Motivations for Exhaustive Search Algorithms Based
on Evolutionary Algorithms

ABSTRACT

‘We theoretically explore some of the properties of evolu-
tionary algorithms. We discover that under certain con-
ditions, it is more advantageous to utilize a restarting
procedure for the evolutionary algorithm than to con-
tinue to allow the algorithm to run, due to an exponen-
tially increasing time required for transitions between
optima. We discover conditions where a pseudoezhaus-
tive algorithm based on a given evolutionary algorithm
may be able to outperform the evolutionary algorithm
on which it is based. The algorithm is shown to perform
as well or better than the evolutionary algorithm it is
built from on problems taken from the literature and a
digital hardware design problem.

track:evolutionary combinatorial optimization

1. INTRODUCTION

Evolutionary algorithms [5, 6, 1] have been in exis-
tence for more than forty years, and thus far have been
applied to a variety of problems. An evolutionary algo-
rithm is an optimization algorithm that utilizes evolu-
tionary operators such as crossover, mutation, and re-
production. The evolutionary algorithm starts with an
initial population. It proceeds by carrying out cycles of
random alterations to individuals, which could involve
more than one individual, evaluations of the individu-
als used to determine how "fit" each individual is, and
selection and reproduction, yielding the next set of in-
dividuals. Those individuals higher fitnesses typically
have a better chance of being selected for the next set.
These algorithms can quickly traverse the search space,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

finding ever better individuals as the traversal contin-
ues. Evolutionary algorithms have been found to per-
form surprisingly well, leading to their application to
many problems in the literature.

Prior to evolutionary algorithms, much work was done
on exhaustive search algorithms. Exhaustive search al-
gorithms search through all reachable pathways in the
search space until they reach the global optimum. There
are several different types of exhaustive search: depth-
first search, breadth-first search, and best-first search.
Depth-first search chooses a path in the search space
and travels down that path. In order to fully explore
the search space, backtracking is permitted. Yet, the
time it takes for the search to find the global optimum
is large for relatively broad search spaces. Another type
of search is the breadth-first search, which explores the
search space one level at a time. For search spaces with
a relatively large number of levels, however, the per-
formance time may be very large. The final type of
exhaustive search that we will discuss is the best-first
search. This search chooses the most fit path first, and
travels down that path, choosing the more fit paths first.
For deceptive search spaces, this search is not the best
candidate for optimally finding the global optimum.

Recently, researchers have been using memetic al-
gorithms which combine exhaustive search algorithms
with evolutionary algorithms. The result has been algo-
rithms that are quite good at discovering optima that
neither algorithm can find individually in comparable
computation times. This indicates that properties of
evolutionary algorithms exist that can be useful to ex-
haustive algorithms, and vice-versa. We believe that the
completeness of the search of an exhaustive algorithm is
its strength while the adaptivity of the evolutionary al-
gorithm is its strength. Combining these two properties
has proven to be a useful technique in optimization.

While the marriage of these two methodologies seems
to create an algorithm with capabilities that exceed
those of either one, this by no means indicates that it
is impossible to have a similar effect in approaching the
same thing from another point of view. In this paper,
we examine an algorithm that is more exhaustive than

evolutionary, but contains the strong points from both
parts of the standard memetic algorithm. We demon-
strate that the algorithm has performance that is at
worst comparable to an evolutionary algorithm and at
best much superior to that of an evolutionary algorithm
constructed with the same evolutionary operators. We
give this particular algorithm the name Directed Pseu-
doexhaustive Search(DPS).

We motivate our work in this paper by first theoreti-
cally examining evolutionary algorithms in general. We
explore the performance of an evolutionary algorithm,
characterizing it as a combination of two processes -
traversing a pathway to an optimum and transitioning
from one pathway to another. We demonstrate that
under certain conditions, using long runs can be advan-
tageous, while under other conditions, restarting the al-
gorithm is more advantageous. The transition regions
between local optima are defined and used to explore
the conditions under which either strategy is preferred.

Two corollaries of the current theoretical formalism
give rather suprising results. The first is that under
certain conditions, it is a mathematical certainty that
the genetic algorithm will always find the optimum of
the search space. The conditions under which this is
true are given. The second theoretical result is that a
dynamic change of encoding, under certain conditions,
is advantageous, and can be exponentially so. While
these results are not further explored in this work, they
do serve to clarify some of the empirical results that
have appeared over the years.

