the probability of creating y = 0N1N in one step
is Ω(1/n) and the probability that y is created in n2 tri-

als is 1 − (1 − Ω(1/n))n2
= 1 − e−Ω(n). This proves the

time bound cn2 and the first statement. Since 0N1N has a
non-negative fitness if g(0N) ≥ 0, we have also shown that
a well-formed search point is accepted by the algorithm in
cn2 fitness evaluations with overwhelming probability.

It is easy to see that the sum of all error probabilities is
exponentially small.

The first well-formed search point that is reached by the
(1+1) MA typically contains many zeros in the left half.
This is due to the structure of ZZO and the random initial-
ization. The (1+1) MA’s local search procedure, however,
can behave differently since it is initialized with a mutant of
the (1+1) MA’s current population.

Consider a step where the (1+1) MA mutates some well-
formed search point x = x′1N and creates an offspring
y = y′y′′ with |y′′|1 = N − 1. The fitness of y is deter-
mined by ZZO(y) and local search is started from y. Then
the (1+1) MA’s local search procedure can only increase
the fitness by two means: either by increasing the number
of zeros in y′′ or by flipping back the only zero-bit in y′′

if g(y′) > −∞. In the latter case, a well-formed search
point y′1N with non-negative fitness is reached. In the for-
mer case or in case |y′′|1 < N − 1, the Hamming distance
to all well-formed search points is at least 2 and the only
fitness-increasing path leading to a well-formed search point
traverses 0N1N . Lastly, if y′′ = 1N and g(y′) = −∞, either
z = z′1N is reached with non-negative fitness where z′ is a
Hamming neighbor of y′ or a bit flips in the right half and
0N1N is traversed.

We summarize these arguments in the following corollary.
With regard to Section 5 we also consider the case that the

495

(1+1) MA can stop the local search process at some point
of time.

Corollary 1. Consider the (1+1) MA on a function f
as defined in Lemma 2. If the (1+1) MA performs a muta-
tion of a well-formed search point x with non-negative fitness
creating y = y′y′′, then LocalSearch(y) either

• stops with a search point with negative fitness or

• traverses the search point 0N1N or

• reaches a search point z = z′1N with H(z′, y′) ≤ 1 and
non-negative fitness.

In the first case the result of the local search process is
rejected by the (1+1) MA. In the second case, we are in
the situation of a typical run as described in the proof of
Lemma 2. The third case yields a well-formed search point
where the left half is almost a mutant of x′. Hence, the
outcome of the local search process and the following se-
lection is restricted to search points on a fitness-increasing
path starting with either 0N1N or z = z′1N .

4. RLS, (1+1) EA, AND (1+1) MA CAN BEAT
EACH OTHER DRASTICALLY

We now present three functions showing that each algo-
rithm can beat the other two algorithms drastically. W. l. o. g.
n is a multiple of 4 and N := n/2. Then we divide the
bitstring of x into two halves of length N , x = x′x′′ with
x′, x′′ ∈ {0, 1}N .

Let T ⊂ {0, 1}N be defined as

T := {x′ | ˛̨
x′˛̨

1
≤ N/2, ∀0 ≤ i ≤ N : H(x′, 1i0N−i) ≥ 2}.

A common idea behind the three functions is the following.
Using the construction defined in Section 3, the optimiza-
tion of some subfunction in the x′-part starts close to 0N .
Concentrating on the subspace defined by the x′-part, there
is a ridge of search points 1i0N−i where the fitness increases
with i. Close to this ridge, but with Hamming distance of
at least 2, there is a set T of search points with larger fitness
that can be either a trap or a target area of global optima.

First, we define the function fMA where only the (1+1) MA
is efficient.

fMA(x) :=

8>>><
>>>:

ZZO(x) if x′′ 	= 1N

i if x′′ = 1N , x′ = 1i0N−i, i 	= N − 1

N − 1
2

if x′′ = 1N , x′ ∈ T

−∞ otherwise.

On fMA, local search allows the (1+1) MA to walk past the
trap T and mutation allows the (1+1) MA to jump across a
small gap in the ridge. This gap prevents RLS from reaching
the global optimum while the (1+1) EA is very likely to run
into the trap by mutations flipping more than one bit.

The function fEA is defined such that only the (1+1) EA
is efficient.

fEA(x) :=

8>>><
>>>:

ZZO(x) if x′′ 	= 1N

i if x′′ = 1N , x′ = 1i0N−i

N + 1
2

if x′′ = 1N , x′ ∈ T

−∞ otherwise.

