Probabilistic Model-Building Genetic Algorithms

Martin Pelikan

Missouri Estimation of Distribution Algorithms Laboratory (MEDAL)
Dept. of Math. and Computer Science
University of Missouri at St. Louis
pelikan@cs.umsl.edu
http://medal.cs.umsl.edu

Foreword

- Motivation
 - ☐ Genetic and evolutionary computation (GEC) popular.
 - □ Toy problems great, but difficulties in practice.
- This talk
 - □ Discuss a promising direction in GEC.
 - □ Combine machine learning and GEC.
 - ☐ Create practical and powerful optimizers.

Martin Pelikan, Probabilistic Model-Building GAs

Overview

- Introduction
 - ☐ Black-box optimization via probabilistic modeling.
- Probabilistic Model-Building GAs
 - □ Discrete representation
 - □ Continuous representation
 - □ Computer programs (PMBGP)
 - Permutations
- Conclusions

Black-Box Optimization

- Input
 - ☐ How do potential solutions look like?
 - ☐ How to evaluate quality of potential solutions?
- Output

- ☐ Best solution (the optimum).
- Important
 - □ No additional knowledge about the problem.

Why View Problem as Black Box?

- Advantages
 - □ Separate problem definition from optimizer.
 - ☐ Economy argument: BBO saves time & money.
- Difficulties
 - ☐ Almost no prior problem knowledge.
 - □ Problem specifics must be learned automatically.
 - $\hfill\square$ Noise, multiple objectives, interactive evaluation.

Martin Pelikan, Probabilistic Model-Building GAs

5

Representations Considered Here

- Start with
 - □ Solutions are n-bit binary strings.
- Later
 - □ Real-valued vectors.
 - □ Program trees.
 - Permutations

Martin Pelikan, Probabilistic Model-Building GAs

- 6

Typical Situation in BBO

Previously visited solutions + their evaluation:

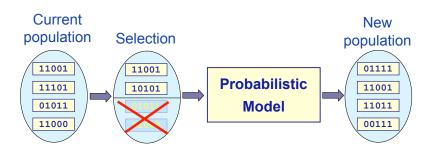
#	Solution	Evaluation	
1	00100	1	
2	11011	4	
3	01101	0	
4	10111	3	

• Question: What solution to generate next?

Many Answers

- Hill climber
 - ☐ Start with a random solution.
 - ☐ Flip bit that improves the solution most.
 - ☐ Finish when no more improvement possible.
- Simulated annealing
 - □ Introduce Metropolis.
- Probabilistic model-building GAs
 - □ Inspiration from GAs and machine learning (ML).

Probabilistic Model-Building GAs



...replace crossover+mutation with learning and sampling probabilistic model

Martin Pelikan, Probabilistic Model-Building GAs

9

11

Other Names for PMBGAs

- Estimation of distribution algorithms (EDAs) (Mühlenbein & Paass, 1996)
- Iterated density estimation algorithms (IDEA) (Bosman & Thierens, 2000)

Martin Pelikan, Probabilistic Model-Building GAs

10

What Models to Use?

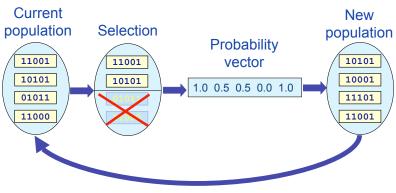
- Start with a simple example
 - □ Probability vector for binary strings.
- I ater
 - □ Dependency tree models (COMIT).
 - ☐ Bayesian networks (BOA).
 - ☐ Bayesian networks with local structures (hBOA).

Probability Vector

- Assume *n*-bit binary strings.
- Model: Probability vector $p=(p_1, ..., p_n)$
 - \Box p_i = probability of 1 in position i
 - ☐ Learn *p*: Compute proportion of 1 in each position.
 - \square Sample p: Sample 1 in position i with prob. p_i

Example: Probability Vector

(Mühlenbein, Paass, 1996), (Baluja, 1994)



Martin Pelikan, Probabilistic Model-Building GAs

13

Probability Vector PMBGAs

- PBIL (Baluja, 1995)
 - ☐ Incremental updates to the prob. vector.
- Compact GA (Harik, Lobo, Goldberg, 1998)
 - ☐ Also incremental updates but better analogy with populations.
- UMDA (Mühlenbein, Paass, 1996)
 - □ What we showed here.
- All variants perform similarly.

