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Overview

�Search space characterisation

�Program search spaces

�Recursive structure

�Limiting fitness distributions

�Halting probability

�GP search characterisation

�Schema Theory

�Lessons and implications

�Conclusions

Introduction
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Understanding GP Search Behaviour 

with Empirical Studies

�We can perform many GP runs with a small

set of problems and a small set of parameters

�We record the variations of certain numerical 

descriptors.

�Then, we hypothesize explanations about the 

behaviour of the system that are compatible 

with (and could explain) the empirical 

observations. 
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�GP is a complex adaptive system with zillions 
of degrees of freedom. 

�So, any small number of descriptors can 
capture only a fraction of the complexities of 
such a system.

�Choosing which problems, parameter settings 
and descriptors to use is an art form. 

�Plotting the wrong data increases the confusion
about GP’s behaviour, rather than clarify it.

Problem with Empirical Studies
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Example: Bloat

� Bloat = growth without (significant) return in 
terms of fitness. E.g.

� Bloat exists and continues forever, right?

sizefitness
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Why do we need mathematical theory?

� Empirical studies are rarely conclusive

� Qualitative theories can be incomplete

Search Space 

Characterisation
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GP search spaces

� Representation

mov R1 R2  add R1 2  jump 1
mov R1 R2

add R1 72

jump 1

opcode opcode opcode
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Grammar

GP primitives
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Recursive nature of search space

= Set of trees of depth at most d

= Primitive Set

Union Cartesian product
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Example

= {x, y, (√x ), (√y ), (+ x x), (+ x x), (+ x y), (+ y x),         
(+ y y), (+ x x), (× x x), (× x y), (× y x), (× y y) }
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How many programs in the search 

space?

= Number of trees of depth at 
most d

July 2006 R. Poli - University of Essex 15

Example
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Logarithmic scale Superexponential
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Doubly logarithmic scale

Exponentials

Courtesy Bill Langdon
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GP cannot possibly work!

� The GP search space is immense, and so any 

search algorithm can only explore a tiny 

fraction of it (e.g. 10-1000 %).

� Does this mean GP cannot possibly work?

Not necessarily.

� We need to know the ratio between the size 

of solution space and the size of search space

July 2006 R. Poli - University of Essex 19

{d0,d1,NAND} search space

Courtesy Bill Langdon

Proportion of 2-input logic functions 
implemented using NAND primitives
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Sextic polynomial

Courtesy Bill Langdon
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Artificial Ant

Courtesy Bill Langdon
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Limiting distribution

� Empirically is has been shown that as program 
length grows the distribution of functionality 
reaches a limit

� So, beyond a certain length, the proportion of 
programs which solve a problem is constant

� Since there are exponentially many more long 
programs than short ones, in GP 

size of the solution space

= constant

size of the search space

� Proofs?
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Linear model of computer

Courtesy Bill Langdon
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� Input and output registers are part of memory.

� Memory is initially zero (except input registers).

� Linear GP program is a sequence of instructions.

� CPU fetches operands from memory, performs 

operation and writes answer into memory 

(overwriting previous contents).

� When a program stops, the final answer can be 

read from the output register.



7

July 2006 R. Poli - University of Essex 25

States, inputs and outputs

� Assume n bits of memory of which k are 

input bits and h are output bits

� There are 2n states. 

� At each time step the machine is in a state, s

� By setting the inputs (and zeroing the rest) 

we can place the machine in 2k different 

initial states s1 ... s2k out of the 2n available
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Instructions

� Each instruction changes the state of the machine 

from a state s to a new s′, so instructions are maps 

from binary strings to binary strings of length n

E.g. if n = 2, AND m0 m1 � m0 is represented as

1111

0001

1010

0000

m′1m′0m1m0

11001000=
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Behaviour of programs

� A program is a sequence of instructions

� So also the behaviour of a program can be 

described as a mapping from initial states si to 

corresponding final states s′i
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� For example, 

AND m0 m1 � m0

NOP

OR    m0 m1 � m0

AND m0 m1 � m0 1111

0001

1110

0000

m′1m′0m1m0

11001100
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Does the behaviour tend to a limiting 

distribution?