Here T is not a trap but a target area of global optima.
Both RLS and the (1+1) MA are likely to run into the local

optimum x with x′ = 1N while the (1+1) EA can reach T
easily by mutations flipping more than one bit.

Finally, the function fRLS is efficient only for RLS.

fRLS(x) :=

8>>>>><
>>>>>:

ZZO(x) if x′′ 	= 1N

2j if x′′ = 1N ,

x′ ∈ {12j0N−2j , 12j+10N−2j−1}
N − 1

2
if x′′ = 1N , x′ ∈ T

−∞ otherwise.

On fRLS, RLS walks past the trap T while mutation is likely
to lead the (1+1) EA into the trap. For the (1+1) MA,
small plateaus in the ridge stop local search processes and
mutation leads the (1+1) MA into the trap.

Now, we want to concretize these ideas and give rigorous
proofs for these claims.

Theorem 1. While the (1+1) MA with mutation prob-
ability pm := 1/n is efficient on fMA, both RLS and the
(1+1) EA with mutation probability ε/n ≤ pm ≤ 1/2, ε > 0,
fail on fMA.

Proof. By Lemma 2, the (1+1) MA reaches the search
point 0N1N with overwhelming probability. Due to the con-
struction of fMA, for every well-formed search point x with
x′ = 1i0N−i and i < N − 2 there is exactly one Hamming
neighbor with larger fitness. Thus, the (1+1) MA reaches
x′ = 1N−202 during the initial local search process within
O(n2) fitness evaluations.

Then, local search processes climbing the ridge stop due
to the gap in the ridge. Moreover, it is unlikely that the trap
T is hit by mutation and local search since by Corollary 1
at least N/2 − 3 bits have to flip in one mutation. The
probability that this happens at least once in O(n2) trials is
exponentially small.

A sufficient condition to increase the fitness is to mutate
x = 1N−2021N into y = 1N1N . The probability for this
event is 1/n2 · (1−1/n)n−2 ≥ 1/(en2). The probability that
this does not happen within n3 mutations is exponentially
small.

If the (1+1) MA’s local search procedure is initialized
with a non-well-formed search point, it may spend time to
optimize ZZO and/or to climb the ridge again. Since fMA

has O(n) different fitness values, our time bound increases
by a factor of O(n2) yielding a bound of O(n5). Since the
sum of all error probabilities is exponentially small, we have
shown that the (1+1) MA is efficient on fMA.

By Lemma 2, RLS reaches the search point 0N1N with
overwhelming probability. Then the only fitness-increasing
path of Hamming neighbors ends with x′ = 1N−202 and
the global optimum cannot be reached by variation steps
flipping only one single bit. Thus, with overwhelming prob-
ability RLS does not find the optimum in an exponential
number of steps.

Finally, we have to show that the (1+1) EA fails on fMA.
With probability 1 − 2−N , x′′ 	= 1N holds for the initial
search point x. We now distinct two cases according to the
value of the mutation probability pm.

If n−1/2 ≤ pm ≤ 1/2, we concentrate on the last N bits
in the bit string and remark that these bits must be turned
into ones to reach the optimum. The probability to mutate
an arbitrary bit string x′′ of length N into the string 1N is

at most (max{pm, 1 − pm})N ≤
“
1 − 1

n1/2

”n/2

≤ e−n1/2/2

and so the (1+1) EA fails in this case.

496

Let ε/n ≤ pm < n−1/2. The probability to flip at least
cN bits in one mutation, 0 < c < 1/12, is bounded by`

N
cN

´ ·pcN
m ≤ 2N ·n−Ω(n) = n−Ω(n). The probability that such

an event occurs in 2o(n) steps is still of order n−Ω(n), so we
can assume that such an event does not occur in 2o(n) steps
and introduce only an exponentially small error probability.