Martin Pelikan, Probabilistic Model-Building GAs

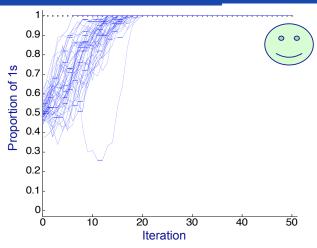
14

Probability Vector Dynamics

- Bits that perform better get more copies.
- And are combined in new ways.
- But context of each bit is ignored.
- Example problem 1: Onemax

$$f(X_1, X_2, ..., X_n) = \sum_{i=1}^n X_i$$

Probability Vector on Onemax



Probability Vector: Ideal Scale-up

- O(n log n) evaluations until convergence
 - ☐ (Harik, Cantú-Paz, Goldberg, & Miller, 1997)
 - □ (Mühlenbein, Schlierkamp-Vosen, 1993)
- Other algorithms
 - ☐ Hill climber: O(n log n) (Mühlenbein, 1992)
 - ☐ GA with uniform: approx. O(n log n)
 - ☐ GA with one-point: slightly slower

When Does Prob. Vector Fail?

- Example problem 2: Concatenated traps
 - □ Partition input string into disjoint groups of 5 bits.
 - □ Each group contributes via trap (ones=number of ones):

$$trap(ones) = \begin{cases} 5 & \text{if ones} = 5\\ 4 - ones & \text{otherwise} \end{cases}$$

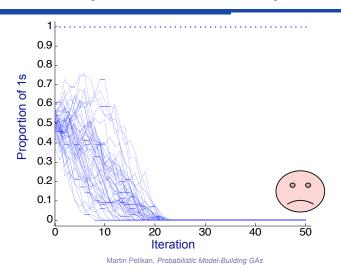
- ☐ Concatenated trap = sum of single traps
- □ Optimum: String 111...1

Martin Pelikan, Probabilistic Model-Building GAs

Martin Pelikan, Probabilistic Model-Building GAs

18

Probability Vector on Traps



Why Failure?

- Onemax:
 - □ Optimum in 111...1
 - \square 1 outperforms 0 on average.
- Traps: optimum in 11111, but
 - f(0****) = 2
 - f(1****) = 1.375
- So single bits are misleading.

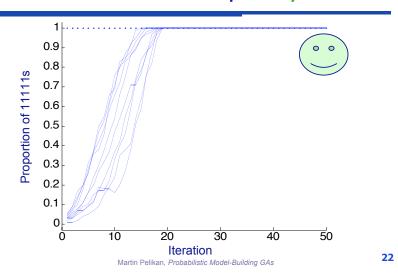
How to Fix It?

- Consider 5-bit statistics instead 1-bit ones.
- Then, 11111 would outperform 00000.
- Learn model
 - □ Compute p(00000), p(00001), ..., p(11111)
- Sample model
 - ☐ Sample 5 bits at a time
 - □ Generate 00000 with p(00000), 00001 with p(00001), ...

Martin Pelikan, Probabilistic Model-Building GAs

21

Correct Model on Traps: Dynamics



Good News: Good Stats Work Great!

- Optimum in O(n log n) evaluations.
- Same performance as on onemax!
- Others
 - □ Hill climber: $O(n^5 \log n) = much worse$.
 - \square GA with uniform: O(2ⁿ) = intractable.
 - \square GA with one point: O(2ⁿ) (without tight linkage).

Challenge

- If we could *learn* and *use* context for each position
 - ☐ Find nonmisleading statistics.
 - $\hfill \square$ Use those statistics as in probability vector.
- Then we could solve problems decomposable into statistics of order at most k with at most $O(n^2)$ evaluations!
 - $\hfill \square$ And there are many of those problems.

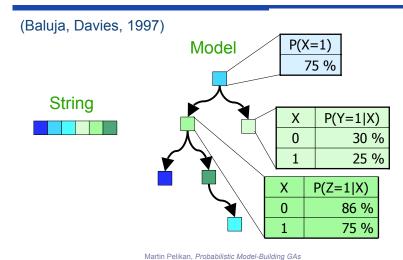
What's Next?