The remainder of the paper is organized as follows.
Section 2 describes some theoretical results that are im-
portant for evolutionary algorithms. Section 3 intro-
duces DPS. Section 4, discusses the results of simula-
tions in which simplified evolutionary algorithms and
DPS algorithms are used on problems borrowed from
the literature. Section 5, provides data from our simu-
lations and examines its implications. Section 6 offers
some concluding remarks.

2. THEORETICAL CONSIDERATIONS

This section begins with a description of the basic
assumptions of the class of evolutionary algorithms ex-
amined here. Once the basic assumptions have been
clarified, we describe an extended diversification oper-
ate which is a generalized mutation/crossover operator.
This operator is tied in with the reproduction operator,
and can be used to understand why the genetic algo-
rithm is not generally limited to specific subspaces.

We continue with an examination of the meaning of
different representations in optimization algorithms. This
examination leads to the idea that optimization algo-
rithms behaving like evolutionary algorithms tend to
move between regions of the search space. The move-
ment is essentially connected to the connectiveness of
the space, which itself is a result of the representation.

The representation, therefore, is important in the sense
that different regions of the search space may be "fur-
ther" or "closer", according to the number of steps re-
quired to reach them, as a result of which representation
is used. This view of representation is used to determine
the effect of the various random representations.

In this paper, we omit the proofs of the various Propo-
sitions and Corollaries because of space restrictions. The
proofs of these facts will be given in an upcoming longer
version of this paper.

2.1 Extended Diversifications

We assume in the following work that the systems to
which we apply this formalism have the following prop-
erties: (1) The algorithm maintains a population, which
is a set of vectors, that are stored in memory. The vec-
tors are stored in memory and acted on by operators
which define the evolutionary algorithm. The state of
the evolutionary algorithm is defined by the population,
which is a set of individual vectors stored in memory,
and the current operator being employed. (2)The di-
versification operator(s) introduce new elements to the
population using a combination of crossover and mu-
tation events. Diversification operators do not include
selection. (3) Selection culls the population by replac-
ing some elements with others, preferentially replacing
lower scoring individuals with higher scoring individu-
als. (4) We assume we are working with a finite search
space I'. The details of these behaviors are not impor-
tant for the arguments made below, though the argu-
ments made from here on out will be true as long as
these assumptions are true.

There are, of course, two radically different types of
populations. In the first type, the population is finite
(which is required for most practical applications involv-
ing EAs), and in the second, the population is infinite.
In this paper, we will explore the finite population case.
The population has a specific number of elements which
is maintained by the evolutionary algorithm. Additions
of new elements to the population must be accompanied
by removals of elements from the population.

The diversification operator generally operates in the
following way: based on the population (or in some
cases independently of the population), the diversifica-
tion creates new vectors for consideration. These vec-
tors either immediately become part of the population,
replacing vectors in the population, or are subject some
culling. The methods for including these are varied.
They may include finding a vector whose score is lower
than the new vector and replacing it, or randomly choos-
ing a new vector to replace. When this step is combined
with selection one typically finds a lower-scoring vector
to replace with the new vector. If one cannot be found,
the new vector is not added to the population. Gener-
ational selection typically consists of a removal of the
lower scoring individuals from the population and re-
placement either with an individual produced by a di-

versification event or by an individual which is a copy
of an existing individual in the population.

Often times, the diversification operator is limited in
the sense that a single application of this operator can-
not transform any given vector into any other given vec-
tor in the search space. As an example diversification
operators derived from single point mutation and any
finite-point crossover operations cannot change all bi-
nary vectors into any other binary vector. In this case,
it is the repeated action of the diversification opera-
tor which allows the vector to be changed completely
from one vector to another vector. In population-based
search algorithms, it is possible for diversification steps
to act additively, extending the capability of the diversi-
fication operator. We call such a pseudo-operator an ex-
tended diversification operator and each sequence
of connected diversifications an extended diversifica-
tion event.

