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Overview

In theory, there is no difference between
theory and practice. In practice, there is.
-Jan L.A. van de Snepscheut

* Evolutionary Computing and the business model

» Key Technologies

— Analytic Neural Networks + Support Vector Machines
+ Genetic Programming + Particle Swarms + ...

* Implementation Guidelines

* Integrate & Conquer

+ Key Application Areas

* Open Issues & Research areas
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Data Modeling
At the Intersection of Opportunity & Need

Emerging Industrial
Concepts Need

New ways of looking at the

world change what is
Industrial research needs to
recognize the evolving potential and

possible.
Enabling gL Ving poten
Technologies feasibility of new ideas within the

context of corporate needs.
Technology & Price-Performance shifts
enable implementing new concepts and
implementing old concepts better.

The economic context
prioritizes the
possibilities.
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Motivation

* Industry is great at
collecting data ... and
then performing

;‘ /\ records retention
' « Extracting insight
from multivariate data
is hard

* Time and money is
being wasted

“We are drowning in information
and starving for knowledge” -
R.D. Roger
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Academic vs. industrial data analysis
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BAND -g,"‘
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Transfer data into knowledge Transfer data into value
w
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Special Features of Industrial Data Analysis

Operators intervention Curse of closed loops

Operators manually modify the process

Controlier o Syuem e

The majority of process variables are in closed loops
and depend on controller adjustments

Multiple time scales

| Real-time pressure

i
1
1)
i
E

Time scales vary from milliseconds to months
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Most of models
operate in real time

Models need to be developed &
updated rapidly

Kordon, Smits & Kotanchek

pentium

R OCESSOR

Intelligent Systems in Industrial Data Analysis:
Lessons From the Past

The Expert Systems campaign (late 80s)
“We’ll put engineers in the box”

« static rule-based models not linked to
numerical world

* the politics of knowledge acquisition

« the efforts of knowledge acquisition

The Neural Networks campaign (early 90s)

“We’ll turn data into gold”

= //@
| e N

& M «black-box models with inefficient
=S A structure

S
PE «fragile models and model validation
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* maintenance nightmare
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Industrial Data Modeling Issues

B High dimensionality of the data

Highly correlated data with time delays

Qutlier detection

Multiple optima

Intensive number crunching needed

Too much or too little data
“The most exciting phrase to hear in science, the one that heralds new discoveries, is
not ‘Eurekal’ (I found it!) but ‘That's funny ...”” — Isaac Asimov (1920 - 1992)
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Industrial data analysis components

Linear &
Multivariate
Statistics

7

The role of evolutionary
computing (symbolic
regression) is to ...
—Facilitate physical/mechanism
insight and understanding
—Summarize data behavior
—ldentify data transforms and
metasensors
— Perform variable selection
—Enable response surface
exploration and optimization
—Visualize behavior in the form
of a symbolic expression
The overall goal is to achieve
speed, accuracy & efficiency.
Symbolic regression is part of
an integrated methodology.

Visualization

Problem
&

o

Data

¥
Components

Definition

Support
Vector
Machines
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Evolutionary Computing
Theory

Variants:
— Genetic Algorithms (GA)
— Evolutionary Strategies (ES)
— Evolutionary Programming (EP)
— Genetic Programming (GP)
— Particle Swarm Optimization (PSO)
— Gene Expression Programming (GEP)
- et
Genetic Programming
— Genome (genetic code) evolves
— Phenotype (realization) judged for fitness
— Goal is to evolve programs which solve
problems
— The search space is infinite!
— Symbolic regression is one application of
genetic programming
Symbolic Regression

Fitness-Based
Propagation

Improved
Population

I

Population

Diversity
Introduction

data
— NOT parameter fitting — discovery of both
structure and parameters
It iS this Simple! — The sea.rch space i§ infinite! )
In practice, symbolic regression is part of an
integrated methodology
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GECCO 2006

— Goal is to identify expressions which summarize

Competing/Complementary
Technologies

* Linear Models » Support Vector Machines
— Linear in coefficients, not — Useful for data compression to
necessarily linear in model match information content
— Often "good enough” and — Computationally demanding

simple . . .
— Well developed criteria and - Unlqu_e nonlmea_r_outller
detection capability

foundations in linear statistical
analysis » Fuzzy Rules/Recursive

— Typically easy and fast to Partitioning
develop (unless subtleties are — Human interpretability — if
involved) ! p Y
simple

* Neural networks

— Often good performance but
lots of “trust me”

— A good reference for nonlinear
modeling potential

— Can handle categorical data

Kordon, Smits & Kotanchek
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Why industry needs Evolutionary Computing?

No a priori modeling assumptions

ive-free opi

Few design parameters

Natural selection of most important inputs

Why industry
needs EC?

