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?

weight = 750g
profit = 5

weight = 1500g
profit  = 8

weight = 300g
profit = 7

weight = 1000g
profit = 3

Single objective:

choose subset that 
maximizes overall profit
w.r.t. a weight limit

Multiobjective:

choose subset that 
maximizes overall profit

minimizes overall weight
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Observations: there is no single optimal solution, but
some solutions (   ) are better than others (   )
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finding the good
solutions
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finding the good
solutions
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The TradeThe Trade--off Frontoff Front

Observations: there is no single optimal solution, but
some solutions (   ) are better than others (   )

selecting a
solution
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Approaches: profit more important than cost (ranking)
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Approaches: profit more important than cost (ranking)

too heavy
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Decision Making: Selecting a SolutionDecision Making: Selecting a Solution

weight must not exceed 2400g (constraint)
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Before Optimization:

ranks objectives,
defines constraints,…

searches for one 
(green) solution

© Eckart Zitzler
ETH Zürich

GECCO 2006
Tutorial on EMOWhen to Make the DecisionWhen to Make the Decision

Before Optimization:

ranks objectives,
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searches for one 
(green) solution
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After Optimization:

searches for a set of
(green) solutions

selects one solution
considering constraints, etc.

decision making often easier

EAs well suited

When to Make the DecisionWhen to Make the Decision

Before Optimization:

ranks objectives,
defines constraints,…

searches for one 
(green) solution
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1. Introduction: Why multiple objectives make a difference

2. Basic Principles: Terms one needs to know

3. Algorithm Design: Do it yourself

4. Performance Assessment: How to compare algorithms

5. Applications Domains: Where EMO is useful

6. Further Information: What else
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A general optimization problem is given by a quadruple (X, 
Z, f, rel) where

X denotes the decision space containing the elements 
among which the best is sought; elements of X are called 
decision vectors or simply solutions;
Z denotes the objective space, the space within which the 
decision vectors are evaluated and compared to each 
other; elements of Z are denoted as objective vectors;
f represents a function f: X → Z that assigns each decision 
vector a corresponding objective vector; f is usually 
neither injective nor surjective;
rel is a binary relation over Z, i.e., rel ⊆ Z × Z , which 
represents a partial order over Z.
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Usually, f consists of one or several functions f1, ..., fn that 
assign each solution a real number. Such a function
fi: X → ℜ is called an objective function, and examples 
are cost, size, execution time, etc.
In the case of a single objective function (n=1), the 
problem is denoted as a single-objective optimization 
problem; a multiobjective optimization problem involves 
several (n ≥ 2) objective functions:

performance performance

cost

single objective multiple objectives
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The pair (Z, rel) forms a partially ordered set, i.e., for any two
objective vectors a, b ∈ Z there can be four situations:
a and b are equal: a rel b and b rel a
a is better than b: a rel b and not (b rel a)
a is worse than b: not (a rel b) and b rel a
a and b are incomparable: neither a rel b nor b rel a

Example: Z = ℜ2, (a1, a2) rel (b1, b2) :⇔ a1 ≤ b1 ∧ a2 ≤ b2

Often, (Z, rel) is a totally ordered set, i.e., for all a, b ∈ Z either a rel
b or b rel a or both holds (no incomparable elements).

worse

better incomparable

incomparable
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The function f together with the partially ordered set (Z, rel)
defines a preference structure on the decision space X that 
reflects which solutions the decision maker / user prefers to 
other solutions:

x1 prefrel x2 :⇔ f(x1) rel f(x2)

One says:
Two solutions x1, x2 are equal iff x1 = x2;
A solution x1 is indifferent to a solution x2 iff x1 prefrel x2 and 
x2 prefrel x1 and x1 ≠ x2;
A solution x1 is preferred to a solution x2 iff x1 prefrel x2;
A solution x1 is strictly preferred to a solution x2 iff x1 prefrel
x2 and not (x2 prefrel x1);
A solution x1 is incomparable to a solution x2 iff neither x1
prefrel x2 nor x2 prefrel x1.
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A solution x ∈ X is called optimal with respect to a set S ⊆
X iff no solution x’ ∈ S is strictly preferred to x, i.e., for all
x’ ∈ S: x’ prefrel x ⇒ x prefrel x’.
In other words, f(x) is a minimal element of f(S) regarding 
the partially ordered set (Z, rel).