Let us now take the original population of IV elements
and enumerate them. We represent these as {z1,...,zn}.
Then, each element discovered by the extended diversi-
fication operator can be added to this list of elements.
Thus, if M extended diversification events have occurred,
then the sequence of elements is given by {z1,...,zn+rm}.
We may think of the current population as being the
subset of elements from this sequence of elements that
is being considered when the next element is developed.
Thus, we may write the next element as a function of
the current sequence, with an emphasis on the current
population. That is, we may write a recursion relation
as

en+my1 = f (P21, ..., TN M) (1)

where f is the diversification operator. Let us designate
the entire set of numbers a sequence X.

What this means, then, is that the entire evolutionary
algorithm can be likened to a method for generating an
infinite sequence. The sequence of numbers is complex
to analyze, but it is still a deterministic sequence of
numbers.

The main problem is that the sequence is often times a
repeating sequence of vectors containing multiple copies
of many of the elements. Simply because an element has
been removed from the population does not require this
element to never again reappear in the population. Let
us now consider the subsequence of elements of X which
do not appear earlier in the sequence. Let us designate
this sequence of elements as ¥ = {y;}/%" where Maz
represents the final unique discovery in the sequence X.
For finite spaces, Maz is finite; for infinite spaces, Max
may be infinite.!

We can then define different types of algorithms. An
optimization algorithm can be defined as eventually stag-
nant if Max < |I'| where I" is the number of elements

!Note that this sequence is identical to the one used in
the arguments for the No Free Lunch theorems.

in the entire search space. An example of an algorithm
that is eventually stagnant no matter the starting point
is a hillclimbing algorithm, no matter the number of
starting vectors or the position of the starting vectors.

One important question is whether or not evolution-
ary algorithms are eventually stagnant. This is depen-
dant on the evolutionary algorithm’s diversification op-
erator. The following proposition addresses the future
of optimization algorithms whose diversification opera-
tors or extended operators have no limitation in their
reach. Let us define the probability of an extended di-
versification operator D changing vector 71 to vector U3

as pD(U—{,U—ﬁ)

PROPOSITION 1 Suppose that an evolutionary algo-
rithm has an extended diversification operator D such
that given any two vectors o1 and v} in the search space
T, Pp(at,53) > 0. Then the evolutionary algorithm is

not eventually stagnant.

The importance of this proposition comes from its ap-
plication to the optimization, and forms the motivation
for the use of evolutionary algorithms. The following
Corollary illustrates its use in optimization.

COROLLARY 1 An evolutionary algorithm which has
an extended diversification operator d such that given

any two vectors vi and v3 in the search space T, Po(at,) >

0 will always find the space’s optimum.

Corollary 1 provides a clear description of the motiva-
tion for using evolutionary algorithms. It is clear that,
using evolutionary algorithms, the optimum will even-
tually be visited by the algorithm. In order to do this,
it is merely necessary to either construct a diversifica-
tion operator that, in one step, has a p which is nonzero
for all possible mutations, or an extended diversification
operator which does the same.

2.2 Evolutionary Pathways

Once a problem encoding and a fitness function have
been chosen, the fitness of each of the points in the
space is defined. Once the encoding of the diversifi-
cation operator has been defined, the connectivity of
the search space is defined. Therefore, each point has
a well-defined number of positive and negative transi-
tions. That is, a single diversification event applied to
any single point will generate a new vector whose fitness
value is likely to differ from the original one. A reduc-
tion in fitness value is viewed as a negative transition,
while an increase in fitness is a positive transition. We
define a point as a local mazimum (minimum) if the
point has no positive (negative) transitions. Note that
these definitions mirror similar ones given earlier.

The set of all positive transitions defines a structure
in the search space. This structure defines the way a

hillclimbing algorithm might progress. Evolutionary al-
gorithms tend to follow the same paths that hill- climb-
ing algorithms follow if the improvements are relatively
direct and quick. If, however, the improvements re-
quire more time, the evolutionary algorithm will tend
to spread out in many directions, choosing another op-
timization directon from those built into this structure.
Therefore, this structure defines a scaffolding upon which
the evolutionary optimization algorithm can work. More
rigorously, we define a path to be a finite ordered set
of points in which any given point could give rise to
the next point using a single diversification yielding a
positive transition. We define a path bundle between
point a and b to be the set of all paths through state
space which follow positive transitions only, begin at
a, and end at b. Let b be fixed. We define the set
of all trajectories ending at b to be the heap of tra-
jectories leading to b. Let us represent this as H (b).
Finally, suppose that b is a local maximum (minimum).
Then, we call the heap of trajectories leading to b the
mazimal (minimal) heap of trajectories leading
to b. We denote this as Hy, (b). Note that 0Hy, (b),
the boundary of the maxzimal heap of trajecto-
ries leading to b, is a set such that at each point at
least one transition is part of a path that leads to b and
at least one is a transition that is not part of such a
path.