Parsimonious analytical functions as a final result

Facilitates human understanding of derived models

_]'lﬁcicl:r modeling approach in terms of human time investment

Kordon, Smits & Kotanchek
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Economic benefits from Evolutionary Computing

Genatic Algorithma

Resolve complex optiunization problems

Particls Swarm Optimization

__Ant Colany Optimization

Suggestions for proftable dirsctions for RAD

_ Physical mterpretation & msight (Symbolic regression)  Accalurate RED

Highar cracibility In comparison to black-boxes

Reduce model development cost (significantly reduced development time relative to altematives)
Benefits from : = Y F -
Minimal mods! implementation ezt (ne need for specialized software]
Reduced maintenance cost (lass frauent re-training)
__ Reduce cost of industrial exy 15 (minimizes the number of additional exy 15)
Kordon, Smits & Kotanchek
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Application areas with impact

Understand Variable
Relationships System Modeling

Research )
Acceleration Emulators

Cues to Physical
Mechanisms

Coarse Optimization

- Insight into System
Explore Multivariate
Relationships

Meaningful
Combinations

Industrial
Applications

Variable
Transforms

Infer System States Inferential

Sensors

Online Monitoring
& Alarm

Identify Variables
which drive system

Focus Data G i Nonlinea
Focus Data Gathering D;')"E"'“" Variable

Sensitivity

Model Discrimination DOE
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Convert into less
nonlinear problem

Benefits of integrating Evolutionary Computing
with other approaches
_ Data with high information content

Increased quality of generated models

Model complexity measure

Condensed data sets

Reduced model development time and cost
Sl Fastermodelseecton

Final users
First-principle modelers
Broader support from different stakeholders

X Statistical community

Machine leaming community

Kordon, Smits & Kotanchek
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Implementation guidelines

* Requirements for successful empirical
modeling

» Key issues to be overcome

* Implementation strategy
* Implementation tools




Requirements for successful data-driven modeling

Objective function:
Minimizing modeling cost and maximizing data analysis efficiency
under broad range of operating conditions

Robustness

ability to withstand minor
changes in targeted system

Self-Assessment ability to estimate

quality of predictions

Credibility

the model matches

Extrapolations
the observed behavior

ability to operate
outside training range

The total cost-of-ownership
(development + operation +
maintenance) is proper

Interpretability humans are able to agree

that the model is "reasonable”

Cost-Effective

Kordon, Smits & Kotanchek
GECCO 2006 17

Implementation Strategy
Opportunities
Technologies
Technologies
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Implementation
Methodology

Understanding lags application

(Good judgment comes from experience;
experience comes from bad judgment)
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Key issues to overcome

Data pre-processing and condensation

Model selection

User-friendly implementation tools

Marketing of EC to different
modeling communities

Resistance to implement empirical models
(inherited from black-box models)

Seamless integration into existing
maintenance and support infrastructure

Critical mass of model
developers familiar with EC

“Good enough is the worst enemy of better”

Kordon, Smits & Kotanchek
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Corporate Research Objectives

Do novel things ...

which have value & impact ...

in a timely fashion ...

for an affordable cost

Kordon, Smits & Kotanchek
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Characteristics of a
“Good” Analysis System

developed ONCE scalable

by gurus

__Portability _ -

™ _ 05 Independent

urus five with .4] arithms
eir algorithms _."_} mil&lmgl wlsluln "
code devalopmon
gurus mainlain " Low
algoriihms (not code) | Development [ complete baseling
Cost J i
dala separale 5

slandards-Orienled

frem algorihms .
— Data What Is | \
use dalabases Goodt? " I compatible with
(nol flatiles) i = . olher products
Quiu can lap power change paints are
Y .I._EIW - compaimentallzed
production useris Multiple e -
shiclded from . Interfaces _ _ Cost A i o OS5 and
complexily 3 __,-__7’ \;\‘ hardweare "upgrades"
same underying .,-"’ ."'\ algorithms, dala, hardwans
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Implementation tools

Mathematica (Dow & Evolved Analytics developed)
— Symbolic regression package
— AutoAnalysisTools
— Analytic neural networks
— Particle Swarm Optimization (PSO)
— Group Methods of Data Handling (GMDH)
MATLAB (Dow developed)
Genetic Algorithms (GA)
— Genetic Programmimg (GP)
— PSO (single objective and multi-objective)
— Analytic neural networks
— Support vector machines
Tools for model deployment

Using a commercial framework
allows us to bring new concepts
and technologies to bear while

— Delphi e
_ WebMathematica mitigating the'development and
— Excel long-term maintenance costs of

— Process control systems exploiting those technologies.

Kordon, Smits & Kotanchek
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Exploitation/Implementation Sequence of
Computational Intelligence Approaches in Dow
Chemical

Integrated Pareto GP
methodology
\
1995 2000 2005

Analytic NN

Kordon, Smits & Kotanchek
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Integrate & Conquer

* Integrated methodology for
successful EC implementation

» Related approaches
* A case study

Kordon, Smits & Kotanchek




Integrated Methodology for Empirical Models Development

» Hybrid approach integrating multiple
technologies exploits the strengths of

Original

50 variables X 1000 data
points

Reduced spreadsheet
5 variables X 1000 data
points

Reduced spreadsheet
5 variables X 120 data

Full data set

Nonlinear sensitivity analysis

Time delay influence

Analytical Neural Networks

Outliers detection
Condensed data set generatior

Support Vector Machines

each
* Advantages:

Fast development (days)
Robust performance (compact
models)

Direct implementation in any
Distributed Control System (no
need for specialized software)
Very low capital cost (only if
hardware for data collection is
unavailable)

Low average cost of ownership

(reduced development and
maintenance cost)

— Process engineers like it (preferable
to black-box models)

Final model
Analytical function

Selected on Pareto|
front

Kordon, Smits & Kotanchek
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Structural Risk Minimization

Guaranteed
Risk
Generalization
ability

. Empirical

hl i h Risk h

n

GECCO 2006 | 26

VC-dimension

* In general, VC-dimension does not
coincide with the number of parameters
(can be larger or smaller)

» VC-dimension of the set of functions is
responsible for the generalization ability
of learning machines

* Opens remarkable opportunities to
overcome the “curse of dimensionality”
(large number of parameters, but low VC-
dimension)