- COMIT
 - □ Use tree models
- Extended compact GA
 - □ Cluster bits into groups.
- Bayesian optimization algorithm (BOA)
 - ☐ Use Bayesian networks (more general).

Martin Pelikan, Probabilistic Model-Building GAs

25

Beyond Single Bits: COMIT



How to Learn a Tree Model?

Mutual information:

$$I(X_i, X_j) = \sum_{a,b} P(X_i = a, X_j = b) \log \frac{P(X_i = a, X_j = b)}{P(X_i = a)P(X_j = b)}$$

- Goal
 - ☐ Find tree that maximizes mutual information between connected nodes.
- Algorithm
 - □ Prim's algorithm for maximum spanning trees.

Prim's Algorithm

- Start with a graph with no edges.
- Add arbitrary node to the tree.
- Iterate
 - ☐ Hang a new node to the current tree.
 - □ Prefer addition of edges with large mutual information (greedy approach).
- Complexity: O(n²)

Variants of PMBGAs with Tree Models

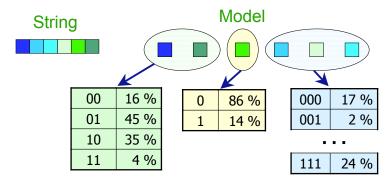
- COMIT (Baluja, Davies, 1997)
 - □ Tree models.
- MIMIC (DeBonet, 1996)
 - □ Chain distributions.
- BMDA (Pelikan, Mühlenbein, 1998)
 - □ Forest distribution (independent trees or tree)

Martin Pelikan, Probabilistic Model-Building GAs

29

Beyond Pairwise Dependencies: ECGA

- Extended Compact GA (ECGA) (Harik, 1999).
- Consider groups of string positions.

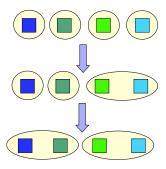


Martin Pelikan, Probabilistic Model-Building GAs

30

Learning the Model in ECGA

- Start with each bit in a separate group.
- Each iteration merges two groups for best improvement.



Martin Pelikan, Probabilistic Model-Building GAs

How to Compute Model Quality?

- ECGA uses minimum description length.
- Minimize number of bits to store model+data:

$$MDL(M,D) = D_{Model} + D_{Data}$$

■ Each frequency needs (0.5 log N) bits:

$$D_{Model} = \sum_{g \in G} 2^{|g|-1} \log N$$

■ Each solution *X* needs -log p(*X*) bits:

$$D_{Data} = -N \sum_{X} p(X) \log p(X)$$

Sampling Model in ECGA

- Sample groups of bits at a time.
- Based on observed probabilities/proportions.
- But can also apply population-based crossover similar to uniform but w.r.t. model.

Martin Pelikan, Probabilistic Model-Building GAs

33

Building-Block-Wise Mutation in ECGA

- Sastry, Goldberg (2004); Lima et al. (2005)
- Basic idea
 - ☐ Use ECGA model builder to identify decomposition
 - ☐ Use the best solution for BB-wise mutation
 - ☐ For each k-bit partition (building block)
 - Evaluate the remaining 2k-1 instantiations of this BB
 - Use the best instantiation of this BB
- Result (for order-k separable problems)
 - \square BB-wise mutation is $O(\sqrt{k} \log n)$ faster than ECGA!

Martin Pelikan, Probabilistic Model-Building GAs

34

What's Next?

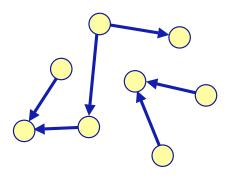
- We saw
 - □ Probability vector (no edges).
 - ☐ Tree models (some edges).
 - ☐ Marginal product models (groups of variables).
- Next: Bayesian networks
 - ☐ Can represent all above and more.

Bayesian Optimization Algorithm (BOA)

- Pelikan, Goldberg, & Cantú-Paz (1998)
- Use a Bayesian network (BN) as a model.
- Bayesian network
 - □ Acyclic directed graph.
 - □ Nodes are variables (string positions).
 - □ Conditional dependencies (edges).
 - □ Conditional independencies (implicit).

Example: Bayesian Network (BN)

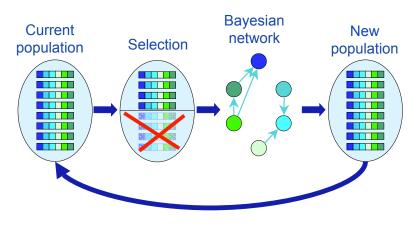
- Conditional dependencies.
- Conditional independencies.



