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Understanding GP Search Behaviour
with Empirical Studies

We can perform many GP runs with a

set of problems and a set of parameters

We record the variations of numerical
descriptors.

Then, we about the
behaviour of the system that are compatible
with (and could explain) the empirical
observations.
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_ iolplom vl gzl SdEs Example: Bloat

GP is a complex adaptive system with zillions - \N}/Eithout (significant) return in
of degrees of freedom. terms ot Hitness. £.g.

Avg size —

So, any small number of descriptors can Y g e
capture only a fraction of the complexities of '
such a system.

which problems, parameter settings
and to use is an art form.

Generations

about GP’s behaviour, rather than clarify it. Bloat exists and continues forever, right?

Why do we need mathematical theory?

Empirical studies are
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Grammar
GP search spaces

Representation
E — PE
E — PyFEFE

oy E — P, E---E

mov R1 R2 Po  — po1l|poz]| - |popy

mov R1 R2||add R1 2||jump 1 Pr = pulpie| o ey

|
addIRl 72

opcode opcode |opcode GP primitives

Jjump 1

Pomax  —  Pamaxl | Pamax2 |+ | Payu P,

imax |
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Example

P={z,y,,/,+: x}
73 - U“ Pu =Primitive Set Amax = 2’ ,PU = {417,;1/}, 7)1 - {\/_} ,PZ - {*F. X}

QZ = Set of trees of depth at most d Qb = {z,y}

2
Q= Pr.o@)
a=0
Po @ P @ Q) &Py Q) @ Q)
v,y e {/ e {ry} e {+ x} @ {2y}

Union Cartesian product e
X xY ={(z,y)lr e Xandy Y} f{l .y}

|

={xy (\x), (\y), (+xx), (+xx), (+x ), (+y x),
(+yy), (+xx), (xxX), (Xxy), (xyx), (Xyy)}




P How many programs in the search
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=0 space?
= {nyte{/lete{+ x}o o] p—
= {z,y}
& {/}o{ey
{zf Fe{y ) e {z, v} ng = Number of trees of depth at
{yIe{+x}e{zy} e {z,y} most d
{4, x} @ (2,9} ® {z,)
{+xje{/re{zy}o{zy}
5 %} 0 {+ x} @ 2,9} @ (2,9} @ {2} .
 {+rox} e {ny) o () @ (o) . D .,
 {exdelytelnn oty ) mo=[Pol  ma= D [Pal x (a-)
 {+ox}e{+. x}@{rv} @ {zyt @ {/} &{z v}
{+. x}o{e,y} o {+ x} @ {z,y} @ {z,y}
{+} @ ()@ o) @ {4+, %} @ {2,y) @fx,y)
{+od o+ <t e{e gt ooyt o {+ < tafz v} @ {z,y}
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T
Quintic, Sextic Polynomial

iy — GP cannot possibly work!

Doubly logarithmic scale Binary Trees -

The GP search space is immense, and so any
search algorithm can only explore a tiny
fraction of it (e.g. 1071000 %),

Does this mean GP cannot possibly work?

Number of Programs (log 10)

Exponentials Not necessarily.

We need to know the between the size
of solution space and the size of search space

1 1
100 1000
Program Size Courtesy Bill Langdon
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Sextic polynomial

Proportion //%/ —

-
2

100,000
10, 1000

100

Mean Error A y 3

Courtesy Bill Langdon Courtesy Bill Langdon
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Artificial Ant Limiting distribution

Empirically is has been shown that as program
length grows the distribution of functionality
reaches a limit

] o 2> So, beyond a certain length, the proportion of
] |“ f : ~ ~ programs which solve a problem is constant
| I 0 o
_‘Hg | H‘w‘ | \|” il . ) Since there are exponentially many more long
H) ‘H\‘ ‘H\‘ HH‘M T programs than short ones, in GP
3 ‘\‘m e ‘ . '
I ‘HH‘ I

50
Program Length PI‘OOfS ?
Fitness

Courtesy Bill Langdon
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Memory Program

OR 6 3 3 C . . .
1/ register NAND , Memory is initially zero (except input registers).