4

6

x1 x2

x3 x4

f

f

optimal solutions w.r.t. X minimal element
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Assumption:
n objective functions fi: X → ℜ where Z = ℜn

all objectives are to be maximized

Usually considered relation: weak Pareto dominance
optimization problem: (X, ℜn, (f1, ..., fn),    )
weak Pareto dominance:

Pareto dominance: strict version of weak Pareto dominance
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Maximize (y1, y2, …, yk) = f(x1, x2, …, xn)

Pareto(-optimal) set = set of all Pareto-optimal solutions

y2

y1

worse

better

incomparable

incomparable

y2        

y1

Pareto optimal = not dominated

dominated
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y2

y1

x2

x1

(x1, x2, …, xn)                    f (y1, y2, …, yk)

decision
space 

objective
space 

Pareto set
non-optimal decision vector

Pareto front
non-optimal objective vector

search                                   evaluation
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is better than
= not worse in all objectives

and sets not equal

dominates
= better in at least one objective

strictly dominates
= better in all objectives

is incomparable to
= neither set weakly better 

A

B

Pareto Set Approximations Pareto Set Approximations 

C

performance

cheapness

D

A B

C D

A C

B C

Pareto set approximation (algorithm outcome) =
set of incomparable solutions
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Find all Pareto-optimal solutions?
Impossible in continuous search spaces

How should the decision maker handle 10000 solutions?

Find a representative subset of the Pareto set?
Many problems are NP-hard

What does representative actually mean?

Find a good approximation of the Pareto set?
What is a good approximation?

How to formalize intuitive
understanding:

close to the Pareto front
well distributed

y2

y1
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Preference information (here) = any additional information 
that refines the dominance relation on approximation sets
(partial order → total order)

Example:

optimization goal
=
maximize size S of
dominated objective space

Note: every algorithm implicitly or explicitly makes assumptions 
about the decision maker’s preferences
(limited memory, selection)

S(A)
A

S(A) = 60%
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1. Introduction: Why multiple objectives make a difference

2. Basic Principles: Terms one needs to know

3. Algorithm Design: Do it yourself

4. Performance Assessment: How to compare algorithms

5. Applications Domains: Where EMO is useful

6. Further Information: What else
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0100

0011 0111

0011
0000

0011

1011

representation           fitness assignment mating selection

environmental selection variation operators

parameters
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y1

y2

y1

y2y2

y1

aggregation-based criterion-based dominance-based

parameter-oriented
scaling-dependent

set-oriented
scaling-independent

weighted sum                     VEGA                      SPEA2
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M

T2

T3

Tk-1

Tk

M’

T1

select
according to

f1

f2
f3

fk-1

fk

shuffle

population                 k separate selections           mating pool

[Schaffer 1985]
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y2

y1

transformation

parameters

y(y1, y2, …, yk)

multiple
objectives

single
objective

Example: weighting approach

Note: weights need to be varied
during the run...

y = w1y1 + … + wkyk

(w1, w2, …, wk)
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x2

x1

f1
x2

x1

f2

x2

x1

f

0.75 f1 + 0.25 f2 0.5 f1 + 0.5 f2 0.25 f1 + 0.75 f2

AggregationAggregation

x2

x1

f x2

x1

f
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feasible region
constraint

Example: Example: MultistartMultistart Constraint MethodConstraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

y2

y1

maximize f1
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feasible region
constraint

Example: Example: MultistartMultistart Constraint MethodConstraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

y2

y1

maximize f1

© Eckart Zitzler
ETH Zürich

GECCO 2006
Tutorial on EMO

feasible region
constraint

feasible region
constraint

Example: Example: MultistartMultistart Constraint MethodConstraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

y2

y1

maximize f1
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Extension to n objectives: ECEA [Laumanns et al. 2006]

f1 is the objective to optimize
The boxes are defined by constraints on f2 and f3
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Types of information:
dominance rank by how many individuals is an 

individual dominated?
dominance count how many individuals does an 

individual dominate?
dominance depth at which front is an individual 

located?