Martin Pelikan, Probabilistic Model-Building GAs

37

BOA



Martin Pelikan, Probabilistic Model-Building GAs

38

Learning BNs

- Two things again:
 - □ Scoring metric (as MDL in ECGA).
 - □ Search procedure (in ECGA done by merging).

Learning BNs: Scoring Metrics

- Bayesian metrics
 - □ Bayesian-Dirichlet with likelihood equivallence

$$BD(B) = p(B) \prod_{i=1}^{n} \prod_{\pi_i} \frac{\Gamma(m'(\pi_i))}{\Gamma(m'(\pi_i) + m(\pi_i))} \prod_{x_i} \frac{\Gamma(m'(x_i, \pi_i) + m(x_i, \pi_i))}{\Gamma(m'(x_i, \pi_i))}$$

- Minimum description length metrics
 - □ Bayesian information criterion (BIC)

$$BIC(B) = \sum_{i=1}^{n} \left(-H(X_i \mid \Pi_i) N - 2^{|\Pi_i|} \frac{\log_2 N}{2} \right)$$

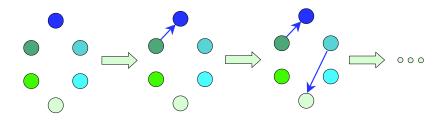
Learning BNs: Search Procedure

- Start with empty network (like ECGA).
- Execute primitive operator that improves the metric the most (greedy).
- Until no more improvement possible.
- Primitive operators
 - \square Edge addition (most important).
 - ☐ Edge removal.
 - □ Edge reversal.

Martin Pelikan, Probabilistic Model-Building GAs

41

Learning BNs: Example



Martin Pelikan, Probabilistic Model-Building GAs

42

BOA and Problem Decomposition

- Conditions for factoring problem decomposition into a product of prior and conditional probabilities of small order in Mühlenbein, Mahnig, & Rodriguez (1999).
- In practice, approximate factorization sufficient that can be learned automatically.
- Learning makes complete theory intractable.

BOA Theory: Population Sizing

- Initial supply (Goldberg et al., 2001)
 Have enough stuff to combine.
- Decision making (Harik et al, 1997)
 - \Box Decide well between competing partial sols \Longrightarrow $O(\sqrt{n \log n})$

■ Model building (Pelikan et al., 2000, 2002)

☐ Find a good model.

 $\Rightarrow O(n^{1.05})$

BOA Theory: Num. of Generations

- Two extreme cases, everything in the middle.
- Uniform scaling
 - □ Onemax model (Muehlenbein & Schlierkamp-Voosen, 1993)

- Exponential scaling
 - □ Domino convergence (Thierens, Goldberg, Pereira, 1998)

Martin Pelikan, Probabilistic Model-Building GAs

45

Good News: Challenge Met!

- Theory
 - □ Population sizing (Pelikan et al., 2000, 2002)
 - 1. Initial supply.
 - 2. Decision making.

O(n) to $O(n^{1.05})$

- 3. Drift.
- 4. Model building.
- □ Number of iterations (Pelikan et al., 2000, 2002)
 - 1. Uniform scaling.
 - 2. Exponential scaling.

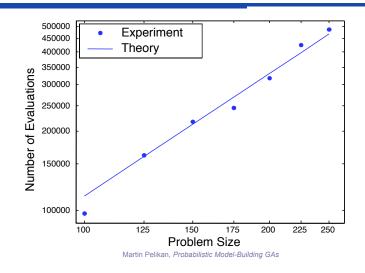
 $O(n^{0.5})$ to O(n)

■ BOA solves order-k decomposable problems in O(n¹.55) to O(n²) evaluations!

Martin Pelikan, Probabilistic Model-Building GAs

46

Theory vs. Experiment (5-bit Traps)

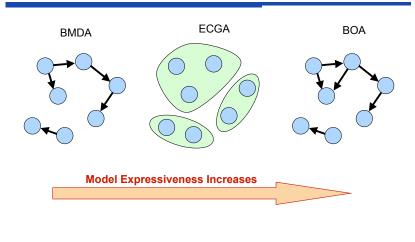


BOA Siblings

- Estimation of Bayesian Networks Algorithm (EBNA) (Etxeberria, Larrañaga, 1999).
- Learning Factorized Distribution Algorithm (LFDA) (Mühlenbein, Mahnig, Rodriguez, 1999).