Input and output registers are part of memory.

OR 3 Linear GP program is a sequence of instructions.
Pl'Og[ﬁlll counter —> | AND

CPU fetches operands from memory, performs
operation and writes answer into memory

AND (overwriting previous contents).

OR

3 When a program stops, the final answer can be
NAND 2 5 3 read from the output register.

AND

Courtesy Bill Langdon
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States, inputs and outputs Instructions

Assume 7 bits of memory of which k are Each instruction changes the state of the machine

. . . [ U ] ]
input bits and / are output bits from a state s to a new s', so instructions are maps

from binary strings to binary strings of length n

There are 2" states. . .
E.g. ifn=2, is represented as

At each time step the machine is in a state, s

By setting the inputs (and zeroing the rest)
we can place the machine in 2% different
initial states s, ... s,« out of the 2" available
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Behaviour of programs

A program is a sequence of instructions For example,

So also the can be
described as a mapping from initial states s, to
corresponding final states s';
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Does the behaviour tend to a limiting
distribution?

Two primitives:
..

Identity function
(no instruction
executed yet)

.

A
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Probability tree

Identity

/\
/\ /\
/\ /\ /\ /\
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Yes....

..for this primitive set the distribution tends
to a limit where only behaviour C has non-
zero probability.

Programs in this search space tend to copy
the initial value of m1 into m0.

R. Poli - University of Essex

Behaviour vs. functionality

If the number of input bits k is smaller than n,
since we zero the remaining bits, only 2%
different initial states s, ... sy« out of the 2"
available are possible.

So the can be
described as a mapping from the input states
s; to corresponding final states s';

(not necessarily distinct)
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Often there are more memory bits than output bits

NIoR s'; from
the output viewpoint.
Therefore, the functionality of a program is a

with k inputs and & outputs.
So, functionality is a coarse-grained version of
behaviour
The can be
derived from the limiting distribution for
behaviour.

July 2006

July 2006

Example

Two primitives:

Inputs: m0 and m1

Output: m1

Behaviours B = [o o]t ][1[1]of1]1]
C=TloJoli]ifoJofu]r]

and Identity = o To o 1 [1]o1]1]
4 + ¢ )

are indistinguishable
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Markov chain proofs of limiting
distribution

Using Markov chain theory Bill Langdon has
proven that a limiting distributions of functionality
exists for a large variety of CPUs

These include:
Cyclic. Increment, decrement and NOP.
Bit flip. Flip bit, and NOP.
Any non-reversible
Any reversible
CCNOT (Toffoli gate).
The “average” computer
AND, NAND, OR, NOR

10



So what?

There are from linear Generally instructions ""lose information".
to tree-based GP. Unless inputs are protected, almost all long

See Foundations of Genetic Programming programs are constants.
book for an introduction to the proof Write protecting inputs makes linear GP
techniques. more like tree GP.

No point searching above threshold?

Predict where threshold is? Ad-hoc or
theoretical.
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Implication of
Isolution spacel/Isearch spacel=constant What about Turing complete GP?

GP can win if
the is not too small or , but what is the effect search space

there is in the search space to guide the and fitness?
SN O Does the distribution of functionality of
the search operators are towards searching Turing complete programs tend to a limit as

solution-rich areas of the search space programs get bigger?

or any combination of the above.
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T7 Minimal Turing Complete CPU T7 Architecture

Memory (12 bytes=96bits)

7 instructions
Arithmetic unit is ADD. From + all other
operations can be obtained. E.g. 1 Program counter
Boolean logic
SUB, by adding complement
Multiply, by repeated addition (subroutines)
Conditional (Branch if oVerflow flag Set)
Move data in memory

CPU
Overflow flag
—l

ADD

ADD 72,27
STi 26,

Save and restore Program Counter (i.e. Jump)

f
1
L

Stop if reach end of program
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Experiments Almost all T7 Programs Loop

17 Looping and Non-Looping Prograns
Programs known hot to Halt —+—

Chose set of program lengths 30 to 16777215 fret i e
Generate 1000 programs of each length

There are too many programs to test them all.
Instead we gather statistics on random samples.