11011000
Identity function
(no instruction 
executed yet)

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11011100

1/2 1/2

A B

� Two primitives: AND m0 m1 � m0      OR m0 m1 � m0
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11001000

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11001100

1/2 1/2

A

A C
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11011100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11011100

1/2 1/2

B

C B
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11001100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11001100

1/2 1/2

C

C C
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Probability tree

AND OR

Identity

A B

AND OR

C B

AND OR

C C

AND OR

C B

AND OR

A C

AND OR

A C

AND OR

C C
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Distribution of behaviours

07/81/161/164

0100∞

0¾1/81/83

0½¼¼2

00½½1

10000

IdentityBehaviour 

C

Behaviour 

B

Behaviour 

A

Program 

length
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Yes….

� …for this primitive set the distribution tends 

to a limit where only behaviour C has non-

zero probability.

� Programs in this search space tend to copy 

the initial value of m1 into m0.
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Behaviour vs. functionality

� If the number of input bits k is smaller than n, 

since we zero the remaining bits, only 2k

different initial states s1 ... s2k out of the 2n

available are possible.

� So the behaviour of a program can be 

described as a mapping from the input states 

si to corresponding final states s′i

(not necessarily distinct)
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� Often there are more memory bits than output bits

� So, many final states s′i are indistinguishable from 
the output viewpoint.

� Therefore, the functionality of a program is a truth 
table with k inputs and h outputs.

� So, functionality is a coarse-grained version of 
behaviour

� The limiting distribution for functionality can be 
derived from the limiting distribution for 
behaviour.
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Example

� Two primitives: AND m0 m1 � m0    and OR 
m0 m1 � m0

� Inputs: m0 and m1

� Output: m1

� Behaviours B  = 

C  =

and Identity =

are indistinguishable

11011100

11001100

11011000
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Distribution of functionality

15/161/164

10∞

7/81/83

¾¼2

½½1

100

Functionality 

B/C/Identity

Functionality 

A

Program 

length
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Markov chain proofs of limiting 

distribution

� Using Markov chain theory Bill Langdon has 
proven that a limiting distributions of functionality 
exists for a large variety of CPUs

� These include:

� Cyclic. Increment, decrement and NOP. 

� Bit flip. Flip biti and NOP. 

� Any non-reversible

� Any reversible

� CCNOT (Toffoli gate). 

� The “average” computer 

� AND, NAND, OR, NOR
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� There are extensions of the proofs from linear 

to tree-based GP.

� See Foundations of Genetic Programming

book for an introduction to the proof 

techniques.
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So what?

� Generally instructions ``lose information''. 

Unless inputs are protected, almost all long 

programs are constants. 

� Write protecting inputs makes linear GP 

more like tree GP.

� No point searching above threshold?

� Predict where threshold is? Ad-hoc or 

theoretical.
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Implication of                                  

|solution space|/|search space|=constant

� GP can win if

� the constant is not too small or

� there is structure in the search space to guide the 

search or 

� the search operators are biased towards searching 

solution-rich areas of the search space

or any combination of the above.
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What about Turing complete GP?

�Memory and loops make linear GP Turing 

complete, but what is the effect search space 

and fitness? 

�Does the distribution of functionality of 

Turing complete programs tend to a limit as 

programs get bigger?
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T7 Minimal Turing Complete CPU

� 7 instructions

� Arithmetic unit is ADD. From + all other 
operations can be obtained. E.g.

� Boolean logic

� SUB, by adding complement

� Multiply, by repeated addition (subroutines)

� Conditional (Branch if oVerflow flag Set)

� Move data in memory

� Save and restore Program Counter (i.e. Jump)

� Stop if reach end of program
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T7 Architecture
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Experiments

� There are too many programs to test them all. 

Instead we gather statistics on random samples.

� Chose set of program lengths 30 to 16777215

� Generate 1000 programs of each length

� Run them from random start point with random 

input

� Program terminates if it obeys the last instruction 

and this is not a jump

� How many stop?
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Almost all T7 Programs Loop
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Model of Random Programs

� Before any repeated instructions;

� random sequence of instructions and 

� random contents of memory.

� 1 in 7 instructions is a jump to a random 

location

50

Model of Random Programs

� T7 instruction set chosen to have little bias. 

� I.e. every state is ≈equally likely. 

� Overflow flag set half the time. 

� So 50% of conditional jumps BVS are active. 