Note that the boundary regions can be located within
a basin of attraction. Since individual basins of attrac-
tion can contain smaller basins of attraction, they can
also contain boundary regions. The regions, we will see,
are locations in which "decisions" are made by the al-
gorithm about which path bundle to climb.

PROPOSITION 2 Suppose that H, (b) N Hy, (b') # 0.
Then at each point in the set Hy, (b)NOH,, (b')UOH,, (b)N
H,, (b')a transition is possible which ezcludes (except
with a backward transition) the local mazimum b or b'.

Because of this, we may designate the set H,, (b) N
0Hp, (V)UOH (b) N Hyy, (b') the decision region for
the sets H,, (b) and H,, (). Note that if there are
only two local maxima, this region will always choose
between the two different maxima.

The decision region is an important part of the space,
as it makes an ascending evolutionary algorithm choose
between the quick transitions that lead it to a single
maxima. As the population progresses through the search
space, it passes through the transition regions, effec-
tively “choosing” between future maxima. Once the
population has made a decision, it becomes increasingly
unlikely to return to the decision region and to make a
new decision.

The search space can be characterized by the num-
ber of disparate starting points and decision regions a
population will pass through as it moves toward a lo-
cal optimum. As each decision region forces the pop-
ulation to choose between at least two local maxima,

the number of potential end points must be at least
m2* where m represents the number of disparate start-
ing populations possible in the space ? and k represents
the number of transition regions that the population is
likely to encounter during the optimization. This forms
a lower limit on the number of times an unbiased evo-
lutionary algorithm would have to be restarted in order
to guarantee that the population visited the optimum.
The value of m is very problem-dependent, and may be
infinite. Moreover, k is highly dependent on the path
bundle taken. These two factors make this type of anal-
ysis rather unreliable in determining a solid lower bound
on the number of attempts one must make.

3. MERGING APPROACHES

In the preceding analysis, we've examined properties
of the system that lead to two competing approaches to
the optimization. In the first approach, a single long
run is attempted. Given enough time, we have seen
that the extended diversification operator will produce
vectors that will move the population from one basin of
attraction to another, meaning that this approach will
eventually succeed.

The second approach is generally to start and re-start
the algorithm so as to traverse as many path bundles as
possible. This approach will generally allow the algo-
rithm to make it to basins of attraction that cannot be
easily attained by simply using a single run. As we have
seen, when the basins of attraction are far apart, then
the single run has an extremely hard time finding its
way between basins of attraction. When the number of
path bundles is small compared to the number of evalu-
ations required to transfer from one basin of attraction
to the next, then it is expected to be quicker to start
the algorithm over in order to improve the performance
rather than to wait for the population to make the de-
sired transition.

A third option that has rarely been utilized is to use
a completely exhaustive algorithm. The reason this has
been overlooked is that it is generally assumed that the
search space is so vast that the use of an exhaustive al-
gorithm would be prohibitive. However, as with an evo-
lutionary algorithm, a well-made exhaustive algorithm
might be exhaustive in design, but still exploit the per-
tinent parts of the search space in the same way the an
evolutionary algorithm or other algorithm might.

What we have seen is that the search space is made
up of path bundles leading to local maxima which are
separated by differing step distances. The evolutionary
algorithm will generally explore the search space along
these path bundles, and traverse the intermediate lo-
cations with a much lower probability. Therefore, our
algorithm must be designed to do the same thing. Our
design must have the property that it can search ex-

*Normally the initial population is distributed across
the search space, making m 1.

haustively through the space, but do so in such a way
that it can apply the same advantages one might find
in an evolutionary algorithm.

Our algorithm is called Directed Pseudoezhaustive Search

(DPS) 3. This algorithm performs a pseudoerhaustive
search, or a search which does not reach the entire space,

but systematically exhaustively searches a subspace, which

might include the entire space. This algorithm is meant
to utilize the strengths of searches such as evolutionary
algorithms, while avoiding the sometimes debilitating
repetition of evolutionary algorithms.