Run them from random start point with random
input

Fraction

Program terminates if it obeys the last instruction
and this is not a jump

How many stop?

10000 100000 12407

Frogran lencth 1angdon/5p/t 5/
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Model of Random Programs Model of Random Programs

Before any repeated instructions; T7 instruction set chosen to have little bias.

random sequence of instructions and L.e. every state is =equally likely.

Overflow flag set half the time.

So 50% of conditional jumps BVS are active.
(1+0.5)/7 instructions takes program counter
to a random location.

random contents of memory.

1 in 7 instructions is a jump to a random
location

Implies for long programs, lengths of
continuous instructions (i.e. without jumps)
follows a geometric distribution with mean
7/1.5=4.67

R. Poli - University of Essex

Program segment = random code

ending with a random jump Forming Loops:Segments model

Segments model assumes whole program is
broken into segments of equal
length of continuous instructions.

Last instruction of each is a random jump.

L By the end of each segment, memory is re-
R’ randomised.
JUMP or active BVS Jump to any part of a segment, part of which
has already been run, will form a
Jump to any part of the last segment will
the program.

Sequential code

Random Jump




| ————
Proportion of programs without loops
Probability of Halting falls as 1/sqrt(length)

lengtir-Lrd ——
s

1 segments run so far. Chance next segment

will o B
Form first loop = i/N
Halt program = 1/N x scaling
(so 1-(i+1)/N continues)

Chance of halting immediately after segment i

= X

Total halting probability given by adding these
gives e

Average run time (non-looping) Run time on terminating programs

Segments model allows us to compute a bound A
for runtime

Expected 0| segment mod

rs by halting

memory becoming
non-random

Evaluabed instructio
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Markov model: States

State 0 = no instructions executed, yet

State 1 = 1 instructions but no loops have been
executed

Sink state = at least one loop was executed

Halt state = the last instruction has been
successfully executed and PC has gone
beyond it.
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Executed 0
instructions
Executed L-1 H (state 0)
instructions
\ (state L-1) | C)

1

_/

Executed 1
instructions
(state 1)
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Event diagram for program execution 1/2

Executed i
instructions
(state i)

p3

New Instruction

"\ New Instruction
\j Found after Jump

after Jump

Executed i+l Executed i+l SINK Executed i+l SINK
instructions instructions instructions
(state i+1) (state i+1) (state i+1)
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p,; = probability of being the last
instruction

Program execution starts from a random
position

Memory is randomly initialised and, so, any
jumps land at random locations

Then, the probability of being at the last
instruction in a program is independent of
how may (new) instructions have been
executed so far.

So,
P11 =

1
L

15



p, = probability of instruction causing
a jump

We assume that we have two types of jumps

(prob. p,;, where PC is given
a value retrieved from memory or from a register
(prob. p,;)
Flag bit (which causes conditional jumps) is
set with probability p,
The total probability that the current
instruction will cause a jump is

D2 = Duj + Dej X Pf

. - N _ 1 _ 1 _ L oy _ 3
For the CPU T7, we set py; = %, pej = 7, and py = 5, whereby ps =

July 2006 R. Poli - University of Essex

p, = probability of new instruction
after non-jump

The more jumps we have executed the more
the map of visited instructions will be
fragmented.

So, we should expect p, to decrease as a
function of the number of jumps/fragments.