� (1+0.5)/7 instructions takes program counter 
to a random location. 

� Implies for long programs, lengths of 
continuous instructions (i.e. without jumps) 
follows a geometric distribution with mean 
7/1.5=4.67 
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Program segment = random code 

ending with a random jump
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Forming Loops:Segments model

� Segments model assumes whole program is 
broken into N=L/4.67 segments of equal 
length of continuous instructions. 

� Last instruction of each is a random jump.

� By the end of each segment, memory is re-
randomised. 

� Jump to any part of a segment, part of which 
has already been run, will form a loop.

� Jump to any part of the last segment will halt
the program.
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Probability of Halting

� i segments run so far. Chance next segment 

will 

� Form first loop = i/N

� Halt program = 1/N

� (so 1-(i+1)/N continues)

� Chance of halting immediately after segment i

= 1/N × (1-2/N) (1-3/N) (1-4/N) … (1-i/N)

� Total halting probability given by adding these 

gives  ≈ sqrt(π/2N) = O(N-½)

54

Proportion of  programs without loops 

falls as 1/sqrt(length)

Segments model over, 

but gives 1/√x scaling.

W. B. Langdon, Essex 55

Average run time (non-looping)

� Segments model allows us to compute a bound 

for runtime

� Expected run time grows as O(N½)

Run time on terminating programs

Run time of non-looping 

programs fits 

O(√L) segment model

prediction.

Max run time limited 

by small,12 bytes, 

memory becoming 

non-random
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Markov model: States

� State 0 = no instructions executed, yet

� State i = i instructions but no loops have been 

executed

� Sink state = at least one loop was executed

� Halt state = the last instruction has been 

successfully executed and PC has gone 

beyond it.
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Event diagram for program execution 1/2
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Event diagram for program execution 2/2
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p1 = probability of being the last 

instruction

� Program execution starts from a random 
position

� Memory is randomly initialised and, so, any 
jumps land at random locations

� Then, the probability of being at the last 
instruction in a program is independent of 
how may (new) instructions have been 
executed so far.

� So, 
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p2 = probability of instruction causing 

a jump

� We assume that we have two types of jumps

� unconditional jumps (prob. puj, where PC is given 
a value retrieved from memory or from a register

� conditional jumps (prob. pcj)

� Flag bit (which causes conditional jumps) is 
set with probability pf

� The total probability that the current 
instruction will cause a jump is
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p3= probability of new instruction after 

jump

� Program counter after a jump is a random 

number between 1 and L

� So, the probability of finding a new 

instruction is
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p4 = probability of new instruction 

after non-jump

� The more jumps we have executed the more 

the map of visited instructions will be 

fragmented. 

� So, we should expect p4 to decrease as a 

function of the number of jumps/fragments.

� Expected number of fragments (jumps) in a 

program having reached state i

July 2006 R. Poli - University of Essex 64

� Each block will be preceded by at least one 

unvisited instruction

� So, the probability of a previously executed 

instruction after a non-jump is

and 
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� A more precise model considers the 

probability of blocks being contiguous.

� Expected number of actual blocks

hence
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Markov Model: state transition 

probabilities

� These are obtained by adding up “paths” in 

the program execution event diagram

E.g. looping probability
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Less than L-1 instructions visited
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L-1 instructions visited
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Transition matrix

� For example, for T7 and L = 7 we obtain

0 instructions
1 instructions
2 instructions
3 instructions
4 instructions
5 instructions
6 instructions
loop
halt

0
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Computing future state probabilities

� The distribution of future states can be 

computed bytaking appropriate powers of the 

Markov matrix M
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Examples

For T7, L=7 and i=3

For T7, L=7 and i=L

prob. halting in 
3 instructions

prob. looping in 
3 instructions

total halting 
probability
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Efficiency

� Computing halting probabilities requires a 

potentially exponentially explosive 

computation to perform (ML)

� We reordered calculations to obtain very 

efficient models which allow us to compute

� halting probabilities and 

� expected number of instructions executed by 

halting programs 

for L = 10,000,000 or more (see paper for details)
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A good model?

Halting probability
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Instructions executed by halting programs
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Improved model accounting for 

memory correlation
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Number of halting programs

rises exponentially with length

10100 000 000

Doubly logarithmic scale

T7 CPU
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Turing complete GP cannot possibly 

work?