Examples:
MOGA, NPGA dominance rank
NSGA/NSGA-II dominance depth
SPEA/SPEA2 dominance count + rank
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0

Example: MOGA and SPEA2Example: MOGA and SPEA2
y2

y1

0

0

13

1

MOGA
y2

y1

0

0
0

4+3+2
2+1+4+3+2

2

4
4+3

SPEA2

R (raw fitness) =
#dominating solutions

S (strength) =
#dominated solutions 

R (raw fitness) =  
∑ strengths of dominators

[Zitzler et al. 2002][Fonseca, Fleming 1993]
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ranks pure dominance rank refined ranking

1 0
2 0
3 0 0.245
4 1 0.311
5 1 0.329
6 2
7 2
8 2 0
9 3 1

2no selection pressure
within equivalence classes

density information based
on Euclidean distance

modified dominance relation
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Density estimation techniques:  [Silverman 1986]

f
f

f

Kernel
MOGA

density estimate
=

sum of f values 
where f is a 

function of the 
distance

Nearest neighbor
SPEA2

density estimate
=

volume of the sphere 
defined by the nearest 

neighbor

Histogram
PAES

density estimate
=

number of 
solutions in the 

same box
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Two Nearest Neighbor Variants

Objective-Wise Euclidean Distance
NSGA-II SPEA2

faster slower
good for 2 objectives good for 3 objectives and more

[Deb et al. 2002] [Zitzler et al. 2002]
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Observation:
The use of Euclidean
distance can lead to
deterioration

Knapsack problem
[Laumanns et al. 2002]
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Integration of Goals, Priorities, Constraints:
[Fonseca, Fleming 1998]

A is preferable over B ⇔

Continuous dominance “relations”: [Zitzler et al. 2003]

Iε+(A,B) = mini fi(A) – fi(B)

Iε+(A,B) ≥ 0 and Iε+(B,A) < 0 ⇔ A dominates B

(binary additive epsilon quality indicator)

A

B
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Question: How to continuous dominance “relations” for 
fitness assignment? [Zitzler, Künzli 2004]

Given: function I (binary quality indicator) with

A dominates B   ⇔ I(A, B) < I(B, A)

Idea: measure for “loss in quality” if A is removed

Fitness: 

...corresponds to continuous extension of dominance rank

...blurrs influence of dominating and dominated individuals
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Fitness assignment: O(n2)

Fitness: 

parameter κ is problem- and indicator-dependent
no additional diversity preservation mechanism

Mating selection: O(n)
binary tournament selection, fitness values constant

Environmental selection: O(n2)
iteratively remove individual with lowest fitness
update fitness values of remaining individuals after each deletion
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Constraint handling:
How to integrate constraints into fitness assignment?

Archiving / environmental selection:
How to keep a good approximation?

Hybridization:
How to integrate, e.g., local search in a multiobjective EA?

Preference articulation:
How to focus the search on interesting regions?

Robustness and uncertainty:
How to account for variations in the objective function values?

Data structures:
How to support, e.g., fast dominance checks?
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overall constraint 
violation

constraints 
treated 

separately

[Michalewicz 1992]

? [Coello 2000] [Fonseca, 
Fleming 1998]

[Deb 2001][Wright,
Loosemore 2001]

penalty
functions

Add penalty
term to
fitness

constraints
as objectives

Introduce
additional

objective(s)

modified
dominance

extend to
infeasible
solutions
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old population offspring

new
population

offspring     archive

new
archive

old population

new
population

Variant 1: without archive Variant 2: with archive

deterministic truncation archive = only nondominated solutions

Additional selection criteria:
Density information / other preferences

Time

Chance
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1. Introduction: Why multiple objectives make a difference

2. Basic Principles: Terms one needs to know

3. Algorithm Design: Do it yourself

4. Performance Assessment: How to compare algorithms

5. Applications Domains: Where EMO is useful

6. Further Information: What else
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0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.75

3.25

3.5

3.75

4

4.25

Once Upon a Time...Once Upon a Time...