Expected number of fragments (jumps) in a
program having reached state i
ElJ] =ixps=1iX (puj +Dej X Py)

In the case of T7 this gives us E[J] = 2%

p;= probability of new instruction after
jump
Program counter after a jump is a random
number between | and L
So, the probability of finding a new
instruction is
L—1

p3 = 7

July 2006 R. Poli - University of Essex

Each block will be preceded by at least one
unvisited instruction
So, the probability of a previously executed
instruction after a non-jump is

J

16
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A more precise model considers the
probability of blocks being contiguous.

Expected number of actual blocks

E[B] ~ max (E[.]} — MU)

2(L —i)

L-E[B]-i-1
oy = ————
e L—i—1
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Less than L-1 instructions visited

1— Puj + Pej X Dy

p(i — halt) = p1(1 —po) = T

For T7, p(i — halt) = ﬁ

p(i — sink) = pipa(1 —p3) + (1 = p1)pa(l — p3) + (1 — p1)(1 — p2)(1 — p4)

p(i —i+1) = pipaps+ (1 —p1)paps + (1 — p1)(1 — p2)pa

July 2006 R. Poli - University of Essex

Markov Model: state transition
probabilities

These are obtained by adding up “paths” in
the program execution event diagram

E.g. looping probability

July 2006 R. Poli - University of Essex

L-1 instructions visited

p(L —1 — halt) = pi(1 —p2)

p(L —1— sink) =pipa+ (1 —p1)

17
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Transition matrix Computing future state probabilities

For example, for T7 and L = 7 we obtain The distribution of future states can be
0 o 0 0 o 0 instructions computed bytaking appropriate powers of the

0 0 0 0 0 1 instructions . .
0.8312 0 0 0 0 B 2 instructions Markov matrix M
0 0.7647 0 0 0 0 3
0 0 06812 0 0 p
0 0 0 0566 0 5 instructions Dstates = M'x

0 0 0 0 0.3868 6 instructions
0.05655 0.1231  0.2065 0.3217  0.501 loop
01122 0.1122 0.1122 0.1122 0.1122 halt

“ = «
S - S
= = =
2 2 2
S S S
S S S
~ ~ )
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Examples Efficiency

For T7, L=7 and i=3 Computing halting probabilities requires a
potentially exponentially explosive

computation to perform (M%)
0.6356
; prob. looping in We reordered calculations to obtain very

0 3 instructions efficient models which allow us to compute

0.1589 o
- l prob. halting in

0.2055 . .
> 3 instructions and

executed by

Pstates =

For T7, L=7 and i=L halting programs
06364 for L = 10,000,000 or more (see paper for details)

\ 0.3636
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\ ,
Markov chain estimate —+ "Markov chain estimate "+
Programs which never loop -1 Programs which never loop -1

Halting probability 1

Instructions executed by halting programs

Instructions executed by halting programs

L L L L L L L
10 100 1000 10000 100000 1e+06 1e+07 1e+08
L

L L L L L
1000 10000 100000 1e+06 1e+07
L
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Improved model accounting for Number of halting programs
memory correlation rises exponentially with length

Nunber of Terninating T7 Prograns

17 Programs uhich stop Clower boundy ——

1100 000 000

w=t Doubly logarithmic scale

Log 10 Count,

100060

Instructions executed by halting programs

T7 CPU

Programs which never loop ——m-—1
Markov chain estimate (finite memory, improved p3) -~
*

Markov chain estimate (finite memory, improved p3 and pf)

100000 1 18407
1 angdon/gp/t5/%L7)

1000 10000 100000 1e+06 1e+07 1e+08
L




Turing complete GP cannot possibly
work? What can we do?

