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intro goals

Scientific Goals?

Figure: Nostradamus

• Why is astronomy considered
scientific—and astrology not?

• And what about experimental research in
EC?
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intro goals

Goals in Evolutionary Computation

(RG-1) Investigation. Specifying optimization problems, analyzing
algorithms. Important parameters; what should be optimized?

(RG-2) Comparison. Comparing the performance of heuristics

(RG-3) Conjecture. Good: demonstrate performance. Better: explain
and understand performance

(RG-4) Quality. Robustness (includes insensitivity to exogenous
factors, minimization of the variability) [Mon01]
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intro goals

Goals in Evolutionary Computation

• Given: Hard real world optimization problems, e.g., chemical engineering,
airfoil optimization, bioinformatics

• Many theoretical results are too abstract, do not match with reality

• Real programs, not algorithms

• Develop problem specific algorithms, experimentation is necessary

• Experimentation requires statistics
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intro history

A Totally Subjective History of Experimentation in
Evolutionary Computation

• Palaeolithic

• Yesterday

• Today

• Tomorrow
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intro history

Stone Age: Experimentation Based on Mean Values

• First phase (foundation and development, before 1980)

• Comparison based on mean values, no statistics

• Development of standard benchmark sets (sphere function etc.)

• Today: Everybody knows that mean values are not sufficient
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intro history

Stone Age Example: Comparison Based on Mean
Values

Example (PSO swarm size)

• Experimental setup:
• 4 test functions: Sphere, Rosenbrock, Rastrigin, Griewangk
• Initialization: asymmetrically
• Termination: maximum number of generations
• PSO parameter: default

• Results: Table form, e.g.,

Table: Mean fitness values for the Rosenbrock function

Population Dimension Generation Fitness

20 10 1000 96,1725
20 20 1500 214,6764

• Conclusion: “Under all the testing cases, the PSO always converges very
quickly”
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intro history

Yesterday: Mean Values and Simple Statistics

• Second phase (move to mainstream,
1980-2000)

• Statistical methods introduced, mean
values, standard deviations, tutorials

• t test, p value, . . .

• Comparisons mainly on standard
benchmark sets

• Questionable assumptions (NFL)
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intro history

Yesterday: Mean Values and Simple Statistics

Example (GAs are better than other algorithms (on average))

Figure: [Gol89]

Theorem (NFL)
There is no algorithm that is
better than another over all
possible instances of
optimization problems
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intro history

Today: Based on Correct Statistics

• Third phase (Correct statistics, since 2000)
• Statistical tools for EC
• Conferences, tutorials, workshops, e.g., Workshop

On Empirical Methods for the Analysis of
Algorithms (EMAA)
(http://www.imada.sdu.dk/~marco/EMAA )

• New disciplines such as algorithm engineering

• But: There are three kinds of lies: lies, damned
lies, and statistics (Mark Twain or Benjamin
Disraeli), why should we care?

• Because it is the only tool we can rely on (at the
moment,i.e., 2006)
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intro history

Today: Based on Correct Statistics

Example (Good practice)

Figure: [CAF04]
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intro history

Today: Based on Correct Statistics

Example (Good practice?)

• Authors used
• Pre-defined number of

evaluations set to 200,000
• 50 runs for each algorithm
• Population sizes 20 and 200
• Crossover rate 0.1 in

algorithm A, but 1.0 in B
• A outperforms B significantly

in f6 to f10

• We need tools to
• Determine adequate number of

function evaluations to avoid floor or
ceiling effects

• Determine the correct number of
repeats

• Determine suitable parameter
settings for comparison

• Determine suitable parameter
settings to get working algorithms

• Draw meaningful conclusions
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intro history

Today: Based on Correct Statistics

• We claim: Fundamental ideas from statistics are misunderstood!

• For example: What is the p value?

Definition (p value)
The p value is the probability that the null hypothesis is true

Definition (p value)
The p value is the probability that the null hypothesis is true. No!

Definition (p value)
The p value is p = P{ result from test statistic, or greater | null model is true }

• ⇒ The p value is not related to any probability whether the null
hypothesis is true or false
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intro history

Tomorrow: Correct Statistics and Correct Conclusions

• Adequate statistical methods, but wrong scientific conclusions

• Tomorrow:
• Consider scientific

meaning
• Severe testing as a

basic concept
• First Symposium on

Philosophy, History, and
Methodology of Error,
June 2006

Scientific inquiry or problem

How to generate and analyze 
empirical observations and 
to evaluate scientific claims

Model of
hypotheses

Model of ex-
perimental test

Model of
data

Statistical inquiry: Testing hypotheses

(1) (2) (3)
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intro history

Tomorrow: Correct Statistics and Correct Conclusions

• Generally: Statistical tools to decide whether a is better than b are
necessary