Using this result, we remark that the first statement of
Lemma 2 also holds in this case: the probability of flipping
at least N/3 bits in at least one of 2o(n) mutations is expo-
nentially small and a well-formed search point is created in

time 2O(n1/2) with overwhelming probability.
Let x = x′1N be the first well-formed search point reached

by the (1+1) EA. Since fEA(x) > −∞, either x′ ∈ T or x′

belongs to the ridge implying x′ = 1i0N−i and i ≤ cN .
Let y be a mutant of x and k := H(x, y). We estimate

the conditional probability of y′ ∈ T given that x′ = 1i0N−i

with i ≤ N/2 − cN and k < cN . In the subspace induced
by the N bits of x′, among all search points with i one-
bits, i ≤ N/2, there are at most O(N) search points not
in T . For symmetry reasons, y′ is distributed uniformly
at random among all individuals with Hamming distance k
from x′, 2 ≤ k ≤ cN . The probability that k ≥ 2 is at least`

n
2

´
p2

m = Ω(1) since pm ≥ ε/n. Then, since x′ = 1i0N−i

with i ≤ N/2− cN , the probability of y′ /∈ T is O(kN)/
`

N
k

´
.

This term is maximal for k = 2 if 2 ≤ k < cN . Altogether,

P
`
y′ ∈ T

´ ≥ P (k ≥ 2) · (1 − P
`
y′ /∈ T | k

´
) = Ω(1).

We now show that with overwhelming probability the algo-
rithm spends at least n3/2/8 steps near the trap. To have
progress on the ridge, it is necessary that the leftmost zero-
bits flip. These bits are called relevant zero-bits. We con-
sider a random 0-1-string of infinite length where a position
is set to 1 with probability pm. Then we can interpret this
string as follows. The number of ones between the (i − 1)-
th zero and the i-th zero, i ≥ 1, is the number of flipping
relevant zero-bits in the i-th step on the path (cf. proof of
Theorem 17 in [2]). If there are less than n/6 ones among the

first n3/2/8+n/6 bits, the number of flipping relevant zero-

bits in n3/2/8 steps is smaller than n/6 and the progress on
the ridge is at most n/6. Since the expected number of ones

in n3/2/8+n/6 bits is pm(n3/2/8+n/6) ≤ n/8+n1/2/6, the

probability of having at least n/6 ones is 2−Ω(n) by Cher-
noff’s bounds.

Thus, with an error probability of 2−Ω(n), the progress is
less than n/6 = N/3 implying for the current population x
either x′ ∈ T or x′ = 1i0N−i with i ≤ N/2 − cN .

As long as we have not hit the trap, the algorithm spends
n3/2/8 steps near the trap and the probability to hit the
trap in one step is Ω(1). Thus, the probability to hit the

trap in that period of time is 1−2−Ω(n3/2). Once the trap is
hit, the global optimum can only be reached by a mutation
flipping at least N/2 bits. The probability that this happens

in 2o(n) steps is exponentially small.
Summing up all error probabilities completes the proof for

the (1+1) EA.

Theorem 2. While the (1+1) EA with mutation prob-
ability pm := 1/n is efficient on fEA, both RLS and the
(1+1) MA with mutation probability ε/n ≤ pm ≤ 1/2, ε >
0, fail on fEA.

Proof. Except fitness values larger than N−2, the func-
tion fEA equals the function fMA. The (1+1) EA reaches the

target T with overwhelming probability (see proof of Theo-
rem 1). The time is at most O(n2) since some well-formed
search point is reached in time O(n2) and the target T is
reached in n additional steps with overwhelming probability
as the probability to hit T in one mutation is Ω(1).

By Lemma 2 both RLS and the (1+1) MA reach 0N 1N

with overwhelming probability. In that case, both algo-
rithms deterministically run into the local optimum x with
x′ = 1N . By Corollary 1 the (1+1) MA can only escape
from this local optimum and reach T by mutating x with
x′ = 1N into some y with y′ ∈ T or a Hamming neighbor
thereof. Moreover, y′′ must not contain more than one bit
with value zero since otherwise the Hamming distance to all
well-formed search points is at least 2 and 0N1N is traversed
during the local search process. Using these arguments, we
show that the probability of the considered mutation is ex-
ponentially small: if pm ≥ n1/2, the probability that at most
one bit flips in x′′ is exponentially small. If pm < n1/2, the
probability to flip at least N/2−1 bits in x′ is exponentially
small. Thus, both RLS and the (1+1) MA fail on fEA.

Theorem 3. While RLS is efficient on fRLS, both the
(1+1) EA and the (1+1) MA with mutation probability ε/n
≤ pm ≤ 1/2, ε > 0, fail on fRLS.

Proof. By Lemma 2, RLS reaches 0N1N in O(n2) fitness
evaluations with overwhelming probability. On the ridge the
fitness is monotonically increasing due to small plateaus of
size 2. We now show that the expected time until RLS
crosses a non-optimal plateau and thereby increases the fit-
ness is bounded above by 3n.