Kordon, Smits & Kotanchek
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Two hidden nodes

w1=-1 w2=1b=0.5t=5 w1=1w2=1b=0.5 t=5

Any complex surface can be approximated
by combining simple surfaces
corresponding to a single hidden node

Combination:

Kordon, Smits & Kotanchek
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Structural difference between classical

and analytic neural networks Analytic neural networks have a fixed Capacity
Classical NN Analytical NN

An additional link between inputs
Xi and the output Y is introduced

are fixed, there is an analytical
solution for the weights bi and ci

by
FlN=0XZ]*
br

If input-to-hidden layer weights aij ‘

Bias(1) Bias(1)

7, =Fy(@g +a, X, +a, X, +a,X,) Z, =Fy (g +a, X, +a, X, +a,X,) 4 =Rl +a X, +ag%s + 8, X)

Zy = F,(ay + @y X, + X, + a3, X;)
i S 2= R b X, X Xy = Fan X, 0K, aXy) e }
Hidden nodes calculation Zy =F(ay +a, X, +a, X, +a, X,)
Zy =Fy(ay +ay X, +ap X, + a3, X;) Z, =F,(ay +ay, X, +a, X, +a,X,) 2= F g +ay X, +ag X, tanXy)
1= Fag+a, X +ad; +a X,
Z,=F(ay +a, X +apX, +a,X;)

Z,=F(a,+a,X +a,X,+a,X;) Y =F (b, +bZ, +b,7, +bZ, +bZ + ¢, X, + ¢, X, + ¢, X;)
Y =F,(b,+bZ +b,Z, +bZ,+bZ,) Y =F,(by +bZ, +b,Z, +bZ, +b,Z, +¢, X, +¢, X, +¢,X,)

Standard linear regression problem
X — inputs data matrix (known)
Z — hidden layer values vector (known)

Unique least-squares solutions for bi and ci

Kordon, Smits & Kotanchek
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Input-to-hidden layer initialization

Analytic Neural Network Benefits

F=Sige.1)

L=

Hidden nodes have to be
within the active region
of the nonlinear function

* Robust algorithm
— No tunable parameters
— One global optimum
number of inputs to the ® Very fast,
Jk hidden node — possible to use a whole range of cross-validation principles
o N

The “temperature”
depends also on the

defined by the steepness of the

The width of the active zone is ‘
function or the“temperature”

from statistics
— No longer an NP-complete problem
» Strong theoretical foundation

JL Jk A Jk — statistical learning theory

— Direct measure for the model capacity (VC-dimension)

Empirical expression for a
normalized “temperature” of a
sigmoid function

log(2 + ﬁ ) Weights from the input-to-hidden layer are
Tn= T Sampled from a normal distribution
ni—0.5
Kordon, Smits & Kotanchek
GECCO 2006
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Stacked Analytic Neural Nets (SANN)

* Fast development

» Diverse subnet consensus
indicator of model output
quality

» Allows explicit calculations of
input/output sensitivity

* Can handle time-delayed
inputs by convolution
functions

* Gives more reliable
estimates based on multiple
models statistics

il
1 OO
©

HeOO6

Internally developed in Dow Chemical

Kordon, Smits & Kotanchek
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Model Mismatch Indicator - 2D

Models tend to agree where there is ‘

data points and tend to disagree
where there is no data.

Kordon, Smits & Kotanchek
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Model Mismatch Indicator - 2D

2N
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1 i
fosp |
8 "
+ 05,
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Reduction of the number of input
dimensions using Neural Networks

VXX,

NN, (X - . e
#() =w+Y wia;(1-a;) 4w, where a; =Sig(> wj X/, t})
ey h=l i=0

ACM(X) _iw ONN (X)
ox, oA

Kordon, Smits & Kotanchek
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An example of stacked analytic NN application -
a model for catalyst efficiency

Sequence of inputs elimination C/212A may 30NN

Sensitivity analysis of
various process
parameters on

catalyst efficiency

it

10 s 20
Number of eliminated inputs

NN model for catalyst efficiency on C/Y212A 05/07 2000 (inputs 3, 5.6,15.2q

NN model performance with
model disagreement indicator

Model disagreement indicator

100f — - — — L1
w&w‘«g\_ ,}l\g.\_lql/ﬂl\)vl,l Aj M L .WJ""“\LW

o 700 200 300 400 500 600 700 800 900
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Explicit Complexity Control in Support Vector Machines

(a) L-Curve (b} Model with C=5
15
8 C=7220809
€ 1 - &
E . .,
P 05 9
= . *
=] *” M
Gl =5 04 . 3
T2
05
-10 -5
In(Ertar norm) e i
(c) Model with C=254 (d) Model with C=7220808
15 15
1 " 1 A
0s g 0s
o -l + 0 =y J
05 05
05 1 0 05 1
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Integrated Methodology for Empirical Models Development

» Hybrid approach integrating multiple

Original

Reduced

Reduced

50 variables X 1000 data

5 variables X 1000 data
points

S variables X 120 data
points

Final model
Analytical function

‘ technologies exploits the strengths of

1l data set

points each
* Advantages:
Noniesr sensiivity s — Fast development (days)
— Robust performance (compact
Analytical Neural_Networks models)

— Direct implementation in any
Distributed Control System (no
need for specialized software)

— Very low capital cost (only if
hardware for data collection is
unavailable)