Control p(halt)
» SO Size population appropriately

Isolution spacel/Isearch spacel < p(halt) Design fitness functions which promote
In T7, p(halt) = 0, so, termination

Isolution spacel/Isearch spacel 2 0 Repair
Since the search space is immense,
Any mix of the above
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Controlling p(halt) Population sizing

Modify the probability of using jumps Programs that do not terminate are given zero

fitness

=1

So the effective population size in the initial
generation is

7 CPU 8

For evolution to work we must have at least
some halting individuals. So, we must choose
Popsize >> 1/ p(halt)

“hain predictions for the particular program length of interest.

i .
0.04 0.06 008 01
Probability of jump instructions

20
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Limiting distribution of functionality
for halting programs?

Non-looping programs halt

The distribution of instructions in non-

looping programs is the same as with a
primitive set without jumps

GP Search
Characterisation

July 2006

Limiting distribution of functionality
for halting programs?

So, as the number of instructions executed
grows, the distribution of functionality of
non-looping programs approaches a limit.

not
program length, tells us how close the
distribution is to the limit

E.g. for T7, very long programs have a tiny
subset of their instructions executed (e.g.,
1,000 instructions in programs of L =
1,000,000).

GA and GP search

GAs and GP search like this:

How can we (characterise, study and
predict) this search? Visualisation is not a solution

Understanding = science =>  better systems

21
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Microscopic Dynamical System Models Schema Theories

We represent the ina
multidimensional space, and we study the
of this point ( )

Characterise the schemata using

Divide the search space into

Model how and why the individuals in the
population from one subspace to

. . another ( ).
This leads to exact models with

(microscopic models).

July 2006 R. Poli - University of Essex R. Poli - University of Essex

Example Schema Theorist’s Questions

Q1: How should the search space be divided?
I.e. what is the right schema definition?

E.g. how about

The in a given schema H
at generation f, , s a good descriptor

A schema theorem models mathematically
from one generation to
the next.
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different definitions might be suitable for
different purposes, algorithms, etc.

Good definitions should:
have a simple syntactic representation (concise
notation)

make the calculations doable.

July 2006 R. Poli - University of Essex

Traditionally, the following quantities have
been used:

in a schema,

of the individuals in the
schema and in the population,

of the search space,
of the schema,

” w.r.t. crossover and mutation, etc.

July 2006 R. Poli - University of Essex

Q2: What are the right quantities one should
use to describe schemata?

We want quantities that lead to simple exact
or reasonably accurate mathematical
formulations.

Also, we want

(something equivalent to pressure, volume,
mass, temperature, entropy, etc. in physics).

July 2006 R. Poli - University of Essex

Q3: What is the right schema theorem?

EAs are non-deterministic, so exact predictions
of the future state of the search cannot be made.
However, the of an
algorithm can be predicted using probability.

Depending on the search space, on the schema
definition and on the macroscopic quantities
chosen,

. They have different explanatory
and predictive power.

23



Exact Schema Theorems

The process is a
: anewly created individual
either samples or does not sample a schema H.

So, m(H,t+1) 1s a binomial stochastic variable.

Given the of each trial
, an exact schema theorem is

E[m(H,t+1)] = M o(H, )

July 2006 R. Poli - University of Essex

GA Schema Theory

Pessimistic Schema Theorems

Finding an exact formulation for
O(H,t) can be very difficult

Initially researchers have come up
only with lower bounds which led to
¢ , 1.e.

Elm(H,t+1)] =M o, .(H,1)

min

R. Poli - University of Essex

Holland’s GA Schemata

In GAs operating on binary strings,
a is a string of symbols from the
alphabet , like *10*1.
is interpreted as a “ " symbol, so that,
, a schema represents a set of bit
strings.

E.g.

24
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Holland’s Schema Theorem

Holland's is approximate. It
provides a for or,
equivalently, for E[m(H,t+1)].

For one-point crossover and point mutation:

July 2006 R. Poli - University of Essex

Features:
The theorem includes an
It provides a
So, it is difficult to make accurate predictions

July 2006

July 2006

1s number of individuals in the schema H
at generation ¢,

is the population size,
is the selection probability for strings in H
at generation ¢,
is the mutation probability,
is the schema order, i.e. number of defining
bits,
is the crossover probability,

is the defining length, i.e. distance between
the furthest defining bits in H,

is the bitstring length.