- -

Model Comparison



From Single Level to Hierarchy

- Single-level decomposition powerful.
- But what if single-level decomposition is not enough?
- Learn from humans and nature
 - □ Decompose problem over multiple levels.
 - ☐ Use solutions from lower level as basic building blocks.

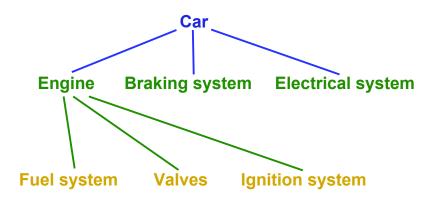
Martin Pelikan, Probabilistic Model-Building GAs

49

Martin Pelikan, Probabilistic Model-Building GAs

50

Hierarchical Decomposition



Three Keys to Hierarchy Success

- Proper decomposition
 - ☐ Must decompose problem on each level properly.
- Chunking
 - ☐ Must represent & manipulate large order solutions.
- Preservation of alternative solutions
 - Must preserve alternative partial solutions (chunks).

Hierarchical BOA (hBOA)

- Pelikan & Goldberg (2000, 2001)
- Proper decomposition
 - ☐ Use Bayesian networks like BOA.
- Chunking
 - ☐ Use local structures in Bayesian networks.
- Preservation of alternative solutions.
 - ☐ Use restricted tournament replacement (RTR).
 - □ Can use other niching methods.

Martin Pelikan, Probabilistic Model-Building GAs

53

Local Structures in BNs

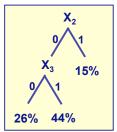
- Look at one conditional dependency.
 - \square 2^k probabilities for k parents.
- Why not use more powerful representations for conditional probabilities?

X_2X_3	$P(X_1=0 X_2X_3)$
00	26 %
01	44 %
10	15 %
11	15 %

Martin Pelikan, Probabilistic Model-Building GAs

Local Structures in BNs

- Look at one conditional dependency.
 - \square 2^k probabilities for k parents.
- Why not use more powerful representations for conditional probabilities?



Restricted Tournament Replacement

- Used in hBOA for niching.
- Insert each new candidate solution x like this:
 - □ Pick random subset of original population.
 - \Box Find solution y most similar to x in the subset.
 - \square Replace y by x if x is better than y.

Efficiency Enhancement for PMBGAs

- Sometimes O(n²) is not enough
 - ☐ High-dimensional problems
 - ☐ Expensive evaluation (fitness) function
- Solution
 - ☐ Efficiency enhancement techniques

Martin Pelikan, Probabilistic Model-Building GAs

57

Efficiency Enhancement Types

- 7 efficiency enhancement types for PMBGAs
 - □ Parallelization
 - ☐ Hybridization
 - □ Time continuation
 - □ Fitness evaluation relaxation
 - □ Prior knowledge utilization
 - ☐ Incremental and sporadic model building
 - □ Learning from problem-specific knowledge

Martin Pelikan, Probabilistic Model-Building GAs

Multi-objective PMBGAs

- Methods for multi-objective GAs adopted
 - Multi-objective hBOA (from NSGA-II and hBOA)
 (Khan, Goldberg, & Pelikan, 2002)
 (Pelikan, Sastry, & Goldberg, 2005)
 - □ Another multi-objective BOA (from SPEA2) (Laumanns, & Ocenasek, 2002)
 - ☐ Multi-objective mixture-based IDEAs
 - ☐ (Thierens, & Bosman, 2001)

Promising Results with Discrete PMBGAs

- Artificial classes of problems
- Physics
- Computational complexity and AI
- Others

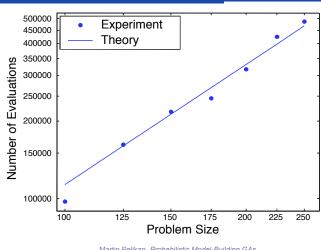
Results: Artificial Problems

- Decomposition
 - □ Concatenated traps (Pelikan et al., 1998).
- Hierarchical decomposition
 - ☐ Hierarchical traps (Pelikan, Goldberg, 2001).
- Other sources of difficulty
 - □ Exponential scaling, noise (Pelikan, 2002).