— Low average cost of ownership
(reduced development and
maintenance cost)

e — Process engineers like it (preferable

to black-box models)

spreadsheet

Outliers detection

Condensed data set generation

Support Vector Machines

spreadsheet

Symbol

Functio

Genetic Programming

Selected on Pareto]
front

Kordon, Smits & Kotanchek
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:
Controlled Data Compression
£=0.0 (100% sv) &=0.05 (48% sv)
1.5 1.5
1 * -
0.5
0 -
\
. -0.5
0 0.5 1 0 0.5 1
e =0.1 (22% sv) &=0.15 (12% sv)
1.5 1.5
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x=(0.0)

A

S R N

=(0.25.0)

A

B N

%=(0.5,0)
LY
-
¥=(0.75,0)
(Y

‘o

={1.0)

Local Kernel

#=(0,0.25) ¥=(0,0.5)
A

*=(0.35.0.25) =0.2505)

¥=(0.5.025) x=(0.5.05)
s

(075025  wm(D.75,05)
a A
¥=(1,0.25) ={1.0.5)

x={0.0.75) ®=(0,1)
A |
%=(0.25.0.75) x={0.25.1)
A | .
(05,075 ¥=(0.5.1)
A | ]
|
0=(0.75.0.75) *¥=(0.75,1)
a . A
x=(1.075) ={1,1)

- v o e ¢

REBF Kemal with o=0.2
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Interpolation/Extrapolation of Local Kernel

* Small widths of kernel

interpolate better ~ o
« Outside input range, no £ g BRI

local information is s

available and the kernel

levels off — no

extrapolation - Eai‘agf
* No single choice of i e

width achieves both °
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Global Kernel
x=(0,0) x={0,0.25) %={0,0.5) w=(0,0.75) x=(0,1)
e & & @¢
;::d'zs.o. *=(0.25,0.25) =(0.25.05) *=(0.25.0.75) -;ed 25.1)
| -~ .
- R v . <
¥=(0.5,0) x={0.50.25) ¥=(0.5,05) ¥={0.5,0.75) ¥=(051)
B -~ !
X=0.75.0) ¥=10.75,0.25) ¥=(075,05) ¥=(0.75.0.75) x={075.1)
- - g - | .
w=(1.0) ¥=(1,0.25) *={1.0.5) w=(1,0.75) ¥=(1.1)
e . . — | A
Potynomial Kernel with degree=2
GECCO 2006 Kordon, Smits & Kotanchek
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Interpolation/Extrapolation of Global Kernel

» Lower order polynomials
extrapolate better

* High order polynomials _:s
needed to interpolate £ -

» No single choice of ordernz
achieves both ) ’ .

Outputy

Kordon, Smits & Kotanchek
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Mix of Local and Global Kernel , T
Interpolation/Extrapolation with Mixed kernels
x={0.0) ¥=(0.0.25) #=(0,0.5) ¥=(0,0.75) x=(0.1)
x=(025.0) %=(0.35,0.25) %=(0.25,0.5) %=(0.35,0.75) *=(125.1)
| [ T | -~ A e * Mixture of first degree
- o v . W polynomial and RBF with
x=(0.8.0) %%(0.5,0.25) x={05.0.5) *=i0.5,0.78) x=i0.5,1) ¢=0.01
| = | . | 4o * RBF contribution makes
Do o o . (W interpolation possible
x=0.75.0) x=(0.75,0.25) x=(0.75.0.5) x=(0.75,0.75) ={0.75.1) . ;1
- o g * Polynomial makes i
’ o v [ | extrapolation possible s
x=(1.0) *=(10.25) 08 0TS = . Slngle choice of Ezéz
-— — L parameters achieves both ;-
Mixed Kemnel with degrees1, os0.2, p=0.7
Industrial Example: Polynomial Kernel Industrial Example: RBF Kernel
SVM's using REF (Test Data)
o svlms wsing Polynomial (‘r‘m Dat) . T
Degree 3
. 7D=E'EEZ
E 7 begraa 4




Industrial Example: Mixed Kernel

e-dnsensitiva SVA (Laarnin g Set)

B - - - - - - -
B
=]
g
) o1 o0z o0 04 0 o7 08  0g 1
£ = 5.000)
-insensitive SYM Teat St}
E :
|
0 I
. |
3® ! ]
& w ]
Ew ! 1
o0 I
! .
1 i E \—a‘/ h
I L I |‘
24 -0z [ 0z 04 16
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Integrated Methodology for Empirical Models Development

» Hybrid approach integrating multiple
technologies exploits the strengths of
each

* Advantages:

Nonlinear sensiy nalsi — Fast development (days)

o - — Robust performance (compact

Analytical Neural Networks models)

— Direct implementation in any
Distributed Control System (no
need for specialized software)

— Very low capital cost (only if

hardware for data collection is
unavailable)

— Low average cost of ownership
(reduced development and
maintenance cost)

i — Process engineers like it (preferable

to black-box models)

Original
50 variables X 1000 data
points

1l data set

Reduced spreadsheet
5 variables X 1000 data
points

Outliers detection
Condensed data set gene

Support Vector_Machines

Reduced spreadsheet
S variables X 120 data
points

Symbol

Functic

Final model
Analytical function

Genetic Programming

Selected on Pareto]
front

Kordon, Smits & Kotanchek
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Genome Tree Plots » Based on artificial evolution of
Parent D millions of potential nonlinear
x - arenty —-J"— functions => survival of the fittest
| 7 A * Many possible solutions with
-0 (%) A A
) . _ D different levels of complexity
x , * The final result is an explicit
-0 @ |—$— (nonlinear) function
Children y * * Can have better generalization

H Example of Crossover Operation I

Phenotypes (Expressions)