DPS assumes that the space is discrete, as is the set
of possible variations. Moreover, since the set of di-
versifications is discrete and therefore enumerable, it
is assumed that the diversification operator used can
be invoked using a vector and a chosen diversification
ranging from 1 to the maximum mutation. This makes
it possible to keep track of which mutations have been
attempted with a single vector and which have yet to
be attempted.

Our algorithm utilizes two main data structures. The
first data structure is a linked list. The linked list con-
tains the vectors that are currently being examined.
These vectors are ordered according to a decreasing fit-
ness value. The linked list is augmented with a list
pointer which determines which element in the list will
be utilized at a specific moment. The list pointer’s
control strongly influences the search. We return to it
presently.

Each node in the linked list is a record that contains
three pieces of information. The first is the vector. The
second is an integer known as a variation pointer indi-
cating which variation was last attempted on this vec-
tor. The integer is incremented with every mutation
operation on a given vector. The third is the fitness
value for the vector.

The second data structure used is a lexicographically-
ordered binary tree. The binary tree stores the vectors
that have been visited by DPS. This is utilized so as to
avoid revisiting the vectors. The binary tree is source
of greatest memory consumption, and so care must be
taken to avoid storing too many vectors. This is done by
periodically purging the tree. We describe how this is
done without losing the efficacy of the algorithm shortly.

DPS makes use of a reset threshold, which is a floating
point number initially set to 1, and which controls the
likelihood that the algorithm will "spontaneously" reset
the linked list pointer to the head of the list.

DPS starts by creating a predetermined set of binary
vectors. This initial population is then inserted into the
linked list. Once the initial population is inserted in
the linked list, the list pointer is reset to the top of the
listand DPS enters continual cycles.

During each cycle, the vector to which the list pointer
is pointing is varied, calling on the variation indicated by

3This is similar to the algorithm detailed in [3, 4].

its variation pointer. The old vector’s variation pointer
is incremented once the variation occurs. If the old vec-
tor’s variation pointer exceeds the maximum variation
number, it is removed from the linked list. If the new
vector does not exist in the binary tree, it is stored in
the binary tree. If it also has a fitness that exceeds that
of the old vector, it is stored in the linked list with a
newly initialized variation pointer set to 1. The linked
list pointer is reset to the top of the list and the next
cycle begins.

If the new vector does exist in the binary tree or if its
fitness is lower than the old vector’s fitness, then the list
pointer is incremented, and the new vector discarded.
If the list pointer reaches the end of the list, it is reset
to the beginning of the list.

The binary tree will eventually expand to fill all the
memory on a computer, even for moderately sized prob-
lems, without maintenance. As a result, we’ve devel-
oped a procedure for moderating its size. Each time an
element is found in the binary tree (it has been pro-
duced by a mutation earlier), a counter in its node is
incremented. Periodically, the binary tree is updated
by creating a new tree from the old one, while deleting
the old one. The new tree only contains those elements
from the old one that have been visited recently. This
not only removes many of the nodes, but also serves to
include only those that need to be included. Many of
the nodes can only be created by going through other
nodes. If these other nodes kept in the binary tree, the
nodes created using them can be safely removed from
the tree without fear that they will be added again to
the linked list.

4. TEST PROBLEMS

To examine the effectiveness of the DPS, we have se-
lected three standard problems from the literature: the
Griewangk function, the Rastrigin function, and the Ro-
tated Hyper Ellipsoid function. These three functions
are noteworthy for the shape of their search spaces [5].
Observed from a distance, each search space appears to
be have very little structure, but closer inspection re-
veals a large amount of structure in the form of small
bumps covering the surface on two of the functions.
These are significant obstacles that an evolutionary al-
gorithm might have difficulty overcoming. In this situ-
ation, EAs are able to quickly progress to the approx-
imate region of the optimum, then encounter a large
amount of local optima that quickly halt progess. Like
the evolutionary algorithms it is based on, the DPS is
able to quickly reach the same region, and has similar
difficulties in making progress to the local optima.

As these functions are real-valued functions, and DPS
can function only on discrete functions, it is necessary
for us to use a discretization of the search space. There-
fore, all of the vectors considered consist of 4 x N com-
ponents, where N represents the overall dimension, and

Table 1: These figures illustrate the three test functions
taken from the literature. The first two functions have
a great deal of structure which must be overcome, while
the third, the RHE function does not.