� Only halting programs can be solutions to 

problems, so 

|solution space|/|search space| < p(halt)

� In T7, p(halt) � 0, so, 

|solution space|/|search space| � 0

� Since the search space is immense, GP with 

T7 seems to have no hope of finding 

solutions.
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What can we do?

� Control p(halt) 

� Size population appropriately

� Design fitness functions which promote 

termination

� Repair

� ....

� Any mix of the above
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Controlling p(halt)

� Modify the probability of using jumps

T7 CPU

Markov chain predictions
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Population sizing

� Programs that do not terminate are given zero 
fitness

� So the effective population size in the initial 
generation is 

Popsize × p(halt) 

� For evolution to work we must have at least 
some halting individuals. So, we must choose 

Popsize >> 1 / p(halt) 

for the particular program length of interest.
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Limiting distribution of functionality 

for halting programs?

� Non-looping programs halt

� The distribution of instructions in non-

looping programs is the same as with a 

primitive set without jumps
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Limiting distribution of functionality 

for halting programs?

� So, as the number of instructions executed 
grows, the distribution of functionality of 
non-looping programs approaches a limit. 

� Number of instructions executed, not 
program length, tells us how close the 
distribution is to the limit

� E.g. for T7, very long programs have a tiny 
subset of their instructions executed (e.g., 
1,000 instructions in programs of L = 
1,000,000).

GP Search 

Characterisation
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GA and GP search

� GAs and GP search like this:

� How can we understand (characterise, study and 

predict) this search? Visualisation is not a solution

� Understanding = science � better systems
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Microscopic Dynamical System Models

� We represent the population as a point in a 
multidimensional space, and we study the 
trajectory of this point

� This leads to exact models with huge numbers of 
parameters (microscopic models).
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Schema Theories

� Divide the search space into subspaces

(schemata)

� Characterise the schemata using macroscopic

quantities

� Model how and why the individuals in the 

population move from one subspace to 

another (schema theorems).
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Example 

� The number of individuals in a given schema H
at generation t, m(H,t), is a good descriptor

� A schema theorem models mathematically how 
and why m(H,t) varies from one generation to 
the next.
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Schema Theorist’s Questions

�Q1: How should the search space be divided? 

I.e. what is the right schema definition?

�E.g. how about
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�There isn't a right schema definition: 

different definitions  might be suitable for 

different purposes, algorithms, etc.

�Good definitions should: 

�have a simple syntactic representation (concise 

notation)

�make the calculations doable.
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�Q2: What are the right  quantities one should 

use to describe schemata?

�We want quantities that lead to simple exact 

or reasonably accurate mathematical 

formulations.

�Also,  we want macroscopic quantities

(something equivalent to pressure, volume, 

mass, temperature,  entropy, etc. in physics).
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Traditionally, the following quantities have 

been used: 

�number of individuals in a schema, 

�average fitness of the individuals in the 

schema and in the population, 

�size of the search space, 

�size of the schema, 

�“fragility” w.r.t. crossover and mutation, etc. 
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�Q3: What is the right schema theorem? 

�EAs are non-deterministic, so exact predictions 
of the future state of the search cannot be made. 

�However, the expected behaviour of an 
algorithm can be predicted using probability.

�Depending on the search space, on the schema 
definition and on the macroscopic quantities 
chosen,  many different schema theorems have 
been obtained. They have different explanatory 
and predictive power.
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Exact Schema Theorems

� The selection/crossover/mutation process is a 

Bernoulli trial: a newly created individual 

either samples or does not sample a schema H. 

� So, m(H,t+1) is a binomial stochastic variable. 

� Given the success probability of each trial 

α(H,t), an exact schema theorem is

E[m(H,t+1)] = M α(H,t) 
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Pessimistic Schema Theorems

� Finding an exact formulation for

α(H,t) can be very difficult

� Initially researchers have come up 

only with lower bounds which led to 

“pessimistic” schema theorems, i.e.

E[m(H,t+1)] ≥ M αmin(H,t)
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GA Schema Theory
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Holland’s GA Schemata

� In GAs operating on binary strings, syntactically

a schema is a string of symbols from the 

alphabet {0,1,*}, like *10*1. 

�* is interpreted as a “don't care'' symbol, so that, 

semantically, a schema represents a set of bit 

strings.