Let Pi be a well-formed search point where the left half
is 1i0N−i, then P2j and P2j+1 form a plateau with fitness
2j. RLS first reaches P2j when entering the plateau. Then
the only accepted search point is P2j+1 and the expected
time to reach P2j+1 is n. Once P2j+1 is reached, RLS can
reach either P2j or P2j+2. The expected waiting time for a
transition is n/2 and with probability 1/2, P2j+2 is reached
and the fitness increases. Thus, in expectance, P2j has to
be left at most 2 times and the expected time to increase
the fitness is at most 2(n + n/2) = 3n.

An application of Markov’s inequality yields that the prob-
ability to increase the fitness in 6n steps is at least 1/2. To
climb up the ridge, the fitness has to be increased N/2 times.
By Chernoff’s bounds the probability of having less than
N/2 fitness increases in 2N independent phases of 6n steps

is 2−Ω(n). Hence, RLS needs at most O(n2)+6n2 steps with
overwhelming probability.

Consider the case ε/n ≤ pm < n−1/2. With overwhelming
probability both the (1+1) EA and the (1+1) MA reach ei-
ther T or the ridge at some search point x with x′ = 1i0N−i

and i ≤ cN for some 0 < c < 1/12 (refer to the proof
of Theorem 1). On the ridge the (1+1) MA behaves dif-
ferently for search points with an odd or an even number
of one-bits, resp. Consider the subspace induced by the N
bits of x′. In case the (1+1) MA reaches some search point
12j0N−2j on the ridge by local search, this local search pro-
cess is stopped since there is no Hamming neighbor with
larger fitness. Thus, the (1+1) MA performs a mutation in
the next generation. In case the (1+1) MA reaches some
search point 12j+10N−2j−1 on the ridge by mutation, local
search reaches 12j+20N−2j−2.

In the proof of Theorem 1 we have shown that with over-
whelming probability the progress on the ridge defined by

497

fMA in n3/2/8 mutations is at most N/3. By the same
arguments, the progress on the ridge defined by fRLS in
n3/2/16 mutations is at most N/6 with overwhelming prob-
ability. Moreover, we have seen that the probability to jump
into the trap in one mutation is Ω(1) if x′ = 1i0N−i with
i ≤ N/2 − cN holds for the current search point and less
than cN bits flip in one mutation.

This proves that the (1+1) EA fails on fRLS since the trap
is reached with overwhelming probability. For the (1+1) MA
each progress by mutation is followed by a progress by lo-
cal search. However, the progress by a local search call is
at most 1. Thus, after n3/2/16 mutations the progress of
the (1+1) MA by both mutation and local search is at most
N/3 and the (1+1) MA also fails on fRLS.

In case n−1/2 ≤ pm ≤ 1/2, the (1+1) EA fails to create
a well-formed search point (see proof of Theorem 1). The
(1+1) MA fails to create a well-formed offspring y 	= 0N1N

from x = 0N1N as the probability to flip at most one bit in
x′′ is exponentially small and local search stops with 0N1N

in case more than one bit flips in x′′.

5. ON THE LOCAL SEARCH DURATION
It is a general and important question for memetic algo-

rithms whether local search should be performed to local
optimality or not. On some functions it would be unwise to
perform local search until a local optimum is found.

An example is the long path problem defined by Horn,
Goldberg, and Deb [3] based on a long 2-path. Although
in [3] the authors were convinced to observe exponential run-
times of the (1+1) EA on this function, Rudolph [7] proved
that the expected runtime of the (1+1) EA is bounded by
O(n3). This is due to the fact that the (1+1) EA can take
shortcuts by mutations flipping more than one bit. The
(1+1) MA, however, is likely to reach the start of the long
2-path within the initial local search process and then climbs
up the whole path of length (2 + 1)2(n−1)/2 − 2 + 1 = 2Ω(n)

(see Lemma 1). Thus, it is essential to stop local search
before a local optimum is reached, here.

A simple way of limiting local search is to set a threshold
of maximal d(n) steps within one local search call, thus using
the following local search procedure instead of Procedure 1.

Procedure 2 (Local Search with duration d(n)).

t := 1.
While t ≤ d(n) and ∃z : H(z, y) = 1 and f(z) > f(y) {

y := z.
t := t + 1.

}
Return y.