Griewangk - Close up

Rastrigin - Close Up

RHE - Close Up

each element is made up of 4 digits running from 0 — 9.
This means that a vector, say, of two elements would
have 8 digits, as

(a1,az,a3,a4,as,ae,a7,ag) — (a1.a2a3a4,a5.a6a7a32 .)
2
In order to make this form more symmetric, we use the
form (a1,a2,as,a4,as,as,a7,as) —
ﬁ% X (al.a2a3a4 — 50, as.aearag — 50) . (3)
We use N values of 5, 10, and 20 for each function. We
chose to run each program for ten million evaluations®.
These simulations use a genetic algorithm and the
DPS described previously in the paper. Both use the
same mutation operator. The GA has a populations of
100 initially randomly assigned individuals. The muta-
tion probability is 0.05. The algorithm utilizes an elitest
mechanism so as to stabilize the population against vari-
ations that tend to reverse progress. We use a propor-
tional generational reproduction operator which chooses
copies of the current generation to populate the next
generation. The mutation operator is designed to mu-
tate single or double digits at a time. We use the DPS
described previously in the paper.
When we run the first set of test problems from the
literature, we obtain the following data. Note that we

4Note that these are evaluations and not iterations. For
a moderately sized population of 100 a mutation prob-
ability of 0.1 and crossover probability of 0.9, with an
estimated 90 changes per iteration, this amounts to the
same as 110,000 iterations.

report the average performance from thirty independent
runs of each model.

Typical runs of both algorithms produce data sets
with the following forms.

Evdluations Eveluations

Figure 1: These figures illustrate the best individuals during
a GA (left) and a DPS (right)run.

We also use a second problem borrowed from [2]. This
problem involves the construction of connectionist net-
works. Each network is a signal processor, taking in
data from the environment, processing it, and produc-
ing data at the output|[7]. We use a genetic algorithm
and a DPS to construct networks that are capable of car-
rying out the binary addition task. The networks con-
sist of nodes and connections with each node processing
the sum of the inputs from other nodes and sending
the processed information along to other nodes. Each
node is synchronized with the other nodes in the sense
that they all update at the same time. The evolution-
ary process consists of adding, deleting, and changing
nodes and connections to the network while facilitating
the resultant competition between the various networks.
DPS, of course, cycles through the various designs re-
sultant from the mutations described above, eventually
generating the desired structure.

O——0], o
0 —— 0]

Figure 2: These figures illustrate the three initial and final

states of a design problem for a 1-bit adder.

When the binary adder design problems are run, we
obtain the following data. Note also that the averaged
values are over thirty runs, and those that do not report
a value have as yet been unable to produce an optimal
design. DPS does not require multiple runs as the algo-
rithm in this case is initialized identically and therefore
the outcome is precisely identical each time it is run

5. DISCUSSION

Optimization algorithms such as evolutionary algo-
rithms behave differently according to the part of the
search space that they are currently exploring. How-
ever, the "magical" part of the evolutionary algorithm
is often thought to be tied up in the randomness of the
mutation and crossover operators. It is this random-
ness, it is often times argued, that makes evolutionary
algorithms capable of doing things that are outside of

Table 2: This table gives the performance of the various algorithms on the test problems and the design problem.

[Function [Dim | Avg. GAEval | Avg. DPS Eval | Avg. GA Fit [Avg. DPS Fit |
Rastrigin 5 2739166+2983373 | 1051485+£1705417 0.007325+0.003759 0.007087+0.004386
10 2648504+2968023 | 1006328+1874768 0.02138940.016817 0.015788+0.013251
20 1722886+1971145 3116824286100 0.05429940.043063 0.075424+0.041994
Griewangk 5 2504+612 11071126077 0.0005004+0.000215 0.000448+0.000236
10 589241180 14401+£2447 0.0010124+0.000325 0.001036+0.000330
20 12998+1965 5890849379 0.001996+0.000472 0.002154+0.000456
RHE 5 1319544361036 117360179634 0.000704+0.000684 0.001178+0.001316
10 1624788+866692 3346373+1656765 0.001205+0.000826 0.002216+0.005317
20 8703510+1503281 9954956+41063 65.115463+82.555588 1082+626

Table 3:

and the GA on the binary adder design problem. Prob-
lems for which >100,000,000 are reported have run for

greater than this amount of evaluations and have yet to

This table reports the performance of DES

produce an optimal design. Note that these data report

the first instance of an optimal individual.