�E.g. *10*1 = {01001, 01011, 11001, 11011}
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Holland’s Schema Theorem

� Holland's schema theory is approximate. It 
provides a lower bound for α(H,t) or, 
equivalently, for E[m(H,t+1)].  

� For one-point crossover and point mutation:







×

−
×−−≥ σα

1

)(
1)1)(,(),( )(

N

HL
pptHptH c

HO

m
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� m(H,t) is number of individuals in the schema H
at generation t, 

� M is the population size, 

� p(H,t) is the selection probability for strings in H
at generation t, 

� pm is the mutation probability, 

� O(H) is the schema order, i.e. number of defining 
bits, 

� pc is the crossover probability, 

� L(H) is the defining length, i.e. distance between 
the furthest defining bits in H,

� N is the bitstring length. 
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� Idea:

� Features:

� The theorem includes an expected value

� It provides a lower bound

� So, it is difficult to make accurate predictions
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�The factor σ differs in the different 

formulation of the schema theorem: 

− σ=1-m(H,t)/M in (Holland, 1975), 

− σ=1 in (Goldberg, 1989), 

− σ=1-p(H,t) in (Whitley, 1994).

� In 1997 Stephens and collaborators produced 

an exact formulation for α(H,t): an “exact'' 

schema theorem. 
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�Let us assume that only reproduction and 

(one-offspring) crossover are performed.

�Creation probability tree for a schema H:

How can we get an exact schema 

theorem?

reproduction crossover

offspring in H offspring not in H offspring in H offspring not in H

pr pc=1-pr

selection picks an 
individual in H

parent selection and XO 
point choice produce 

an individual in H
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[ ] ),(cloningforinindividualanSelectingPr tHpH =

�Adding “paths” to success produces

where 

[ ]
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� The process of crossover point selection is 
independent from the actual primitives in a parent. 

� The probability of choosing a particular crossover 
depends only on the actual size of the parent.

� E.g., the probability of choosing any crossover 
point in

1 1 0 1 0 1

is identical to the probability of choosing any 
crossover point in 

0 0 0 1 1 0
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reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

selection picks a pair of 
individuals which, when 

crossed over at point i 
produce an individual in H

selection picks an 
individual in H

chosen 
XO 

point 1

chosen 
XO point 

N-1

….

offspring in H offspring not in H offspring in H offspring not in H
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�Let us assume that crossover points are 

selected with uniform probability:

1-bits ofNumber 

1

point  

crossover   Choosing
Pr =









i
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reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

selection picks a first parent which, 
when crossed over at point i, gives 

the offspring the right material to 
create an individual in H

chosen 
XO 

point 1

chosen 
XO point 

N-1

….

offspring not in H offspring not in H

selection picks an 
individual in H

selection picks a second parent which, 
when crossed over at point i, gives 

the offspring the remaining material 
to create an individual in H

offspring in H offspring not in H offspring in H offspring not in H

chosen 1st

parent
chosen 1st

parent

….
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


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 material necessary   remaining   theprovides  point at  

over  crossed if such that parent    second a Selecting
Pr

in  offspringan   create  tomaterial necessary    theprovides 

  point at over   crossed if such that parent  first  a Selecting
Pr

in   offspringan   produce  point at over   crossed

 if such that   parents Selecting
Pr

i

H

i

Hi
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Stephens and Waelbroeck's Exact 

GA Schema Theory (1997)
�For a binary GA with one point crossover

applied with probability pxo (and assuming 

pm=0)
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








=










=

 material necessary   remaining   theprovides  point at  

over  crossed if such that parent    second a Selecting
Pr      

)),,(Pr(

in  offspringan   create  tomaterial necessary    theprovides 

  point at over   crossed if such that parent  first  a Selecting
Pr      

)),,(Pr(

i

tiHR

H

i

tiHL

� L(H,i) is obtained by replacing the elements of H to 
the right of position i with “don't care” symbols

� R(H,i) is obtained by replacing the elements of H to 
the left of position i+1 with “don't care” symbols  
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�For example, if H=1*111, then L(H,1)=1****,

R(H,1)=**111, L(H,3)=1*1**, R(H,3)=***11.