R. Poli - University of Essex

The factor o differs in the different
formulation of the schema theorem:

- in (Holland, 1975),

- in (Goldberg, 1989),

= in (Whitley, 1994).

In 1997 Stephens and collaborators produced
an exact formulation for ou(H,?): an

25
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How can we get an exact schema
theorem?

Let us assume that only reproduction and Adding “paths” to success produces

(one-offspring) crossover are performed. :
Creation probability tree for a schema H: :
" R

parent selection and XO
point choice produce
an individual in H

offspring in H offspring in H

July 2006 R. Poli - University of Essex July 2006 R. Poli - University of Essex

The process of crossover point selection is
in a parent.

The probability of choosing a particular crossover

of the parent. N
sel:ect!op plcky an
1B, g- the probability of choosing any crossover indiiiduallinlH
point in

offspring in H
110101
is identical to the probability of choosing any

crossover point in s which, when
at point i
000110 r an individual in H

offspring in H offspring in H
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Let us assume that crossover points are
selected with uniform probability:

July 2006 July 2006 R. Poli - University of Essex

offspring in H
selection picks a first parent w!
d over at point i, S
0 ng the right mater
create an individual in H

offspring in H offspring in H

27
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Stephens and Waelbroeck's Exact
GA Schema Theory (1997)

For a
applied with probability p , (and assuming
P»=0)
E[m(H,t+1)/M] = (1 — pzo)p(H,t)
N-1
+- P20 SN p(L(H, ), )p(R(H, ©),t)

N-123

July 2006 R. Poli - University of Essex

‘OFor example, if H=1*111, then L(H, [ )=1#%%*
R(H, ])::I::}:I 1 1’ L(H,j’):] :}:1:}::}:’ R(H,3)::;::;::;:1 1.

For the schema *11, the theorem gives:

Blm(+11,0)/M] = (1= pao)p(+11,t) +
P22 (pCenn, )p(x11,1) + prtx, )p(ex, 1))
= (1 - B2p(x11,8) + E2p(x1x, )p(xx1, 1),

since p(*** )=1.

July 2006

is obtained by replacing the elements of H to
the right of position i with “don't care” symbols

is obtained by replacing the elements of H to
the left of position i+1 with “don't care” symbols

R. Poli - University of Essex

In terms of sets:

Search Space

Left and Right
Building Blocks of H

Note that

28



Why should GPers be interested in
GA theory?

Bit strings and vectors of floating point
parameters .E.g.
010101 <~—> 0—1—0—1—0—1
(0.12,0.4,3.1) <—> 0.12— 0.4 — 3.1

So, evolutionary algorithms operating on fixed-
length linear representations actually
with a fixed linear topology.

Different types of EAs use nodes from
. E.g. in binary GAs P={0,1}.

R. Poli - University of Essex

Exact Schema Theory
for GP with
Subtree Crossover

GP, too, evolves special types of graphs,
namely trees, but this time the topology is not
necessarily fixed.

Since linear graphs are special types of trees,
in general

(more
on this later).

So, in principle GA theory can be generalised
to GP.

R. Poli - University of Essex

GP Schemata

Syntactically, with some
“don’t care” nodes (“=") that represent exactly
one primitive.

Semantically, of all programs
that match size, shape and defining nodes of such
a tree.

For example, (= =)) represents the set
of programs

{ 2 4 ° }

29
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How can we get an exact schema
theorem for GP with subtree crossover?

We can start like in the GA case:

P, P=1-p;
selection picks an
individual in H
offspring in H

in 1als wh h, when
Cr d oint i
produce an individual in H

offspring in H offspring in H

July 2006 R. Poli - University of Essex

The process of
from the actual primitives in the parent
tree.