... multiobjective EAs were mainly compared visually:

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II
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Theoretically (by analysis): difficult

Limit behavior (unlimited run-time resources)
Running time analysis

Empirically (by simulation): standard

Problems: randomness, multiple objectives
Issues: quality measures, statistical testing, visualization, 

benchmark problems, parameter settings, …
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Attainment function approach:

Applies statistical tests directly 
to the samples of approximation 
sets
Gives detailed information 
about how and where 
performance differences occur

Quality indicator approach:

First, reduces each 
approximation set to a single 
value of quality
Applies statistical tests to the 
samples of quality values
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three runs of two multiobjective optimizers

frequency of attaining regions
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50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

1.2 1.4 1.6 1.8 2

1.15

1.2

1.25

1.3

1.35
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A Kolmogorov-Smirnov test 
examines the maximum 
difference between two 
cumulative distribution functions

A KS-like test can be used to 
probe differences between the 
empirical attainment functions 
of a pair of optimizers, A and B

The null hypothesis is that the 
attainment functions of A and B
are identical

The alternative hypothesis is 
that the distributions differ 
somewhere

[Fonseca et al. 2001]
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IBEA – NSGA-II
significant difference (p=0)

IBEA – SPEA2
significant difference (p=0)

SPEA2 – NSGA-II
significant difference (p=0)

ZDT6 Knapsack

IBEA – NSGA-II
no significant difference

IBEA – SPEA2
no significant difference

SPEA2 – NSGA-II
no significant difference
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Goal: compare two Pareto set approximations A and B

Comparison method C = quality measure(s) + Boolean function

reduction             interpretation                   

A
B

Rn
quality

measure
Boolean
function statementA, B

hypervolume 432.34 420.13
distance 0.3308      0.4532
diversity 0.3637 0.3463
spread 0.3622 0.3601
cardinality 6 5          

A                   B

“A better”
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Two solutions: 
E(a,b) = 

max1≤ i ≤ n minε ε ⋅ fi(a) ≥ fi(b)

1 2 4

A

B2
1

E(A,B) = 2
E(B,A) = ½

Two approximations:
E(A,B) = 

maxb ∈ B mina ∈ A E(a,b)

a

b2
1

E(a,b) = 2
E(b,a) = ½

1 2

Unary quality indicator: I(A) = E(A,R) where R is a reference set
[Zitzler et al. 2003]
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strictly better                             not weakly better   not better        weakly better

Important: compliance with dominance relations [Zitzler et al. 2003]
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IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2

DTLZ2

ZDT6

1 2 3
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

1 2 3
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

1 2 3
0

0.02
0.04
0.06
0.08

0.1
0.12

1 2 3
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3

0.2
0.4
0.6
0.8

1 2 3

0.1
0.2
0.3
0.4

1 2 3

0.02
0.04
0.06
0.08

1 2 3
0

0.002
0.004
0.006
0.008

1 2 30
0.00002
0.00004
0.00006
0.00008

0.0001
0.00012
0.00014

Knapsack

epsilon indicator        hypervolume R indicator

[Fonseca et al. 2005]

© Eckart Zitzler
ETH Zürich

GECCO 2006
Tutorial on EMOExample: Box PlotsExample: Box Plots

IBEA NSGA2 SPEA2 IBEA NSGA2 SPEA2 IBEA NSGA2 SPEA2

DTLZ2

ZDT6

1 2 3
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

1 2 3
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

1 2 3
0

0.02
0.04
0.06
0.08

0.1
0.12

1 2 3
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3

0.2
0.4
0.6
0.8

1 2 3

0.1
0.2
0.3
0.4

1 2 3

0.02
0.04
0.06
0.08

1 2 3
0

0.002
0.004
0.006
0.008

1 2 30
0.00002
0.00004
0.00006
0.00008

0.0001
0.00012
0.00014

Knapsack

epsilon indicator        hypervolume R indicator

[Fonseca et al. 2005]

© Eckart Zitzler
ETH Zürich

GECCO 2006
Tutorial on EMOStatistical Assessment (Statistical Assessment (KruskalKruskal Test)Test)