[Adder | EA Eval. | DPS Eval.]
Tbit | 113,437.84 £93,088.298 | 18,441
2-bit >100,000,000 8,403,412
3-bit >100,000,000 31,729,355

more standard optimization algorithms, worthy of an
entirely discrete research center.

Recent theoretical work on the No Free Lunch (NFL)
Theorem and its consequences [8, 9, 10] has begun to
overturn this conceptual thinking. While many peo-
ple in the evolutionary algorithm community still incor-
rectly apply this theorem, its correct interpretation is
a very important design consideration for evolutionary
algorithms. Typical interpretations of the NFL tend to
assign equality among all problems to every optimiza-
tion algorithm. However, this is neither implied nor
explicitly stated by the NFL theorem as it does not
include any information about the repetitive nature of
the evolutionary algorithm. In fact, as all evolution-
ary algorithms exhibiting eventual stagnation are not
addressed by the NFL Theorem, and many evolution-
ary algorithms are, in practice, eventually stagnant, this
analysis does not apply to any of these.

What the NFL theorem does correctly do is to indi-
cate that evolutionary algorithms capable of being im-
plemented on a computational device and not eventually
stagnant are, in fact, not random at all. Their apparent
randomness is a result of a complex set of equations that
exhibit many of the properties of randomness, but are
not really random. Nonetheless, these algorithms have
an impressive ability to yield the global optimum of a
search space. As a result, it must be concluded that
these algorithms are capable of yielding good results
because of how they process the search space. Their
randomness would seem to be irrelevent.

The search space processing capability of the algo-
rithm can be clarified by examining the search space

structure imposed by the diversification operators (mu-
tation and crossover). This structure defines the dis-
tance in diversification steps between different vectors,
the probability of each of these steps, and indirectly
defines the expected amount of time that will pass be-
tween the various transitions. Therefore, an algorithm
that processes the search space in the same way as evolu-
tionary algorithms should be able to perform similarly,
even if it is not evolutionary in nature.

In our simulations, we have taken care to generate al-
gorithms that are fashioned from the same genetic op-
erators used in our evolutionary algorithms. Because
of the nature of crossover and the difficulty in imple-
menting it in an exhaustive way, we have bypassed the
use of crossover in our evolutionary algorithms. How-
ever, despite the limited capability of our evolutionary
algorithms, both they and the versions of DPS formed
from each EA instantiation performed quite well on the
problems they were applied to.

As expected, limitation of the repetition inherant in
an EA and simultaneous path exploration produced im-
provements in much of the performance of the EAs. The
DPS applied to the Griewangk function appears to out-
perform the evolutionary algorithm. For the Rastrigan
function, the DPS once again appears to outperform the
evolutionary algorithm. The Rotated Hyper Ellipsoid
function’s results, however, show that the evolutionary
algorithm’s performance is superior to the DPS’s per-
formance. However, an examination of the search space,
given in Table 1, demonstrates that the search space is
incredibly smooth, non-deceptive, and has a single min-
imum. In such a space, the machinery of DPS would
seem to be a hinderance. However, a hillclimbing algo-
rithm would also be expected to do just as well as or
better than the GA in this case.

‘We have also applied EAs to the design problem taken
from [2]. This particular problem is significantly differ-
ent from the previous ones in that it is a design problem
which builds structures incrementally. The construc-
tion task is very heavily affected by the path that is
taken; the wrong path cannot lead to correct construc-
tion without complete deconstruction of the current de-
sign. An EA will never succeed in this kind of design
if the deconstruction required has too great a required
backstep in fitness.

Indeed, we have found in these runs that the EA was
capable of finding the correct design in these searches for
the smaller design problems. However, it utterly failed
in hundreds of attempts to design a three bit adder, de-
spite the fact that the DPS algorithm based on this EA
was able to design it. This reinforces our assertion that
the path and distance between search space components
is perhaps the most important of considerations. Algo-
rithms not able to reconnect search space components
that are too far away to be realistically reached cannot
succeed.