• Today: Sequential parameter optimization (SPO)
• Heuristic, but implementable approach
• Extension of classical approaches from statistical design of experiments

(DOE)
• Other (better) approaches possible
• SPO uses plots of the observed significance
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comparison observed significance

Tests and Significance

• Plots of the observed significance level based on [May83]

• Rejection of the null hypothesis H : θ = θ0 by a test T + based on an
observed average x

• Alternative hypothesis J : θ > θ0

Definition (Observed significance level)
The observed significance level is defined as

α(x , θ) = α̂(θ) = P(X ≥ x |θ) (1)
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comparison observed significance

Plots of the Observed Significance

• Observed significance level

α(x , θ) = α̂(θ) = P(X ≥ x |θ)

• Observed average x = 51.73
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• Rejection of the null hypothesis

H : θ = θ0 = 0

by a test T + in favor of an alterna-
tive

J : θ > θ0

Then α̂(θ) = 0.0530

• Interpretation: Frequency of
erroneously rejecting H
(“there is a difference in
means as large as θ0 or
larger”) with such an x
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comparison observed significance

Small α Values

• Rejecting H with a T + test with a small size α indicates that J : θ > θ0

• If any and all positive discrepancies from θ0 are scientifically important
⇒ small size α ensures that construing such a rejection as indicating a
scientifically important θ would rarely be erroneous

• Problems if some θ values in excess of θ0 are not considered
scientifically important

• Small size α does not prevent a T + rejection of H from often being
misconstrued when relating it to the scientific claim

• ⇒ Small α values alone are not sufficient
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comparison observed significance

Largest Scientifically Unimportant Values

• [May83] defines θun the largest scientifically unimportant θ value in
excess of θ0

• But what if we do not know θun?

• Discriminate between legitimate and illegitimate construals of statistical
results by considering the values of α̂(θ′) for several θ′ values
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comparison observed significance

OSL Plots
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Figure: Plots of the observed difference. Left : This is similar to Fig. 4.3 in [May83].
Based on n = 50 experiments, a difference x = 51.3 has been observed, α̂(θ) is the
area to the right of the observed difference x . Right : The α̂(θ) value is plotted for
different n values.
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comparison observed significance

OSL Plots
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Figure: Same situation as above,
bootstrap approach

• Bootstrap procedure ⇒ no
assumptions on the
underlying distribution
necessary

• Summary:
• p value is not sufficient
• OSL plots one tool to derive

meta-statistical rules
• Other tools needed
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comparison beyond nfl

The Art of Comparison
Orientation

The NFL1 told us things we already suspected:

• We cannot hope for the one-beats-all algorithm (solving the general
nonlinear programming problem)

• Efficiency of an algorithm heavily depends on the problem(s) to solve and
the exogenous conditions (termination etc.)

In consequence, this means:

• The posed question is of extreme importance for the relevance of
obtained results

• The focus of comparisons has to change from:

Which algorithm is better?

to

What exactly is the algorithm good for?

1no free lunch theorem
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comparison beyond nfl

The Art of Comparison
Efficiency vs. Adaptability

Most existing experimental studies focus on the efficiency of optimization
algorithms, but:

• Adaptability to a problem is not measured, although

• It is known as one of the important advantages of EAs

Interesting, previously neglected aspects:

• Interplay between adaptability and efficiency?

• How much effort does adaptation to a problem take for different
algorithms?

• What is the problem spectrum an algorithm performs well on?

• Systematic investigation may reveal inner logic of algorithm parts
(operators, parameters, etc.)
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spo similarities

Similarities and Differences to Existing Approaches

• Agriculture, industry: Design of
Experiments (DoE)

• Evolutionary algorithms:
Meta-algorithms

• Algorithm engineering:
Rosenberg Study (ANOVA)

• Statistics: Design and Analysis of
Computer Experiments (DACE)
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spo basics

Designs

• Sequential Parameter Optimization based on
• Design of Experiments (DOE)
• Design and Analysis of Computer Experiments (DACE)

• Optimization run = experiment

• Parameters = design variables or factors

• Endogenous factors: modified during the algorithm run
• Exogenous factors: kept constant during the algorithm run

• Problem specific
• Algorithm specific
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spo basics

Algorithm Designs

Example (Algorithm design)
Particle swarm optimization. Set of exogenous strategy parameters

• Swarm size s

• Cognitive parameter c1

• Social parameter c2

• Starting value of the inertia weight wmax

• Final value of the inertia weight wscale

• Percentage of iterations for which wmax is reduced

• Maximum value of the step size vmax
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spo basics

Problem Designs

Example (Problem design)
Sphere function

∑d
i=1 x2

i and a set
of d-dimensional starting points
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• Tuning (efficiency):

• Given one problem instance
⇒ determine improved
algorithm parameters

• Robustness (effectivity):
• Given one algorithm ⇒ test

several problem instances
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spo overview

SPO Overview

• Pre-experimental planning

• Scientific thesis

• Statistical hypothesis

• Experimental design: Problem, constraints, start-/termination criteria,
performance measure, algorithm parameters

• Experiments

• Statistical model and prediction (DACE). Evaluation and visualization
• Solution good enough?