The of choosing a particular crossover
point depends only on the actual of
the parent.
For example, the probability of choosing any
crossover point in the program
+x(H+yx)

is identical to the probability of choosing any
crossover point in

(AND D1 (OR D1 D2))

July 2006 R. Poli - University of Essex
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selection picks an
indivi n H /\
offspring in H

A A

offspring in H offspring in H

30
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Let us assume that crossover points are
selected with uniform probability:

July 2006 R. Poli - University of Essex 2 July 2006 R. Poli - University of Essex

The offspring has the right shape and

primitives to match the schema of interest if

and only if, after the excision of the chosen

subtree, the first parent has shape and

primitives compatible with the schema, and

the subtree to be inserted has shape and [

primitives compatible with the schema. Computing these two probabilities requires the
introduction of a new concept: the variable arity
hyperschema
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Variable Arity Hyperschemata

A GP
with internal nodes from = # | and
leaves from = #

is a “don't care” symbols which stands for
exactly one node, # terminal stands for any
valid subtree, while the # function stands for
exactly one node of arity not smaller than the
number of subtrees connected to it.

July 2006 R. Poli - University of Essex

Upper and lower building blocks

VA hyperschemata can express which parents can produce
instances of a schema of interest H
U (Hi) L(H ij) U (H i) L(Hr/)

JXXAN — /\ — Ax/¥
ANVAN X
/\

If one crosses over at point j any individual matching
L(H,i,j) and at point i any individual matching U(H,i), the
resulting offspring is always an instance of H

July 2006 R. Poli - University of Essex

For example, (# x (+ = #))

VA Hyperschema Sample Instances

/NN N A
ARG
\
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is the VA hyperschema obtained from H by
replacing the subtree below crossover point i with
a # node.

is the VA hyperschema obtained by:
rooting at coordinate j in an empty reference system the
subschema of H below crossover point i,
then by labelling all the nodes on the path between node
J and the root node with # function nodes, and
labelling the arguments of those nodes which are to the
left of such a path with # terminal nodes
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For example,

Exact GP Schema Theorem for Subtree
L{H/(1,0),(1,1)) 3 ‘ ) : UHUiU.rlJ;/ cnl:“..,, CIOSSOVCI (2001)

Schema theorem for

Elm(H,t+ 1)/1\1/1] = (1 — peo)p(H, 1)+

Pro 2 N(GONG@D)

> Y p(UH, ) NGy, t)p(L(H, i, 5) NGy, t)
1€EHNGY jEG)

. Column
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Exact Schema Theories for Different
Operators and their Relations

p(U(H,i) NGy, t)

p(L(H,i,7) NGy, t)

Selecting a root-donating parent
with shape k such that its upper
part w.r.t. crossover point i matches
the upper part of H w.r.t. i

Selecting a subtree-donating parent
with shape | such that its lower part
w.r.t. crossover point j matches the
lower part of H w.r.t. i

Nix and Vose's
Markov Chain

8 N Model
GAs with (1992)

Homologous
X0

Stephens
Schema Theorem
(GECCO2001)  Gas with
1pt XO
Stephens and.
Waelbroeck's

Schema Theorem
(ICGA 1997)

Poli. Rowe and McPhee’s

Markov Cham Model GP with
(GECCO200L  Homologous
H X0
Poli and McPhee’s Exact
Schema Theorem
(GECCO 2001)

GP with
1pt XO

GP with
Poli’s Exact Sub-tree
Schema Theorem X0
(GECCO 2000)
Poli’s Exact
Schema Theorem
(EuroGP 2001)

GP with
Subtree
Headless  Poli and McPhee s

“hi Exact
Chicken XO g 1 ema Theorem

(CEC 2001)

GP with
Subtree
Mutation

Poli and McPhee’s
Exact
Schema Theorem
(CEC 2001)
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So what?

A model is as good as the predictions and the
understanding it can produce

So, what can we learn from schema
theorems?

