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Goals

Introduction to key results and literature
on resiliency/genetic robustness (see
bibliography)

Specific illustrative results

Resiliency / (Genetic) Robustness

“Robustness is the invariance of
phenotypes in the face of (heritable)
perturbation”t

“Biological systems, from
macromolecules to whole organisms,
are robust if they continue to function,
survive, or reproduce when faced with
mutations, environmental change, and
internal noise.”%?
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Resiliency/ Genetic Robustness

As resiliency increases the
4 expected variation due to
genetic operators decreases
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Neutrality

As ‘resiliency’ increases
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Why should we care?
“Pressure for resiliency has multiple,
significant effects on the evolutionary
process:

» Preference for lower fitness, but more
resilient solutions #.2.8.17. 26

» Effects epistasis of solutions 216
« Redundancy/degeneracy 3:6.16.23.24
3 Encourages ‘growth’ 5.7, 11127 ¥3 A4 15 17,21
» Encourages code reduction 1=
» Gene choice 1213

» Growing interest in the biological community
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Quasi-species
“An assembly of closely related self-
replicating molecules [individuals] that
is highly structured and that is as a
b whole the target of selection.””

Genotype

Survival of the Flattest “

“Under high mutation rates quasi-species on
lower, broader peaks may replace quasi-
species on higher, narrower peaks.

" Given two quasi-species, at sufficiently high
mutation rates the quasi-species with the
higher replication rate will go extinct if it is
less robust with respect to mutation.




Neutral Networks 2

In competition between quasi-species
on neutral networks:

» With low mutation rates the quasi-species
that replicates more slowly goes extinct.

» With high enough mutation rates the
quasi-species on the sparser neutral
network will go extinct even if it replicates
more rapidly.
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Population Size ©

Small populations are more likely to
contain redundant genes than larger
populations where:

» Redundancy increases robustness

» Redundancy imposes a ‘cost’ — lowers the

replication rate

In small populations good solutions are
easier to lose.
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Example: Two I5eaks 17 :
b Parameters
14140144401 (individual) = 23 (value=sum)
- = 5 (fitness) Generational
No mutation

Crossover rate = 0.9

Elitism: 2 members
Tournament selection (3)
Population size 500

Crossover: 2 point, variable size




Constant Crossover . Results — Avg. Value

Crossover:

» Pick a crossover length for each parent:
length =2
Repeat 2 —— S F——F——F
With probability .5 double length 3%
» Pick random starting points in each parent Average value of the individuals - they
» Swap regions converge on the peak at 33
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Exponentially distributed sizes i = A = e = et
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Conclusions I

Robust/Resilient quasi-species may out
compete less robust, but more fit quasi-
species

E.g. population converges on lower,
broader peak, despite ‘knowledge’ (due
to elitism) of higher peak.
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Code Growtff/BIoat

Increase in size not correlated to an increase
in fitness

» Growth consists of code having a minimal effect
on fitness
Growth in GP was originally suggested a
mechanism to protect against crossover
» Ratio of exons/introns decreases
» Not necessarily exons and introns

E.g. growth increases robustness (w.r.t

crossover, a given population, fitness, etc.)
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Types of dee

Introns vs. Exons

Viable vs. Inviable and Operative vs.
Inoperative

Others
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inviable

inviable for fitness cases

Can be replaced by a no-op

Can be replaced for fitness cases
Continuously defined ‘value’

Introns not the only source of growth




Two Peaks, Size Two Peaks, Zeros

1800 1800
Average size (length) of individuals
Average number of zeros
per individual -
proportional to growth
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Generation Generation

Two Peaks, Robustness Peaks Shifts

25

Average change due to
crossover (robustness) -
generally improves over time.

If quasi-species on broader peak
sometimes out compete quasi-species
on narrower, taller peak and ...

Growth increases resiliency/robustness
and ...

Robustness effectively broadens peaks
Then as a quasi-species becomes more
robust will it shift to a narrower peak?
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Change due to crossover (robustness)
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Peaks Example: Two Peaks
Increasing zeros o
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Distribution of Values

Generation 1000

Distribution of Values
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Generation 1200
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Controls

Average Value

-+ More intial zeros -= Size limit 150

00 0
Generation

50 700 800 00
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Conclusions II

Broader, but lower, peaks may be favored

Growth can increase robustness (other
robustness strategies exist)

Increasing robustness allows shifts to

narrower peaks

More robustness (growth) required to shift to

narrower peaks (not shown)

Limiting growth can limit shifts

Can this dynamic be shown for a more
____complex problem?