ZDT6
Epsilon

DTLZ2
R

11SPEA2

~01NSGA2

~0~0IBEA

SPEA2NSGA2IBEA

Overall p-value = 6.22079e-17.
Null hypothesis rejected (alpha 0.05)

is better than

~01SPEA2

11NSGA2

~0~0IBEA

SPEA2NSGA2IBEA

Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05)

is better than

Knapsack/Hypervolume:H0 = No significance of any differences
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http://www.tik.ee.ethz.ch/pisahttp://www.tik.ee.ethz.ch/pisa

Reference set
calculation
Attainment
function
calculation
Indicators
Statistical
testing
procedures

Population Plots

Surface Plots

Comparison

Box Plots

Comparison

runs

bound

normalize

filter

eaf

eaf-test

indicators
(eps, hyp, r)

statistics
(fisher, kruskal, mann, wilcoxon)
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1. Introduction: Why multiple objectives make a difference

2. Basic Principles: Terms one needs to know

3. Algorithm Design: Do it yourself

4. Performance Assessment: How to compare algorithms

5. Applications Domains: Where EMO is useful

6. Further Information: What else
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Kosten

Latenz
Strom-

verbrauch

SpecificationSpecification OptimizationOptimization ImplementationImplementation

Überleben
Überleben

Mutation
Mutation

x2

x1

f

Fortpflanzung
Fortpflanzung

Rekombination
Rekombination

EvaluationEvaluation

Examples: computer design, biological experiment design, etc.
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0 b 10000 b 20000 b 30000 b 40000 b 50000 b 60000 b 70000 b 80000 b 90000 b

SNPs

Heuristic
f1 908.1

f2 160

snp#: 40

SPEA2 #1
f1 601.4

f2 117

snp#: 35

SPEA2 #2
f1 665.7

f2 129

snp#: 36

SPEA2 #3
f1 1051.6

f2 162

snp#: 43

SPEA2 #4
f1 2039.8

f2 181

snp#: 85

Architecture exploration:
min. cost
max. performance
min. power consumption

[Eisenring, Thiele, Zitzler 2000]

Genetic marker selection:
min. cost
max. sensitivity

[Hubley, Zitzler, Roach 2003]
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Problem: Trees grow rapidly
Premature convergence
Overfitting of training data

Common approaches:
Constraint
(tree size limitation)
Penalty term
(parsimony pressure) 
Objective ranking
(size post-optimization)

Structure-based (ADF, etc.)

Multiobjective approach:
Optimize both error and size

error

tree size

Keep and optimize small trees
(potential building blocks)
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Multiobjective approach
(SPEA2) can find

a correct solution
with higher probability

a correct solution
slightly faster

more compact 
(correct) solutions 

than alternative approaches on
even-parity problem.

[Bleuler et al. 2001]
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1. Introduction: Why multiple objectives make a difference

2. Basic Principles: Terms you need to know

3. Algorithm Design: Do it yourself

4. Performance Assessment: Once upon a time

5. Applications Domains: Where EMO is useful

6. Further Information: What else
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SPEA2

NSGA-II

PAES

Algorithms                                          Applications 

knapsack

TSP

network
design

text-based
Platform and programming language independent Interface

for Search Algorithms [Bleuler et al.: 2003]
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selector
process
selector
process

text
files

shared
file 

system

shared
file 

system

variator
process
variator
process

application independent:
mating / environmental 
selection
individuals are 
described
by IDs and objective 
vectors

handshake protocol:
state / action
individual IDs
objective vectors
parameters

application dependent:
variation operators
stores and manages 
individuals
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http://www.tik.ee.ethz.ch/pisahttp://www.tik.ee.ethz.ch/pisa
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knapsack_nsga2.10

variator: knapsack
selector: nsga2
generation: 10
all runs
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Links:
EMO mailing list:
http://w3.ualg.pt/lists/emo-list/
EMO bibliography:
http://www.lania.mx/~ccoello/EMOO/

Events:
Conference on Evolutionary Multi-Criterion Optimization
(EMO 2007 to be held in Japan)

Books:
Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001
Evolutionary Algorithms for Solving Multi Evolutionary Algorithms for 
Solving Multi-Objective Problems Objective Problems, Carlos A. Coello
Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2002
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