Parents 2%
—(-0.787701)% + x 7
=X
Children 2% b
- (-0.78770L)Y " 4+ x =
—H4Y

Kordon, Smits & Kotanchek
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capabilities than neural nets
* Low implementation requirements
« Issues include ...
* Time delays
« Sensitivity analysis of large data
sets
« Relatively slow development
(hours of computation time)

GECCO 2006

Steps Based on Genetic Programming

Representative data collection

Data preprocessing and classification

Sensitivity analysis of all inputs
Convolution parameters” estimation
(Outlier detection and data set condensation|

= ne.
Pt o et b AT R 38800

GP function generation

o
Analytical function selection/verification m
_—
3
On-line implementation .
1
¥ m
Model maintenance
- “m
] . o

Kordon, Smits & Kotanchek
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Classic Problems with
Genetic Programming

Relatively Slow Discovery

— Computational demands are intense
Selection of “Quality” Solutions

— Trade-off of Complexity vs. Performance
Good-but-not-Great Solutions

— Other nonlinear techniques (e.g., neural nets)
outperform in raw performance

Bloat

— Parsimony control requires user intervention and is
problem dependent

Kordon, Smits & Kotanchek

The Pareto Front

Note that much evolutionary effort is spent exploring
high complexity & high fitness regions

* Identifies trade-off
surface between
competing objectives

— e.g., performance vs.
complexity

» Pareto front solutions are
the best “bang-for-the-
buck”

* Introns are punished
automatically

* How can we exploit?

Kordon, Smits & Kotanchek
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Pareto Performance

» Characterizing Pareto
Performance

— Dominance

— Domination

— Layer

— Combinations ...

© ©
° o
) o Computational Issues
© B — Brute force is M N2

Dominance Domination

— Cando M N log,,.,(N) or M N
log,.,(N) if clever
Layers * M=#of objectives
« N = population size
— Computation demands need
to be considered in algorithm
design

Kordon, Smits & Kotanchek

Genome Complexity

b Je &b db -
; $ 3

1 . n r o .

Complexity = 36 1 .
 — =27 = Complexity = 17
"

What is complexity?
— # of nodes?
— Tree depth?
— Included functions?
— Number of variables?
— Combinations?
Chosen function is sum of sum
of node counts
— Provides more resolution at
low end of complexity than
simply using node count
— Rewards fewer layers
Real goal is to characterize the
(relative) “smoothness” of the
evolved function

L Kordon, Smits & Kotanchek
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ParetoGP Algorithm ClassicGP Algorithm

* Maintain archive based

» ClassicGP can be Pareto-
upon Pareto layers Selcton scheme i used
* Each child results from S . Most Pareto selection
one archive and one — schemes are slow
population parent B R + Finding the Pareto front can
+ Cascades ... = ‘“ =, | a0 [ = be relatively efficient
— Pareto archive maintained ~ $areto Elite Oeral’_ethI
— Population wiped out (fresh oo e ourney may be viable

genes!)

selection schemes
* Independent runs with

— Pareto tourney: select Pareto

fronts from random
independent archives for subpopulations until desired
diversity number of models is reached
. . — Pareto elite: select randomly
» This approach is from elite (defined using
intrinsically Pareto-aware Pareto layers)
GECCO 2006 Kordon, Smits & Kotanchek 57 GECCO 2006 Kordon, Smits & Kotanchek

Symbolic Regression via GP A Toy Problem for lllustration

N *  We sampled a function of two
uances... —~ ) H
~— variables at 100 random points
GenomeTreePlot[{parents. choice of operators H th 0 4 p
NutateSubtree[parents. — functional building blocks in e range [ ) ]
HarimumTreeDepth — 3, parsimony pressure

Harimumarity — 2. — preference for simpler/smaller solutions

* The data matrix has three
Data¥ariables — {1. ¥}]1. diversity operators ™~

| random spurious variables in
Crossover[parents]}]: — modify fit solutions and the relative presence of each mechanism | the range [0,4]
fitness-based breeding rights ! . .
— proportional, ranking, elitist, tournament, random, etc. l" * N0t|Ce that the ent|re
7 833 evolution environment \
— population size, number of generations, population interaction.

parameter space is not
covered

fitness criteria, etc. ' lII
genetic modifications .-
} 1 1 — coefficient & structure optimization |||(
automatically defined functions s
— dynamically determined building blocks
¥ 3 ke —;l metasensor definitions

— dynamically determined transforms and variable combinations

(_—I—].1bl2 Rt

Introns are either overly 1.2+ (-2.5+a)?
complex or non-functional

Kordon, Smits & Kotanchek
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Commlation Matriz

: n | Getting the Zen

., a of the Data

‘: + In this simple example, we
| could probably guess that

= i only two variables were

important for model building

» Correlated inputs can be a
problem for some other
modeling techniques

* However, lack of correlation
to the response does not
necessarily correspond to
lack of importance

Context-free analysis leads to confidently wrong answers!

Kordon, Smits & Kotanchek
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Moriet Oler + § =5 BY = 0984201

I

The Pareto Front: Handling
Competing Objectives

No more things should be presumed to exist than are absolutely +  Identifies trade-off surface between
necessary — W. Occam [1280-1349] competing objectives
— e.g., performance vs. complexity
PGPTT @)wSarity » Pareto front solutions are the best
“bang-for-the-buck”
! * Accuracy and simplicity are
a3 automatically rewarded
« Pareto Front Benefits
— Avoids need for a priori combination
of objectives into a single metric
— The shape of the front gives us
insight into the problem
— Identifies multiple candidate
solutions simultaneously

Complexity

These are the error vs. complexity results of multiple
independent symbolic regressions. Note that there is
variability from run to run due to the random nature
of the evolutionary process.