Martin Pelikan, Probabilistic Model-Building GAs

61

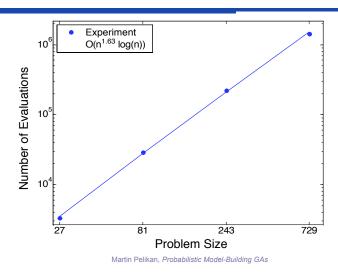
BOA on Concatenated 5-bit Traps



Martin Pelikan, Probabilistic Model-Building GAs

62

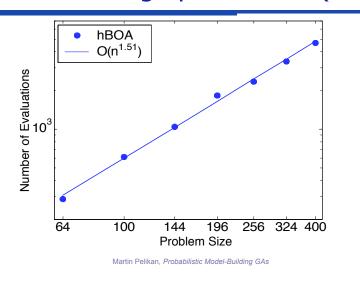
hBOA on Hierarchical Traps



Results: Physics

- Spin glasses (Pelikan, 2002)
 - □ ±J and Gaussian couplings
 - □ 2D and 3D
- Silicon clusters (Sastry, 2001)
 - □ Gong potential (3-body)

hBOA on Ising Spin Glasses (2D)

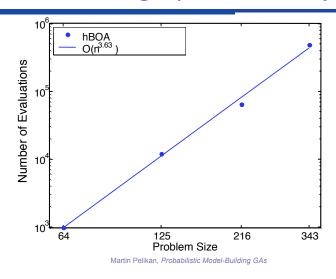


Results on 2D Spin Glasses

- Number of evaluations is $O(n^{1.51})$.
- Overall time is $O(n^{3.51})$.
- Compare $O(n^{3.51})$ to $O(n^{3.5})$ for best method (Galluccio & Loebl, 1999)
- Great also on Gaussians.

Martin Pelikan, Probabilistic Model-Building GAs

hBOA on Ising Spin Glasses (3D)



Results: Computational Complexity, AI

- MAXSAT, SAT (Pelikan, 2002)
 - □ Random 3CNF from phase transition.
 - □ Morphed graph coloring.
 - □ Conversion from spin glass.
- Feature subset selection (Inza et al., 2001) (Cantu-Paz, 2004)

66

67

Results: Others

- Military antenna design (Santarelli et al., 2004)
- Groundwater remediation design (Arst et al., 2004)
- Forest management (Ducheyne et al., 2003)
- Nurse scheduling (Li, Aickelin, 2004)
- Telecommunication network design (Rothlauf, 2002)
- Graph partitioning (Ocenasek, Schwarz, 1999; Muehlenbein, Mahnig, 2002; Baluja, 2004)
- Portfolio management (Lipinski, 2005)

69

Martin Pelikan, Probabilistic Model-Building GAs

70

Martin Pelikan, Probabilistic Model-Building GAs

Discrete PMBGAs: Recommendations

- Easy problems
 - ☐ Use univariate models; PBIL, UMDA, cGA.
- Somewhat difficult problems
 - ☐ Use bivariate models; MIMIC, COMIT, BMDA.
- Difficult problems
 - ☐ Use multivariate models; BOA, EBNA, LFDA.
- Most difficult problems
 - ☐ Use hierarchical decomposition; hBOA.

Discrete PMBGAs: Summary

- No interactions
 - ☐ Univariate models; PBIL, UMDA, cGA.
- Some pairwise interactions
 - ☐ Tree models; COMIT, MIMIC, BMDA.
- Multivariate interactions
 - ☐ Multivariate models: BOA, EBNA, LFDA.
- Hierarchical decomposition
 - □ hBOA

Continuous PMBGAs

- New challenge
 - ☐ Infinite domain for each variable.
 - ☐ How to model?
- 2 approaches
 - ☐ Discretize and apply discrete model/PMBGA
 - □ Create continuous model
 - Estimate pdf.