Knowing this is particularly important for a problem
like this one because it would seem to by archetypal
for the kind of use of evolutionary algorithms that is
most exciting. The eventual design of complex struc-
tures and machines using search algorithms to sample
the design space is compelling. However, in such a prob-
lem domain, these considerations are paramount. It is
important that they become part of the discussion.

6. SUMMARY AND CONCLUDING RE-
MARKS

In this paper, we've explored some of the theoretical
issues concerning evolutionary algorithms. The theoret-
ical issues are interesting in the sense that they validate
some of the expected or oft observed but heretofore un-
explained behaviors of EAs. The ability of the genetic
algorithm, or for that matter any EA with a diversi-
fication operator that isn’t eventually stagnant, to find
the global optimum has never before (to our knowledge)
been demonstrated theoretically. This serves to solid-
ify our understanding of the scope and design of the
EA, and is related to the design of both the variational
operators and the selection operators.

Of prime importance in the design of any search al-
gorithm is the representation of the various vectors and
operators. QOur theoretical results have demonstrated
that, quite suprisingly, random representations of these
operators can be very effective in generating improve-
ments in performance. This lends credence to several
existing studies that have demonstrated this fact, but
have been unable to explain it theoretically. Moreover,
this is similar to the use of uniform crossover, which
has various advantages over single point and dual point
Crossover.

Moreover, our examination of the search space and
characterization of it as a set of paths has allowed us
to understand how one might utilize an exhaustive or
pseudoexhaustive algorithm which seems to behave sim-
ilarly to the EA. Our analysis has indicated that while
the EA is an interesting paradigm that seems to per-
form well with a modicum of machinery and using ran-
dom operators, the part of the EA which makes it use-
ful and important is its ability to process information
gleaned during the search and use it to direct its later
actions. When this information processing capability

was utilized by our pseudoexhaustive algorithm, the al-
gorithm was able to replicate the performance of the
earlier optimized memetic algorithms, though it wasn’t
itself optimized.

This bodes well for exhaustive and pseudoexhaustive
algorithms. The subset of the space that they can ex-
plore can be significant enough to rival the performance
of EAs, using the strengths of EAs.

7. REFERENCES

[1] E. Cantu-Paz and D. Goldberg. Are Multiple Runs
of Genetic Algorithms Better than One? E. Cantu
Paz et al. (eds.). Proceedings of Gecco 2003
Conference. Chicago, IL., 2003.

S. Kazadi, Y. Qi, I. Park, N. Huang, P. Hwu, B.

Kwan, W. Lue, and H. Li. Insufficiency of

Piecewise Evolution. Proceedings of the Third

NASA /DoD Workshop on Evolvable

Hardware, Long Beach, CA, 2001.

[3] S. Kazadi, D. Johnson, J. Melendez, and B. Goo.
Ezxhaustive Directed Search. Proceedings of the
Genetic and Evolutionary Computation
Conference, 2004, Seattle, WA, USA, 2004.

[4] S. Kazadi, M. Lee, and L. Lee A Case for
Ezhaustive Optimization. Proceedings of Gecco
2005 Conference, Late Breaking Papers,
Washington D.C., USA, June 2005.

[5] B. Manderick and M. Weger. The Genetic
Algorithm and the Structure of the Fitness
Landscape. R. Belew and L. Booker, (eds),
Proceedings of the Fourth International
Conference on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann, 1991.

[6] J. Schaffer and L. Eshelman. Spurious Correlations
and Premature Convergence in Genetic Algorithms.
G. Rawlins (ed). Foundations of Genetic
Algorithms, vol. 1. San Mateo, CA: Morgan
Kaufmann, 1991.

[7] A. Thompson and C. Wasshuber. Design of Single
Electron Systems through Artificial Evolution. Int.
J. Circuit Theory and Applications, 109-116,
2000.

[8] D. Wolpert and W. Macready. No Free Lunch
Theorms for Search. Technical Report,
SFI-TR-05-010, available at www.santafe.edu,
1995.

[9] D. Wolpert and W. Macready. No Free Lunch
Theorms for Optimization. IEEE Trans.
Evolutionary Computation 1(1): 67-82, 1997.

[2

—_—

[10] D. Wolpert and W. Macready. Coevolutionary Free Lunches.

IEEE Trans. Evolutionary Computation 9(6): 721-
735, 2005.