Yes: Goto step 1
No: Improve the design (optimization). Goto step 1

• Acceptance/rejection of the statistical hypothesis

• Objective interpretation of the results from the previous step
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spo models

Statistical Model Building and Prediction
Design and Analysis of Computer Experiments (DACE)

• Response Y : Regression model and random process

• Model:
Y (x) =

∑
h

βhfh(x) + Z (x)

• Z (·) correlated random variable
• Stochastic process.
• DACE stochastic process model

• Until now: DACE for deterministic functions, e.g. [SWN03]

• New: DACE for stochastic functions
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spo models

Expected Model Improvement
Design and Analysis of Computer Experiments (DACE)

Figure: Axis labels left: function value, right: expected improvement. Source: [JSW98]

(a) Expected improvement: 5 sample points

(b) Another sample point x = 2.8 was added
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spo heuristic

Heuristic for Stochastically Disturbed Function Values

• Latin hypercube sampling (LHS) design: Maximum spread of starting
points, small number of evaluations

• Sequential enhancement, guided by DACE model

• Expected improvement: Compromise between optimization (min Y ) and
model exactness (min MSE)

• Budget-concept: Best search point are re-evaluated

• Fairness: Evaluate new candidates as often as the best one

Table: SPO. Algorithm design of the best search points

Y s c1 c2 wmax wscale witer vmax Conf. n

0.055 32 1.8 2.1 0.8 0.4 0.5 9.6 41 2
0.063 24 1.4 2.5 0.9 0.4 0.7 481.9 67 4
0.066 32 1.8 2.1 0.8 0.4 0.5 9.6 41 4
0.058 32 1.8 2.1 0.8 0.4 0.5 9.6 41 8
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spo heuristic

Data Flow and User Interaction

• User provides parameter ranges and tested algorithm

• Results from an LHS design are used to build model

• Model is improved incrementally with new search points

• User decides if parameter/model quality is sufficient to stop
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spot demo

SPO in Action

• Sequential Parameter Optimization Toolbox (SPOT)

• Introduced in [BB06]

• Software can be downloaded
from http://ls11-www.cs.uni-dortmund.de/people/tom/
ExperimentalResearchPrograms.html
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spot community

SPOT Community

• Provide SPOT interfaces for
important optimization algorithms

• Simple and open specification

• Currently available (April 2006) for
the following products:

Program Language
Evolution Strategy JAVA, MATLAB http://www.springer.com/

3-540-32026-1
Genetic Algorithm and Direct
Search Toolbox

MATLAB http://www.mathworks.com/
products/gads

Particle Swarm Optimization Tool-
box

MATLAB http://psotoolbox.
sourceforge.net
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spot discussion

Discussing SPO

• SPO is not the final solution—it is one possible (but not necessarily the
best) solution

• Goal: continue a discussion in EC, transfer results from statistics and the
philosophy of science to computer science
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parametrized performance parametrized algorithms

What is the Meaning of Parameters?
Are Parameters “Bad”?

Cons:

• Multitude of parameters dismays potential users

• It is often not trivial to understand parameter-problem or
parameter-parameter interactions

⇒ Parameters complicate evaluating algorithm performances

But:

• Parameters are simple handles to modify (adapt) algorithms

• Many of the most successful EAs have lots of parameters

• New theoretical approaches: Parametrized algorithms / parametrized
complexity, (“two-dimensional” complexity theory)
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parametrized performance parametrized algorithms

Possible Alternatives?

Parameterless EAs:

• Easy to apply, but what about performance and robustness?

• Where did the parameters go?

Usually a mix of:

• Default values, sacrificing top performance for good robustness

• Heuristic rules, applicable to many but not all situations Probably not
working well for completely new applications

• (Self-)Adaptation techniques, cannot learn too many parameter values at
a time, and not necessarily reduce the number of parameters

⇒ We can reduce number of parameters, but usually at the cost of either
performance or robustness
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parametrized performance parameter tuning

Parameter Control or Parameter Tuning?