�For the schema *11, the theorem gives:

since p(***,t)=1.
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� In terms of sets:

� Note that  the L and R building blocks are not 
necessarily all fitter than average, short or low-order. 
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Why  should GPers  be interested in 

GA theory?

�Bit strings and vectors of floating point 
parameters are graphs. E.g.

�So, evolutionary algorithms operating on fixed-
length linear representations actually evolve 
graphs with a fixed linear topology. 

�Different types of EAs use nodes from different 
primitive sets. E.g. in binary GAs P={0,1}.

July 2006 R. Poli - University of Essex 114

�GP, too, evolves special types of graphs, 
namely trees, but this time the topology is not 
necessarily fixed. 

�Since linear graphs are special types of trees, 
in general fixed-length linear EAs are special 
cases of some corresponding GP system (more 
on this later).

�So, in principle GA theory can be generalised 
to GP.
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Exact Schema Theory 

for GP with 

Subtree Crossover
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GP Schemata

� Syntactically, a GP schema is a tree with some 
“don’t care” nodes (“=”) that represent exactly 
one primitive.

� Semantically, a schema is the set of all programs 
that match size, shape and defining nodes of such 
a tree. 

� For example, (= x  (+  y  =)) represents the set 
of programs 

{(+ x (+ y x)), (+ x (+ y y)), (* x (+ y x)), ...}
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�We can start like in the GA case:

How can we get an exact schema 

theorem for GP with subtree crossover?

reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

selection picks a pair of 
individuals which, when 

crossed over at point i 
produce an individual in H

selection picks an 
individual in H

chosen 
XO 

point 1

chosen 
XO point 

N-1

….

offspring in H offspring not in H offspring in H offspring not in H
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matchesoffspringthethatsuchare

pointscrossover theand parentsThe
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cloningfor selectedisinindividualAnPr             

]crossoverby producedis  matching offspring AnPr[

onreproducti  viaobtained is  in individual AnPr),(α
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� The process of crossover point selection is 
independent from the actual primitives in the parent 
tree. 

� The probability of choosing a particular crossover 
point depends only on the actual size and shape of  
the parent.

� For example, the probability of choosing any 
crossover point in the program 

(+ x (+ y x))

is identical to the probability of choosing any 
crossover point in 

(AND D1 (OR D1 D2))
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reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

1st parent has 
shape 1 ….

selection picks an 
individual in H

offspring in H offspring not in H

chosen XO point 
1 in 1st parent

1st parent has 
shape S

2nd parent has 
shape 1

….
2nd parent has 

shape S
2nd parent has 

shape 1 ….
2nd parent has 

shape S

…. ….
….

chosen XO point 
N in 1st parent

chosen XO point 
1 in 2nd parent ….

chosen XO point 
N in 2nd parent

offspring in H offspring not in H

…. ….
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in  offspringan  produce  and  pointsat over  crossed

 ifsuch that  , and  shapes with parents Selecting
Pr

andshapesinand

pointscrossover  Choosing
Pr

matchesoffspringthethatsuch are
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�Let us assume that crossover points are 

selected with uniform probability:

lklkji shapeinNodes

1

shapeinNodes

1

andshapesinand

pointscrossover  Choosing
Pr ×=








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�The offspring has the right shape and 

primitives to match the schema of interest if 

and only if, after the excision of the chosen 

subtree, the first parent has shape and 

primitives compatible with the schema, and

the subtree to be inserted has shape and 

primitives compatible with the schema. 
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upper its that such  shape hparent wit donating-roota  Selecting
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 in offspring an produce  and  pointsat over  crossed

 if that such , and  shapes  withparents Selecting
Pr

�Computing these two probabilities requires the 
introduction of a new concept: the variable arity
hyperschema
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Variable Arity Hyperschemata

� A GP variable arity hyperschema is a tree

with internal nodes from F ∪ {=, # } and 

leaves from  T ∪ { =, # }.

� = is a “don't care” symbols which stands for 

exactly one node, # terminal stands for any 

valid subtree, while the # function stands for 

exactly one node of arity not smaller than the 

number of subtrees connected to it.
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� For example, (# x (+ = #))
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Upper and lower building blocks

� VA hyperschemata can express which parents can produce 
instances of a schema of interest H

� If one crosses over at point j any individual matching 
L(H,i,j) and at point i any individual matching U(H,i), the 
resulting offspring is always an instance of H
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� U(H, i) is the VA hyperschema obtained from H by 

replacing the subtree below crossover point i with 

a # node.