Kordon, Smits & Kotanchek
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Misted Cantes -«

Linear
Models

&= 0= e

Miisdel rder -+ 3 == 17 = 0ATETEE

* Here we look at 2nd through
5th order models of the two
driving variables (a 3rd order
model with all five variables
has 56 terms)

* Notice the edges -- these
models would likely not
extrapolate well!

* However, not much time was
required to achieve a poor
model!

Kordon, Smits & Kotanchek
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mantel complenity vars  ahs coer n

1 " 1 aE 0.4TELEG O 4BLTE
] LT s 0.72755 0 629766 E | d M d |
3 0. 293716" 1 31 0805609 0 E4005 Vo Ve 0 e S
“ 0. 3082140 4 17 * o aisseY 0 ET008

B —_

73m "
® 0- 3423 i 0.050061 0. THT640 «  Arun tends to fully explore a foundation
6 [ e 2% *1 g aysae structure
= a2 1 " . -
. [P . Al g sassre o sosene «  Independent evolutions will result in different
= =5+ 2a) = aZ = _ (but still fit) structures
o] . . N
8 1 :é 0.550524 0.50M35 . Cascading results from independent evolutions
. . 1 ogssass 0 ases B seems to be beneficial
3 M 4 L IS . N

=2 5 . Note that we are not strictly restricted to the
] A0 33 0.97T 0 Mests 2 Pareto front in selecting models -- many

a1 — - = models may be “good enough” and have the
i B ap IS DEEE o benefit of being structurally different and
H 5z 1 0w oomsss S diverse

a1 s " 3
o 54 i ooseta 0osesn 2

(oI "

4 62 * g gemoss 0 970350

a2
he 5 13 ooseseoe 097976
e 72 a1 09007 0 9ER05L
7 k] ooasze 0osses
i 8. 18506 « | ™ a3 0osznl 0 seasse
i (B (8 2™ L] 1 ooesesz 0.veemy
o (B (D= Zagd™ o Zuy gt % 0 995065 0PI

az an
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similar performance but diverse structure

Kordon, Smits & Kotanchek
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Pareto Front
Models

[
Complexity

Kordon, Smits & Kotanchek
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Symbolic Regression:
Summary Benefits

Compact Nonlinear Models
— Compact empirical models can be suitable for
online implementation
— Model(s) can be used as an emulator for coarse
system optimization
Driving Variable Selection & Identification
— Appropriate models may be developed from

Diverse Model Ensembles
— The independent evolutions will produce
independent models. Independent (but
comparable) models may be stacked into ensembles
whose divergence in prediction may be an indicator
of extrapolation & model trustworthiness. This is
an issue in high dimensional parameter spaces.

Human Insight

poorly structured data sets (too many
& not enough measurements)
— Identified driving variables may be used as
inputs into other modeling tools
Metasensor (Variable Transform)
Identification
— Identifying variable couplings can give insight
into underlying physical mechanisms
— Identified metavariables can enable linearizing
transforms to meld symbolic regression and
more traditional statistical analysis
— Metavariables can also be used as inputs into
other modeling tools

— The P of the evolved models as well as
the explicit i ification of the model i
accuracy trade-off is very compelling

— Examining an expression can be viewed as a
visualization technique for high-dimensional data

Rapid Modeling

— Exploitation of the Pareto front has resulted in
several orders-of-magnitude in the symbolic
regression performance relative to more traditional
GP. This greatly increases the range of possible
applications.

There are many benefits to symbolic

regression. These are enhanced when
coupled with other analysis tools and
techniques.

Kordon, Smits & Kotanchek
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Parsimony &
Extrapolation

. . Truth
02
-
ol -
.‘t
o o e b v | e 24
o w0 T

* Note the pathologies at
high complexity when
extrapolating

* In general, we want to
avoid over-modeling!

Koraon, Smits & Kotancnek
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Particle swarm optimization

An efficient technique to find the global optimum
for model inversion and non-linear parameter estimation

At each time step ¢
For each particle i
Update the position change (velocity)
Vit+) = x-(V,(t)+ ¢ -rand(0.)-(F ()~ X, (1))
+¢,-rand(0,1)- (P, (1) — X, (1))

Thenmove X, (t+1)=X,()+V.(t+])

Note: - stochastic component

- parameters C;,C,, Y default values (2.05, 2.05, 0.73)

Kordon, Smits & Kotanchek
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Particle’s Movement — A Compromise

@ Ghesi, (1) Global best
position

Current X.()
position! —>0O
Vo X(t+1)

New position!

@ Pbhest (1) Personal best
position

Kordon, Smits & Kotanchek
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Software tools

MATLAB, Excel

NN sensitivity analysis of all inputs

Outlier detection and data set condensation

l i y - =

GP function generation ‘ - y\\
MATLAB &MATHEMATICA Toolboxes

‘ Analytical function selection/verification ‘

G2, MOD, IP21, 3 =
WebMathematica =
On-line implementation
‘ Model maintenance -
DAP, Cave, IP21
Kordon, Smits & Kotanchek
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Multi-Objective PSO

Efficient technique to determine the Pareto front for problems with convex, non-
convex and even disconnected Pareto fronts.

Kordon, Smits & Kotanchek
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Case Study: Inferential Sensors

Key objective:
SUVSD ar
(143.0 p pC,E'*V'(—kVT*pC,Tu):Q

To predict difficult-to-measure
\ /

parameter (melt index) from easy-
to-measure data (temperature,
Training
data

pressure, flow, etc.)