PBIL Extensions: SHCwL

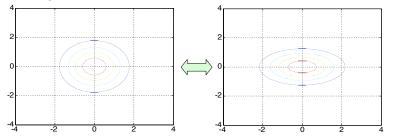
- SHCwL: Stochastic hill climbing with learning (Rudlof, Köppen, 1996).
- Model
 - ☐ Single-peak Gaussian for each variable.
 - ☐ Means evolve based on parents (promising solutions).
 - Deviations equal, decreasing over time.
- Problems
 - No interactions.
 - $\hfill\Box$ Single Gaussians=can model only one attractor.
 - □ Same deviations for each variable.

Martin Pelikan, Probabilistic Model-Building GAs

73

Use Different Deviations

- Sebag, Ducoulombier (1998)
- Some variables have higher variance.
- Use special standard deviation for each variable.

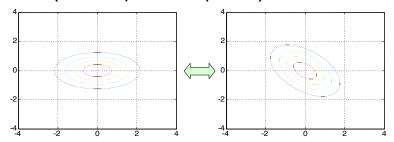


Martin Pelikan, Probabilistic Model-Building GAs

74

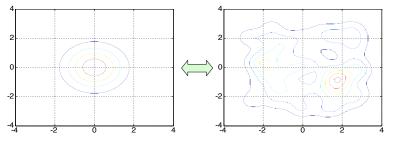
Use Covariance

- Covariance allows rotation of 1-peak Gaussians.
- EGNA (Larrañaga et al., 2000)
- IDEA (Bosman, Thierens, 2000)



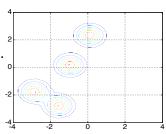
How Many Peaks?

- One Gaussian vs. kernel around each point.
- Kernel distribution similar to ES.
- IDEA (Bosman, Thierens, 2000)



Mixtures: Between One and Many

- Mixture distributions provide transition between one Gaussian and Gaussian kernels.
- Mixture types
 - Over one variable.
 - Gallagher, Frean, & Downs (1999).
 - Over all variables.
 - Pelikan & Goldberg (2000).
 - Bosman & Thierens (2000).
 - Over partitions of variables.
 - Bosman & Thierens (2000).
 - Ahn, Ramakrishna, and Goldberg (2004).



Martin Pelikan, Probabilistic Model-Building GAs

77

Mixed BOA (mBOA)

- Mixed BOA (Ocenasek, Schwarz, 2002)
- Local distributions
 - ☐ A decision tree (DT) for every variable.
 - ☐ Internal DT nodes encode tests on other variables
 - Discrete: Equal to a constant
 - Continuous: Less than a constant
 - □ Discrete variables: DT leaves represent probabilities.
 - □ Continuous variables: DT leaves contain a normal kernel distribution.

Martin Pelikan, Probabilistic Model-Building GAs

78

Real-Coded BOA (rBOA)

- Ahn, Ramakrishna, Goldberg (2003)
- Probabilistic Model
 - ☐ Underlying structure: Bayesian network
 - □ Local distributions: Mixtures of Gaussians
- Also extended to multiobjective problems (Ahn, 2005)

Aggregation Pheromone System (APS)

- Tsutsui (2004)
- Inspired by aggregation pheromones
- Basic idea
 - □ Good solutions emit aggregation pheromones
 - □ New candidate solutions based on the density of aggregation pheromones
 - □ Aggregation pheromone density encodes a mixture distribution

Continuous PMBGAs: Discretization

		discrete	

- Fixed models
 - □ 2k equal-width bins with k-bit binary string.
 - □ Goldberg (1989).
 - □ Bosman & Thierens (2000); Pelikan et al. (2003).
- Adaptive models
 - □ Equal-height histograms of 2k bins.
 - ☐ K-means clustering on each variable.
 - □ Pelikan, Goldberg, & Tsutsui (2003); Cantu-Paz (2001).

Martin Pelikan, Probabilistic Model-Building GAs

81

Continuous PMBGAs: Summary

- Discretization
 - □ Fixed
 - Adaptive
- Continuous models
 - ☐ Single or multiple peaks?
 - ☐ Same variance or different variance?
 - □ Covariance or no covariance?
 - ☐ Mixtures?
 - ☐ Treat entire vectors, subsets of variables, or single variables?

Martin Pelikan, Probabilistic Model-Building GAs

82

Continuous PMBGAs: Recommendations

- Multimodality?
 - ☐ Use multiple peaks.
- Decomposability?
 - ☐ All variables, subsets, or single variables.
- Strong linear dependencies?
 - Covariance.
- Partial differentiability?
 - □ Combine with gradient search.