The time factor:

• Parameter control: during algorithm run

• Parameter tuning: before an algorithm is run

But: Recurring tasks, restarts, or adaptation (to a problem) blur this distinction

t

operator modifiedparameter tuning

parameter control

And: How to find meta-parameter values for parameter control?
⇒ Parameter control and parameter tuning

Bartz-Beielstein/Preuss (Universität Dortmund) Experimental Research July, 9th 2006 39 / 51

parametrized performance parameter tuning

Tuning and Comparison
What do Tuning Methods (e.g. SPO) Deliver?

• A best configuration from {perf (alg(argexo
t ))|1 ≤ t ≤ T} for T tested

configurations

• A spectrum of configurations, each containing a set of single run results

• A progression of current best tuning results
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parametrized performance parameter tuning

How do Tuning Results Help?
...or Hint to new Questions

What we get:

• A near optimal configuration, permitting top performance comparison

• An estimation of how good any (manually) found configuration is

• A (rough) idea how hard it is to get even better

No excuse: A first impression may be attained by simply doing an LHS

Yet unsolved problems:

• How much amount to put into tuning (fixed budget, until stagnation)?

• Where shall we be on the spectrum when we compare?

• Can we compare spectra (⇒ adaptability)?
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parametrized performance performance measuring

“Traditional” Measuring in EC
Simple Measures

• MBF: mean best fitness
• AES: average evaluations to solution
• SR: success rates, SR(t) ⇒ run-length distributions (RLD)
• best-of-n: best fitness of n runs

But, even with all measures given: Which algorithm is better?

(figures provided by Gusz Eiben)
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parametrized performance performance measuring

Aggregated Measures
Especially Useful for Restart Strategies

Success Performances:

• SP1 [HK04] for equal expected lengths of successful and unsuccessful
runs E(T s) = E(T us):

SP1 =
E(T s

A)

ps
(2)

• SP2 [AH05] for different expected lengths, unsuccessful runs are stopped
at FEmax :

SP2 =
1− ps

ps
FEmax + E(T s

A) (3)

Probably still more aggregated measures needed (parameter tuning depends
on the applied measure)
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parametrized performance performance measuring

Choose the Appropriate Measure

• Design problem: Only best-of-n fitness values are of interest

• Recurring problem or problem class: Mean values hint to quality on a
number of instances

• Cheap (scientific) evaluation functions: exploring limit behavior is
tempting, but is not always related to real-world situations

In real-world optimization, 104 evaluations is a lot, sometimes only 103 or less
is possible:

• We are relieved from choosing termination criteria

• Substitute models may help (Algorithm based validation)

• We encourage more research on short runs

Selecting a performance measure is a very important step
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report&visualize reporting experiments

Current “State of the Art”

Around 40 years of empirical tradition in EC, but:

• No standard scheme for reporting experiments

• Instead: one (“Experiments”) or two (“Experimental Setup” and “Results”)
sections in papers, providing a bunch of largely unordered information

• Affects readability and impairs reproducibility

Other sciences have more structured ways to report experiments, although
usually not presented in full in papers. Why?

• Natural sciences: Long tradition, setup often relatively fast, experiment
itself takes time

• Computer science: Short tradition, setup (implementation) takes time,
experiment itself relatively fast

⇒ We suggest a 7-part reporting scheme
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report&visualize reporting experiments

Suggested Report Structure

ER-1: Focus/Title the matter dealt with
ER-2: Pre-experimental planning first—possibly explorative—program

runs, leading to task and setup
ER-3: Task main question and scientific and derived statistical hypotheses to

test
ER-4: Setup problem and algorithm designs, sufficient to replicate an

experiment
ER-5: Experimentation/Visualization raw or produced (filtered) data and

basic visualizations
ER-6: Observations exceptions from the expected, or unusual patterns

noticed, plus additional visualizations, no subjective assessment
ER-7: Discussion test results and necessarily subjective interpretations for

data and especially observations

This scheme is well suited to report 12-step SPO experiments
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report&visualize visualization

Objective Interpretation of the Results
Comparison. Run-length distribution
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report&visualize visualization

(Single) Effect Plots
Useful, but not Perfect

• Large variances originate from averaging
• The τ0 and especially τ1 plots show different behavior on extreme values

(see error bars), probably distinct (averaged) effects/interactions
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report&visualize visualization

One-Parameter Effect Investigation
Effect Split Plots: Effect Strengths

• Sample set partitioned into 3 subsets (here of equal size)

• Enables detecting more important parameters visually

• Nonlinear progression 1–2–3 hints to interactions or multimodality
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Two-Parameter Effect Investigation
Interaction Split Plots: Detect Leveled Effects
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Updates

• Please check
http://ls11-www.cs.uni-dortmund.de/people/tom/
ExperimentalResearchSlides.html

for updates, software, etc.
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