Process input Process Quality

e —

Inferential Sensors
Development Software

Lab-test Sinple

formulas
=
% Quality Prediction

y=a+h (e
Inferential Sensor
An empirical model based on
analytical equations with built-
in self-assessment capability

-
5 dD
15

Easy On-Line
implementation

Kordon, Smits & Kotanchek
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Issues with neural net-based inferential sensors

Issues with existing neural net-based inferential sensors:
- High sensitivity to process changes
- Frequent re-training
- Complicated development & maintenance
- Low survival rate after 3 years in operation
Engineers hate black-boxes

Black box Analytical expression

r J
ratevnony vt
rate? [vac o ZEETBRYE | pine v terp
Ve puep.—+ tem ] 7

*
ensity » temp?

i |

Specialized run-time Directly coded into
software most on-line systems

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring: A case study
Data Collection

251 training data
points

f>
Emission .

variable

107 test data points
(~40% outside training range)

Design Of Experiments

Chemical 8 inputs
Process = =

Inferential sensor for emission monitoring: A case study
Sensitivity analysis by SANN

Input x3
removed after
first sequence

A NN with 4 inputs: x2, x5, X6,
and x8 is selected after discussion
with process engineers

. \/

k4
Input x7 ,ius
removed after Input x6 has the HE
second strongest : oaf-
sequence sensitivity <03

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring: A case
study (SANN model performance)

Bad extrapolation
(test data is 40% outside
the range of training data)

Sacked NN model wih FI=0 23058
Measured emission variable

Predicteded emission variable

Model based on 30 stacked NN
with 10 neurons in hidden layer

Reduced number of inputs
from 8 to 4

“ww " 0 |Fast test of the hypothesis about
potential nonlinear relationship
(in 20-30 min)

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring: A case
study (SVM parameters)

sl
wfrgn  Ewecuts  Resuby
Dataset I inamj
Probiom Typa ( Oseson  (~ Ragsen Parameters:
% support vectors: 10
Apphcations ¥ Modeifuiig Aoy Datecion Dt Detection C =108

Mixed Kernels: Polynomial and RBF
Range of Polynomial kernels: 1-3
wi| 07 Range of RBF kernel: 0.25-0.75
[irnmPemen =] Range of ratio 0.5 — 0.99

the [ 05
Requiarization [foerwmes = o

Logs-Function [Lres o Fuewn =]

Kamel Choleo  [Rats e Fuon miin =) |[Tres Paweisnl w]

Complaity  [Fectaemvesm =]

[X its & Kotanchek
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Inferential sensor for emission monitoring: A case study
(SVM model performance)

P ol B Impressive extrapolation

I I O (test data is 40% outside
i Poob the range of training data)

Model based on a mixture of 2nd order
polynomial global kernel and RBF local kernel
with width of 0.5 and ratio of 0.95

Reduced number of training data points
from 251 to 34 (based on support vectors)

Inferential sensor for emission monitoring: A case
study (GP parameters)

=== Parameters for a GP simulated evolution

racs '\’h-“ B 3
| — Reference data :34
e v Y L] Random subset selection [%)] 1100
ETT_ s Number of runs 20
S — s Population size :500
e e Number of generations :100
e L Probability for function as next node  :0.6
e - Optimization function :Corr.
=T ke Parsimony pressure :0.1
T = Prob. for random vs guided crossover :0.5
e e Probability for mutation of terminals :0.3
Pty 7 e 8 e T =) Probability for mutation of functions :0.3
Frobabiine o s stor. of harcians [21] 3

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring:
A case study
(Selected symbolic regression model)

Parsto Front for B (traiving data):

Simple expression with acceptable
performance (R2 = 0.87)

ngldm

Response surface of model
according to process
physics

Selected model on Pareto
front

i“‘ :v
= |
SR

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring:
A case study

(Final solution: Stacked Symbolic Regression model)

Stacked GP madsl wih R2=0 B35

Dutput

GECCO 2006

In operation since August
2001

Model based on 8 Stacked
Symbolic Predictors

Shorter evolutionary process based
on 8.44% of the original training
data set

Kordon, Smits & Kotanchek

Key application areas

Robust Inferential Sensors
Mass-scale on-line empirical models
Automated Operating Discipline
Consistent intelligent on-line supervision

Empirical Emulators of Fundamental Models
Effective on-line process optimization

Fundamental model building based on GP
Accelerated new product development

Nonlinear DOE based on GP
Minimizing expensive process experiments

GECCO 2006 | 82

EC Applications in Dow Chemical

Application Domains

Examples

Material Design

Color Matching
Appearance Engineering
Polymer Design
Synthetic Leather

Materials Research

Diverse Chemical Library Selection
Fundamental Model Building
Reaction Kinetics Modeling
Combi-Chem Catalyst Exploration
Combi-Chem Data Analysis

Production Design

Acicular Mullite Emulator
EDC/VCM Nonlinear DOE
Bioreactor Optimization

Production Monitoring
& Analysis

Epoxy Holdup Monitoring

Isocyanate Level Es timation

FTIR Calibration Variable Selec tion
Poly-3 Volatile Emission Monitoring
Epoxy Intelligent Alarm Processing
PerTet Emulator for Online Optimization
Emissions Monitoring

Business Modeling

Diffusion of Innovation
Hydrocarbon Trading & Energy Systems Optimization
Scheduling Heuristics
Plant Capacity Drivers