In the following, we investigate the (1+1) MA using Pro-
cedure 2. Since the (1+1) MA cannot be efficient if a local
search process takes superpolynomial time, we only consider
polynomial values for d(n). We will see that even for poly-
nomial values the accurate choice of d(n) can have a large
impact on the performance of the (1+1) MA.

We now investigate the following function LPTm where
the duration of the local search process has an impact on
the optimization process. LPT stands for long path with
trap and the parameter m defines the length of the path.

Definition 4. Let n = 4N and N := (K2 + 1) for some
K ∈ N. Let Pi be the i-th point on the long K-path with

dimension N . Then for some m = 2o(n1/2) we define the
function LPTm : {0, 1}N → R ∪ {−∞} as

LPTm(x′) :=

8><
>:

i if x′ = Pi, i ≤ m

m − 1
2

if x′ ∈ Tm

−∞ otherwise

where Tm ⊂ {0, 1}N is defined as

Tm := {x′ |∃i, N1/3 + 2 < i < m − N1/3 − 2: H(x′, Pi) = 2,

∀j, 0 ≤ j ≤ m : H(x′, Pj) ≥ 2}.
Now, if the local search duration is large enough, the

(1+1) MA walks past the trap Tm and reaches the final
search point Pm on the path. However, if the local search
duration is small, the (1+1) MA performs a mutation near
the trap, thus having a chance to jump into it.

Lemma 3. Let n := 4N , N := (K2 + 1) for some K ∈ N,

and m = 2o(n1/2). Consider the (1+1) MA with mutation
probability Θ(1/N) and maximal local search duration d(n),

d(n) ≥ n1/2, on LPTm.
If the (1+1) MA starts by performing at least d(n) − 1

iterations of a local search process from a search point in
{P0, . . . , PN1/3}, the following statements hold.

1. If d(n) > m, P (reaching Tm before Pm) = 0.

2. If d(n) ≤ m − n1/2 + 1, P (reaching Tm before Pm) =
Ω(1).

In both cases the number of mutations until either Tm or Pm

is reached is bounded by O(n) with overwhelming probability.

Proof. The first statement is trivial since due to con-
struction of LPTm, local search ends with Pm deterministi-
cally.

For the second statement, we observe that the local search
process ends with a search point Pi where i ≥ d(n) − 1 >

N1/3 + 2 and i ≤ N1/3 + d(n) < m − N1/3 − 2 if n large
enough. Due to these bounds for i and the definition of
Tm, all search points with Hamming distance 2 from Pi

either belong to Tm or have Hamming distance at most
1 to a search point in {Pi−3, Pi−2, Pi−1, Pi+1, Pi+2, Pi+3}.
The number of search points where the latter condition
holds is O(N). Thus, among all search points with Ham-
ming distance 2 from Pi, an (1 − O(1/N))-fraction belongs
to Tm. The probability for an arbitrary 2-bit-mutation is`

N
2

´ · (Θ(1/N))2 · (1 − Θ(1/N))N−2 = Ω(1). Thus, Tm is
reached via a direct mutation from Pi with probability Ω(1).

For the time bound we show that after the first local
search process the probability to run into either Tm or Pm

in one mutation is Ω(1). Let x = Pi be the search point
that is mutated. After the first local search process, the
probability to jump into Tm is Ω(1) if i < m − N1/3 − 2.

If i ≥ m − N1/3 − 2 there is a constant probability that
mutation creates a replica of x. In that case, local search
runs into Pm deterministically. Hence, there is a constant
probability to reach either Tm or Pm in one mutation and
the probability that this does not happen in n mutations is
exponentially small.

The probability to hit the trap is Ω(1) if the local search
duration is small. This result is weak since we want to obtain
overwhelming probabilities. We can achieve better results

498

by using LPT as a subfunction that has to be optimized
several times to reach the optimum of the superior function.
We will see that the (1+1) MA then reaches the trap in at
least one of these trials with overwhelming probability.

Moreover, we want to trap the (1+1) MA if the local

search duration is too large, i. e., if it is at least D+n1/2 −1
for some fixed value D. This can be done as follows. We
define subfunctions LPTD+n1/2−1 such that these subfunc-
tions have to be optimized one after another under the start-
ing conditions given in Lemma 3. If the local search duration
is too large, these subfunctions are optimized deterministi-
cally and in all trials the trap is avoided. However, the global
optimum of the superior function is a set of search points
where the trap is hit in one of these trials.

This leads to the following definition of a superior func-
tion. Since this definition is somehow complicated, a de-
tailed explanation is given below.