� L(H, I, j) is the VA hyperschema obtained by:

� rooting at coordinate j in an empty reference system the 

subschema of H below crossover point i, 

� then by labelling all the nodes on the path between node 

j and the root node with # function nodes, and 

� labelling the arguments of those nodes which are to the 

left of such a path with # terminal nodes
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�For example,
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Exact GP Schema Theorem for Subtree

Crossover (2001)

� Schema theorem for standard GP crossover 
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Exact Schema Theories for Different 

Operators and their Relations
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So what?

� A model is as good as the predictions and the 

understanding it can produce

� So, what can we learn from schema 

theorems?
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Lessons

� Operator biases

� Size evolution equation

� Bloat control

� Optimal parameter setting

� Optimal initialisation

� …
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Mutation Bias
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Selection Bias
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Crossover Bias
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So where is evolution going?
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Geringer’s manifold for linear GP

� A fixed-point distribution for the proportion of 

a linear, variable-length schema h1 h2 …hN

under a GP homologous crossover for an 

infinite population on a flat fitness landscape is

� This is a unique global attractor for the system.
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� A fixed-point distribution for program length

under GP subtree crossover for an infinite 

population on a flat fitness landscape is a 

Gamma distribution:
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� For example the fixed-point length distribution 

for  µ = 10 is

July 2006 R. Poli - University of Essex 142

Unequal Search Space Sampling

� The average probability that each program of 

length x will be sampled by standard 

crossover is

� For a flat landscape, standard GP will sample 

a particular short program much more often 

than it will sample a particular long one.
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Allele Diffusion

� A fixed-point distribution for the proportion 

of a linear, variable-length schema h1 h2 …hN

under GP subtree crossover for an infinite 

population initialised at the fixed-point length 

distribution is

with
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� Crossover attempts to push the population 
towards distributions of primitives where 
each primitive is equally likely to be found in 
any position in any individual.

� The primitives in a particular individual tend 
not just to be swapped with those of other 
individuals in the population, but also to 
diffuse within the representation of each 
individual.

� Experiments fully confirm the theory.
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Size Evolution

�The mean size of the programs at 
generation t is 

µ(t) = ∑l N(Gl) Φ(Gl,t) 

where

Gl = set of programs with shape l

N(Gl) = number of nodes in programs in Gl

Φ(Gl,t) = proportion of population of shape l

at generation t
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� E.g., for the population: 

x, (+ x y), (- y x), (+ (+ x y) 3)
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� In a GP system with symmetric subtree
crossover

E[µ(t+1)] = ∑l N(Gl) p(Gl,t)

where

p(Gl,t) = probability of selecting a program of 
shape l from the population at

generation t

� The mean program size evolves as if
selection only was acting on the population

Size Evolution under Subtree XO
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Conditions for Growth

�Growth can happen only if 

E[µ(t+1)-µ(t)] > 0

�Or equivalently

∑l N(Gl) [p(Gl,t) - Φ(Gl,t)] > 0
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Bloat Prevention

� To prevent growth one needs

� To increase the selection probability for 

below-average-size programs

� To decrease the selection probability for 

above-average-size programs
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The Tarpeian method to control bloat

� Tarpeian fitness-wrapper

� The Tarpeian method drastically decreases 
the selection probability of longer-than-
average programs creating a sort of fitness 
hole that discourages growth
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Hot Air Balloon Metaphor

Conclusions
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Theory

� In the last few years the theory of GP has seen 
a formidable development.

� Today we understand a lot more about the 
nature of the GP search space and the 
distribution of fitness in it.

� Also, schema theories explain and predict the 
syntactic behaviour of GAs and GP.

� We know much more as to where evolution is 
going, why and how. 
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� Different operators lead to different schema 

theorems, but we have started integrating

them into a single coherent theory.

� The theory of GP is more general than the 

corresponding GA theory � unification by 

inclusion
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� Theory primarily provides explanations, 

but many recipes for practice have also 

been derived (initialisation, sizing, 

parameters, primitives, …)

� So, theory can helping design competent 

algorithms

� Theory is hard and slow: empirical studies 

are important to direct theory and to 

corroborate it.