Other Robustness Strategies
Epistasis

‘Gene’ choice

Code reduction

Redundant Genes

Degeneracy

Gene location?

Others???
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Epistasis

In individuals adapting to a high
mutation rate (from a lower one).

» Increase in the number of neutral
mutations

» Decrease in coupling between genes




Number of 'genes’
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Two Peaks, Gene Choice

-

Ones increase, Fours decrease

e

\— Zeros — Ones — Fours

500 1000 1500 2000 2500

Generations

2000

GP Experiment

Goal Expression with value 29
Fitness |output — 29|
Terminals 0,1,4o0r1,4
Non-terminal +

Population size 800

Generations 2000

Selection 3-member tournament
Trials 50

Mutation 0.001/node

Crossover 0.9

Size limit None

Initial population

Ramped half-and-half

Sample GP Individual

A sample individual with fitness 20.
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Ratio 1s/4s

Results = 1:4 Ratlio.
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Fitness Change

Results - Robustness
1
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BT Crossover
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Operator Effects -
Proportional Crossover
Two Peaks Problems

Crossover: Pick 2 random points in each
parent
» Size of crossover regions are proportional
to parent lengths
» Increasing 0s increases average crossover
region = no increase in resilency

Size

35

Proportional Crossover

e -

Average size with proportional crossover- no
growth

0 500 1000 1500 2000 2500 300

Generation

60

Results — Proportional/Value

Average value with proportional
crossover - remains at 33, no shift.

0 500 1000 1500 2000 2500

Generation

3000
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Operator Effects - Mutation II

GP with exactly N mutations per
individual
Mutation rate per individual

More introns, greater chance of ‘hiding’
a mutation

With this type of mutation growth
increases 4

e
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3 Size — Different mutation rates
Operator Effects — Mutation I 250 S
ate = P
2 st - 200 | Rate=0.0001
Mutation — probability p of mutating a Rate=0.001  ---
‘gene’ Rate = 0.005 Prer - gl
g 150 Rate = 0.01 Sa e ens
Mutation rate per ‘gene’ £ =5
More Os -> greater chance of one of e e e e e e
them being mutated SO e e e g v
Single peak experiment
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Conclusions III

Strategy adopted to increase robustness
depends on operators used
» Changes per individual encourage growth.
« Ex: on average GP crossover effects ~3 nodes per
individual.
» Changes per ‘gene’ don't encourage growth.
« Ex: on average GP single node mutation effects M
percent of the nodes.

» How do operators influence other robustness
strategies?
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Representationless Model 121220

Individuals have no representation

Individuals have:

» Fitness (initially assigned arbitrarily from a preset
distribution)

» Non-coding length (l;)

» Coding length (l,)

» Total length = |, + |,
*Mutation’ only
Mutation effects I; or I, (+1)
if 1, then fitness changes
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Representationless Model

Select parent

v

Mutate

intron length f/ \ixon length +1

Fitness Change fitness
unchanged l

New fitness drawn from
current distribution?

New fitness drawn from
original distribution’®

Results 1819

Fitness drawn
from the initial
distribution:
» (Weak) Growth
with selection

» No growth
without selection

Fitness drawn
from the current
distribution:
» Size is a random
walk

» Growth is a result
of the boundary
at size zero
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Representationless Model

Select parent

v

Mutate

intron length f/ \ixon length +1

Change fitness

i

Parent fitness +1
(max fitness M)

Fitness
unchanged

Parent fitness -1
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biologists, etc.

Conclusions - Final

“There is significant evolutionary pressure for
robust solutions that depends on:
» Variation (mutation, crossover, etc.) rates and types
» Populations sizes
» Other factors???

" Many strategies to increase robustness: growth,
reduction, gene choice, redundancy, etc.

" There may be many more unknown strategies
" Complex, poorly understood, evolutionary dynamic
" Opportunity for interactions with evolutionary
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