Again, we use the construction introduced in Section 3
and divide the bitstring into two halves. The difference to
the functions defined in Section 4, however, is that the left
half itself is divided into two quarters of length N . Thus,
we have search points x = x′x′′x′′′ with x′, x′′ ∈ {0, 1}N

and x′′′ ∈ {0, 1}2N where x′x′′ represents the left half and
x′′′ represents the right half of x. Note that the term well-
formed now applies to search points x where x = x′x′′12N

for some x′, x′′ ∈ {0, 1}N .

Definition 5. Let n := 4N and N := (K2 +1) for some
K ∈ N. Let x = x′x′′x′′′ with x′, x′′ ∈ {0, 1}N and x′′′ ∈
{0, 1}2N . Let D ∈ N. We define

fD(x) :=

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ZZO(x) if x′′′ 	= 12N

i · 2N+1 + hi(x
′) if x /∈ OPT, x′′′ = 12N ,

∃i, 1 ≤ i ≤ 4n : x′′ = Pi·K ,

hi(x
′) < max{hi}

i · 2N+1 + hi(x
′) + j if x /∈ OPT, x′′′ = 12N ,

∃i, j : x′′ = Pi·K+j ,

0 ≤ i < 4n, 0 ≤ j ≤ K − 2,

hi(x
′) = max{hi}

2n if x ∈ OPT

−∞ otherwise

where the subfunctions h0, . . . , h4n : {0, 1}N → [0, 2N]∪{−∞}
and the set OPT ⊆ {0, 1}n are defined as follows. For
0 ≤ i ≤ 4n, let h0(x

′) := 0, hi(x
′) := |x′|0 if i odd,

hi(x
′) := LPTD(x′) if i even and 2 ≤ i ≤ 2n, hi(x

′) :=
LPTD+n1/2−1(x

′) if i even and i > 2n. Finally,

OPT := {x |x′′′ = 12N ,

∃i ∈ {2n + 2, 2n + 4, . . . , 4n} : x′′ = Pi·K ,

x′ ∈ TD+n1/2−1}.
The only purpose of the right half of the bitstring—the

x′′′-part—is to ensure that the left half is close to 02N when
the first well-formed search point is reached (see Section 3).

Consider a well-formed search point x. In the x′-part
some subfunction is optimized and the x′′-part helps to de-
termine that subfunction. In the x′′-part there is a long
K-path that is revealed piecewise. If the (i · K)-th point
on the long K-path is reached in the x′′-part, the i-th sub-
function is optimized in the x′-part. Unless an optimum of
that subfunction is reached, all successors with Hamming

distance less than K on the long K-path in x′′ are hidden,
i. e., yield a fitness of −∞. Thus, if no jumps by at least K
bits take place, x′′ = Pi·K is maintained until the x′-part
has been optimized.

If an optimum of the subfunction in x′ is found, K − 2
successors of Pi·K on the long K-path in x′′ are revealed.
Now the algorithm can reach x′′ = P(i+1)·K easily by climb-
ing up the path to x′′ = P(i+1)·K−2 and jumping to x′′ =
P(i+1)·K . The gap between P(i+1)·K−2 and P(i+1)·K ensures
that P(i+1)·K is reached by mutation instead of local search.
Hence, a new local search process starts with x′′ = P(i+1)·K .
Note that in the x′-part, an optimum of the subfunction has
to be maintained until x′′ = P(i+1)·K is reached. Thus,
an optimum of the i-th subfunction is the starting point
for the optimization of the (i + 1)-th subfunction. Once
x′′ = P(i+1)·K is reached, the (i + 1)-th subfunction has to
be optimized in the x′-part, and so on. That way we can
embed arbitrary subfunctions into the x′-part (with slight
restrictions to the range of fitness values).

The subfunctions with an even index are chosen by the
ideas described above. Subfunctions with odd index maxi-
mize the number of zeros, thus the optimization of the next
subfunction starts with x′ = 0N .

Theorem 4. Let D ∈ N. Consider the (1+1) MA with
mutation probability pm := 1/n and maximal local search

duration d(n) ≥ n1/2 with d(n) = poly(n) on fD.
If d(n) = D, the (1+1) MA is efficient on fD. If d(n) ≤

D − n1/2 or d(n) ≥ D + n1/2, the (1+1) MA fails on fD.

Proof. Again, we investigate typical runs where the sum
of all error probabilities is exponentially small.