July 2006 R. Poli - University of Essex

Mutation Bias

July 2006 R. Poli - University of Essex

Lessons

Size evolution equation
Bloat control
Optimal parameter setting

Optimal initialisation

July 2006 R. Poli - University of Essex

Selection Bias

34
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Crossover Bias

July 2006 R. Poli - University of Essex

Geringer’s manifold for linear GP

A for the proportion of
a linear, variable-length
under a GP homologous crossover for an

on a flat fitness landscape is

' (xR, 0)

. _ @ N—1
t]ﬂ:(r}od)(hmz hy,t) =2(x"" hwn,0) B(+4,0)

This is a for the system.
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So where is evolution going?

a0 ' i -
HEaE E D
er | f | *&j
Selection i [ P
 yand | I g ! i Final

Paml\:t‘\on p Srawy’ vl b e i,,’f fPopulation
/_u___ _l_._‘g—: ! I

Perfectly Mixed Populations
(Geiringer Manifold)
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A program length
under GP subtree crossover for an infinite
population on a flat fitness landscape is a

2((=)", ) = NV r — 1)

35



For example the fixed-point length distribution
for p=101s

T T T
NN T 12—
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Allele Diffusion

A the proportion
of a linear, variable-length schema /1, 1, .../,
under GP subtree crossover for an infinite
population initialised at the fixed-point length
distribution is

N
B(haha ... ha,00) = B((=)V,00) x Hc(h.i)

=1

Rl (o) = > #(=)"a,0)

n>0

Unequal Search Space Sampling

The average probability that each program of
length x will be sampled by standard
CrOSSOVer 18

Psample(#) = costant x ar® Ly Fe

For a flat landscape, standard GP will sample
a particular short program much more often
than it will sample a particular long one.

R. Poli - University of Essex

Crossover attempts to push the population

towards distributions of primitives where

The primitives in a particular individual tend
not just to be swapped with those of other
individuals in the population, but also to

within the representation of each
individual.

Experiments fully confirm the theory.
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Size Evolution

The mean size of the programs at
generation 7 is

where

G, = set of programs with shape /

N(G,) = number of nodes in programs in G;,

®(G, 1) = proportion of population of shape /
at generation ¢

R. Poli - University of Essex

Size Evolution under Subtree XO

In a GP system with symmetric subtree
Crossover

where

p(G, 1) = probability of selecting a program of
shape / from the population at
generation ¢

The mean program size evolves

selection only was acting on the population

July 2006

E.g., for the population:
X, (+xy), - yx), (+(+xy)3)

1 2 1
t)=1x — 3 x - Ex =3
p)=1x  +3x,+5x,

R. Poli - University of Essex

Conditions for Growth

Growth can happen only if
>

Or equivalently

Y. (NG —up(Grt) > > (u(t) - N(G))p(Gy,t)

GIEGIargc GlEGsmaH
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Bloat Prevention

To one needs
To the selection probability for
below-average-size programs
To the selection probability for
above-average-size programs

o o
1

J

A

Population

Parsimony Tarpeian
Pressure Method
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The Tarpeian method to control bloat

Tarpeian fitness-wrapper

IF size(program) > average_pop_size AND random_int MOD n = 0
THEN

return( very_low_fitness );
ELSE

return( fitness(program) );

The Tarpeian method drastically decreases
the selection probability of longer-than-
average programs creating a sort of

Conclusions
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Theory

In the last few years the

formidable

Today we understand a lot more about the
nature of the GP search space and the
distribution of fitness in it.

Also, and
syntactic behaviour of GAs and GP.

We know much more as to
, and

Theory primarily provides explanations,
but many recipes for practice have also
been derived (initialisation, sizing,
parameters, primitives, ...)

So, theory can

Theory is hard and slow: empirical studies

are important to direct theory and to
corroborate it.

Different operators lead to different schema

theorems, but we have started
them into a

The theory of GP is more general than the
corresponding GA theory -
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