PMBGP (Genetic Programming)

- New challenge
 - □ Structured, variable length representation.
 - □ Possibly infinitely many values.
 - □ Position independence (or not)
- Approaches
 - ☐ Limit maximum complexity of a solution.
 - ☐ Allow complexity to change over time.

PIPE

 Probabilistic incremental program evolution (Salustowicz & Schmidhuber, 1997)

 Store frequencies of operators/terminals in nodes of a maximum tree.

Sampling generates tree from top to bottom

Martin Pelikan, Probabilistic Model-Building GAs

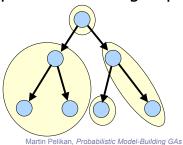
x P(x) sin 0.15 + 0.35

+ 0.35 - 0.35 X 0.15

85

eCGP

- Sastry & Goldberg (2003)
- ECGA adapted to program trees.
- Maximum tree as in PIPE.
- But nodes partitioned into groups.



86

BOA for GP

- Looks, Goertzel, & Pennachin (2004)
- Combinatory logic + BOA
 - ☐ Trees translated into uniform structures.
 - □ Labels only in leaves.
 - $\hfill \square$ BOA builds model over symbols in different nodes.
- Complexity build-up
 - ☐ Modeling limited to max. sized structure seen.
 - □ Complexity builds up by special operator.

PMBGP: Summary

- Interesting starting points available.
- But still lot of work to be done.
- Much to learn from discrete domain, but some completely new challenges.
- Research in progress

PMBGAs for Permutations

- New challenges
 - □ Relative order
 - □ Absolute order
 - Permutation constraints
- Two basic approaches
 - □ Random-key representation with real-valued PMBGAs
 - □ Probabilistic models for permutations

Random Keys and PMBGAs

- Random keys (Bean, 1997)
 - ☐ Candidate solution = vector of real values
 - ☐ Ascending ordering gives a permutation
- Can use any real-valued PMBGA (or GEA)
 - □ IDEAs (Bosman, Thierens, 2002)
 - □ EGNA (Larranaga et al., 2001)

Martin Pelikan, Probabilistic Model-Building GAs

89

Martin Pelikan, Probabilistic Model-Building GAs

90

Direct Modeling of Permutations

- Edge-histogram based sampling algorithm (EHBSA) (Tsutsui, Pelikan, Goldberg, 2003)
 - □ Permutations of *n* elements
 - \square Model is a matrix $A=(a_{i,j})_{i,j=1, 2, ..., n}$
 - \Box $a_{i,j}$ represents the probability of edge (i, j)
 - ☐ Uses template to reduce exploration
 - ☐ Applicable also to scheduling

Conclusions

- Competent PMBGAs exist
 - □ Scalable solution to broad classes of problems.
 - □ Solution to previously intractable problems.
 - ☐ Algorithms ready for new applications.
- Consequences for practitioners
 - □ Robust methods with few or no parameters.
 - □ Capable of learning how to solve problem.
 - $\hfill\square$ But can incorporate prior knowledge as well.
 - □ Can solve previously intractable problems (again).

Starting Points

- WWW
 - Laboratory home pages.
 - Authors' home pages.
 - □ Research index (www.researchindex.com)
 - □ Google (www.google.com)
 - ☐ Google scholar (scholar.google.com)
- Introductory material
 - □ Larrañaga & Lozano (editors) (2001). Estimation of distribution algorithms: A new tool for evolutionary computation. Kluwer.
 - Pelikan et al. (2002). A survey to optimization by building and using probabilistic models. Computational optimization and applications, 21(1)
 - Pelikan (2005). Hierarchical BOA: Towards a New Generation of Evolutionary Algorithms. Springer.

Code

- BOA, BOA with decision graphs http://medal.cs.umsl.edu/
- ECGA, BOA, and BOA with decision trees/graphs http://www-illigal.ge.uiuc.edu/
- mBOA

http://jiri.ocenasek.com/

PIPE

http://www.idsia.ch/~rafal/

Real-coded BOA

http://www.evolution.re.kr/

 Demos of APS and EHBSA http://www.hannan-u.ac.jp/~tsutsui/research-e.html

FDA

http://www.ais.fraunhofer.de/~muehlen/fda/index.html

93