The probability that at least N1/3 bits flip in one mutation

is 2−Ω(N1/3 log N). The probability that this happens at least

once in 2N1/3
mutations is still 2−Ω(N1/3 log N) and this is

considered an error.
A closer look at the proof of Lemma 2 reveals that the

proof also holds for the (1+1) MA with maximal local search

duration d(n) ≥ n1/2 except for the time bound O(n2).
However, since a mutation increases the fitness with proba-
bility Ω(1/n), the number of mutations performed until the
first well-formed search point is reached is clearly bounded
by O(n2) with overwhelming probability.

For all well-formed search points x = x′x′′12N with a fit-
ness value larger than −∞, x′′ ∈ {P0, P1, . . . } holds since
all other x′′ yield fD(x) = −∞. Hence, if y = y′y′′12N

is the first well-formed search point, y′′ = Pj for some
0 ≤ j ≤ N1/3 since all Pj , j > N1/3 have a Hamming
distance larger than N1/3 from 0N (see Lemma 1).

Having reached y, we partition the rest of the run into
8n phases of two different types. Phases R1, . . . , R4n con-
cern the right part of the partial bitstring x′x′′ while phases
L1, . . . , L4n concern the left part of x′x′′. Let i be the
variable introduced in Definition 5. Phase Rm starts when
i = m−1 and lasts as long as the fitness value of the current
population is determined by the third case of the definition
of fD. Phase Lm starts right after phase Rm where i = m
and lasts as long as the fitness of the current population is
determined by the second case of the definition of fD. It
is important that during Lm an operation flipping one bit
in x′′ or x′′′ results in a negative fitness value. Thus, a lo-
cal search process starting with a non-negative fitness value
only concerns the x′-part.

499

The co-domains of all hi are subsets of [0, 2N] ∪ {−∞}.
As long as the set OPT is not found, all fD-values encoun-
tered in phase Li are larger than all fD-values in phases
R1, L1, R2, L2, . . . , Ri since in the definition of fD, the value
i is weighted by 2N+1 and the fitness gain in Li−1 and Ri

is at most 2N + K < 2N+1. Obviously, the fitness values in
Ri+1 are larger than those in Li. Since at most N1/3 bits
flip in one step and all search points in {P0·K , P1·K , . . . }
have a pairwise Hamming distance of at least K > N1/3, Ri

can only be reached by Ri−1 or Li−1. Thus, the order of
phases is R1, L1, R2, L2, . . . , R4n, L4n unless a trap or OPT
is reached. (However, a phase Lm may be empty if the op-
timization of hi starts with an optimum thereof.)

Due to the gap between Pi·K−2 and Pi·K , every phase Li,
1 ≤ i ≤ 4n, can only be reached by a direct mutation to
Pi·K or by a mutation to a Hamming neighbor thereof if the
first iteration of the local search process reaches Pi·K .

Furthermore, Li for i even starts with a search point x
where x′ = Pj with 0 ≤ j < N1/3 (or a Hamming neigh-
bor thereof in case pi·K was reached by a direct mutation).
This is due to the fact that 0N is the unique optimum of
hi−1(x

′) and this optimum must be maintained during phase
Ri. Thus, the only accepted step that may modify x′ is the
mutation leading to the start of Li. Since P0, . . . , PN1/3−1

are the only search points with an hi-value larger than −∞
and a Hamming distance less than N1/3 to 0N , the claim
follows and the conditions of Lemma 3 are fulfilled for the
subspace of the x′-part. (Lemma 3 also holds for the op-
timization of LPTm as a subfunction of fD as the n − N
additional bits only affect the constant values hidden in the
big-O and big-Omega notations.)

In case d(n) ≥ D Lemma 3 yields that on all subfunctions
LPTD the search point x′ = PD is reached with probabil-
ity 1. Thus, the (1+1) MA does not get trapped within the

phases R1, L1, . . . , R2n, L2n. Contrarily, if d(n) ≤ D −n1/2,
the probability that x′ ∈ TD is reached on at least one sub-
function LPTD is 1 − 2−Ω(n). In that case, due to the defi-
nition of the trap TD, at least N1/3 bits have to flip in one
mutation to reach x′ = PD or another search point with
larger fitness. This proves the failure of the (1+1) MA in

case d(n) ≤ D − n1/2.
Now we consider the phases R2n+1, L2n+2, . . . , R4n, L4n.