GECCO 2006

Kordon, Smits & Kotanchek

Automating Operating Discipline

* Heuristic rules defined verbally
by process engineers/operators

« holdup predictor designed by
stacked analytic NN and GP

« all decision blocks have fuzzy
thresholds defined by
membership functions

* simple empirical models and
mass balances

« fundamental model predictions
are used in the heuristic rules

File Process Aams  Preferences Aboul Help

D) [ weanmcos:
b | B il o e

Feen cun|

reduced major shutdowns
reduced lab sampling

Kordon, Smits & Kotanchek
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Emulator for optimization of an industrial chemical process

Four
levels
DOE
Training ||
. On-line process
10 inputs 12 outputs Symbolic | optimization

REEERD Regression
ATt Er?wlator
20-25 min/
5 ms/

prediction - prediction
Test

Data set | 7|

Kordon, Smits & Kotanchek
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Approaches to accelerate fundamental model
building process

Reduce hypothesis GP as automated
search by GP invention machine

Al approach

Mimic the expert

Maximize creativity of the expert

Kordon, Smits & Kotanchek
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Fundamental Model Building Based on GP

Run simulated evolution
before beginning
fundamental modeling

GPFunctionl = ™7 -Log[-Log[x3] -} +x5 +x11% - Vg +x2 + 31
ga.:o. ¥=a+h (E,‘ﬂ —da]”
Bl
1 :
ol
Virtual modelers
The evolutionary process identifies
the key input variables as well as
natural groupings & relationships.
Combining this with a domain

knowledge and first-principles
insights is very powerful.

Accelerated fundamental
model building steps

ordon, Smits & Kotanchek
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The problem of structure-properties
in fundamental modeling

. O R
Material structure ,‘f?‘rl'.({;";:!«
Properties: } "3 ‘;\‘t\
- molecular weight &; N ,‘i‘
- particle size AL
- crystallinity

- volume fraction

- material morphology

- etc. R Key modeling effort
MOd?]mg. ISSUCSI f}(;r new prfduct
* nonlinear interaction development
* large number of preliminary

expensive experiments required
« large number of possible mechanisms
« slow fundamental model building
« insufficient data for training neural nets
GECCO 2006 Kordon, Smits & Kotanchek 8




Case Study with Structure-Property Relationships

Theoretical Analysis Hypothesis Search

Fundamental dr _ T DHde
Model Building o~ “2* C,ar

Fund 1 Model Building + Symboli
Regression = Accelerated New Product
Development

Fundamental model

y=a+[bx, +clog(x,)]e" +dx,

3 months

Structure-
property
data sets

Sensitivity Analysis dE bolic Regression Model
Hi— -
 —
= 10 )
Symbolic EE chflu b A
Regression | B — x =
" — ilg
s = =T [yl
T e l - R 10 hours
-

GECCO 2006

1. Generate GP models 2. Generate input transforms

Variable transformations suggested by GF model

17 o2, 2 Original Varable Transformed Variable
5, < 31386810 s 1 00545 (2) Jrig ged
Xy X Z= expi‘,rl.\] J
X3 Z+ =4
Xy 2= Inf(x,)]
Xy Li=%Xy ¥

Selected solution

3. Fit response surface model in
transformed variables

4

Sy =5, +iﬁ121 +Zzﬂijzizj +Zﬁzizi2

i<j i=1

Source DF | Sum of Square | Mean Square | F Ratio
Lack of Fit | 2 | 0.00049190 0.000246 2.2554 /
Pure Error |2 | 0.00021810 0.000109 Prob > F—< No Lack Of Fit
Total Error | 2 | 0.00071000 0.3072 T (P:0-3037)
Max RSq
0.9999

Kordon, Smits & Kotanchek
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GP and Design Of Experiments (DOE)
Models Showing Lack of Fit

Situations of Lack of Fit

1. Simple factorial DOE
Enough experiments to fit first order
model

v+ S b+ ST,

Classical approach if LOF
add experiments to fit second
order model

So= A+ Y B+ DA+ YA,

More costly experiments

2. A response surface DOE
already had all experiments to fit
second order model

So= B+ Y B+ DA+ LA,

Classical approach if LOF
no alternative (use model as it is)

Suggested approach:
Use GP to transform inputs

Kordon, Smits & Kotanchek

: Multiple-objective PSO

PSO application: Optimizing color spectrum of
plastics

with 15 variables

Real-time optimization]
in 2-3 seconds

ColourPro Formlation Optimization

; PSO and GA
. convergence

Kordon, Smits & Kotanchek
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Other PSO applications

» Drug release predictor
— 6 parameters
— population size = 30
— optimization time: ~ 30 seconds
+ Foam acoustics performance predictor
— 8 parameters
— population size = 50
— optimization time: ~ 5 seconds
 Crystallization kinetics predictor
— 4 parameters
— population size = 30
— optimization time: ~ 2 seconds

Kordon, Smits & Kotanchek
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Summary

» Evolutionary Computing can create significant value to industry by
reducing model development time and model exploitation cost
» Integrating EC with Neural Networks, Support Vector Machines, and
Statistics is recommended for successful industrial applications
» This strategy works for many real applications in the chemical
industry
* The key application areas are:
— Inferential sensors
— Improved process monitoring and control
— Accelerated new product development
— Effective design of experiments
* And this is only the beginning ...

Kordon, Smits & Kotanchek
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Open Issues & Current Research

Complexity Control & Smoothness Characterization

Diversity Detection

Identifying Metavariables

Convert Hard GP Problems into Easy Ones

Should we be doing Cultural Programming?

Blending Heuristics & Prior Knowledge

Integrating Ordinal Optimization Concepts

Kordon, Smits & Kotanchek
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