In case d(n) ≤ D, by Lemma 3, the probability of reaching

x′ ∈ TD+n1/2−1 on a subfunction LPTD+n1/2−1 is 1−2−Ω(n)

and then the set OPT of global optima is found. However,
if d(n) ≥ D + n1/2, Lemma 3 states that x′ = PD+n1/2−1

is reached on all subfunctions LPTD+n1/2−1. In that case

more than N1/3 bits have to flip in one mutation to reach
OPT and the (1+1) MA fails.

Finally, we have to prove that in case d(n) = D the run-
time of the (1+1) MA is polynomially bounded with over-
whelming probability. We first count the number of mu-
tation steps. Every mutation implies one local search call.
The number of fitness evaluations in one local search call
is trivially bounded by d(n) · n, thus the number of fitness
evaluations is at most by a factor of d(n) · n + 1 larger than
the number of mutation steps (plus d(n) · n for the initial
local search process).

We have already shown that the first phase R1 starts
within O(n2) mutations with overwhelming probability. By
the same arguments, in a phase Ri+1 concerning the x′′-part
either P(i+1)·K−2 or P(i+1)·K is reached from Pi·K within

O(nK) mutation steps with overwhelming probability. A
sufficient condition to reach P(i+1)·K from P(i+1)·K−2 is a
direct jump to P(i+1)·K by mutation which happens with

probability Ω(1/n2). The probability that in all phases
R1, . . . , R4n less than 4n of these jumps occur in cn3 tri-
als is exponentially small by Chernoff’s bounds if c > 0 is
chosen large enough. Thus, we obtain a term O(n3) for the
number of mutations in all phases R1, . . . , R4n that holds
with overwhelming probability.

By Lemma 3 the number of mutations in a phase Li, i
even, is bounded by O(n) with overwhelming probability.
For a phase Li, i odd, it is easy to see that the subfunction
|x′|0 is optimized within O(n2) mutations with overwhelm-
ing probability. Hence, we obtain another bound O(n3) for
the overall number of mutations of all phases L1, . . . , L4n

holding with overwhelming probability.
Together, the number of fitness evaluations is bounded by

O(d(n) · n4) = poly(n) with overwhelming probability.

6. CONCLUSIONS
We have defined the (1+1) MA as a simple memetic al-

gorithm and compared it to the well-known (1+1) EA and
randomized local search. For each algorithm we have defined
a function where only that algorithm is efficient while the
other two algorithms need exponential time with overwhelm-
ing probability. Furthermore, the analyses gave insights into
the interplay of mutation and local search.

On functions like the well-known long 2-path problems
it is essential to limit the duration of local search. Thus,
we have investigated the (1+1) MA with a limitation to at
most d(n) steps of each local search process. We have de-
fined a class of functions where, given some value D, the
(1+1) MA with d(n) = D is efficient. However, even with

a small deviation of d(n) by only n1/2, the (1+1) MA gets
trapped and does not find an optimum in exponential time
with overwhelming probability.

7. ACKNOWLEDGEMENT
The author thanks Thomas Jansen for fruitful discussions

and comments.

8. REFERENCES
[1] C. Blum and A. Roli. Metaheuristics in combinatorial

optimization: Overview and conceptual comparison. ACM
Computing Surveys, 35(3):268–308, 2003.

[2] S. Droste, T. Jansen, and I. Wegener. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science,
276:51–81, 2002.

[3] J. Horn, D. E. Goldberg, and K. Deb. Long path problems. In
Y. Davidor, H.-P. Schwefel, and R. Männer, editors, Parallel
Problem Solving from Nature (PPSN III), volume 866, pages
149–158. Springer, 1994.

[4] T. Jansen and I. Wegener. Real royal road functions – where
crossover provably is essential. Discrete Applied Mathematics,
149:111–125, 2005.

[5] P. Merz. Advanced fitness landscape analysis and the
performance of memetic algorithms. Evolutionary
Computation, 12(3):303–326, 2004.

[6] P. Moscato. Memetic algorithms: a short introduction. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in
Optimization, pages 219–234. McGraw-Hill, 1999.

[7] G. Rudolph. How mutation and selection solve long-path
problems in polynomial expected time. Evolutionary
Computation, 4(2):195–205, 1997.

[8] C. Witt. An analysis of the (µ+1) EA on pseudo-boolean
functions. In Genetic and Evolutionary Computation
Conference (GECCO 2004), pages 761–773. Springer, 2004.
LNCS 3102.

500

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

