
Quantum Computing

A Tutorial at the

2006 Genetic and Evolutionary Computation Conference

(GECCO-2006)

Lee Spector
School of Cognitive Science

Hampshire College

Amherst, MA 01002, USA

lspector@hampshire.edu

This material is based upon work supported by the United States National Science Foundation under Grant No. 0308540 and

Grant No. 0216344, Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the

authors and do not necessarily reflect the views of the National Science Foundation.

Overview

! What is quantum computation?

! Why might it be important?

! How does/might it work?

! Simulating a quantum computer.

! Some quantum algorithms.

! Evolution of new quantum algorithms.

! Sources for more information.

What is quantum computation?

Computation with coherent atomic-scale dynamics.

The behavior of a quantum computer is governed

by the laws of quantum mechanics.

Why bother with quantum computation?

! Moore’s Law: the amount of information storable on a

given amount of silicon has roughly doubled every 18

months. We hit the quantum level 2010 ~ 2020.

! Quantum computation is more powerful than classical

computation. More can be computed in less time—the

complexity classes are different!

1.00E+00

1.00E+03

1.00E+06

1.00E+09

1.00E+12

1.00E+15

1.00E+18

1.00E+21

1955 2020

Year

A
to
m
s
/B
it

The power of quantum computation

! In quantum systems possibilities count,

even if they never happen!

! Each of exponentially many possibilities

can be used to perform a part of a

computation at the same time.

Nobody understands quantum mechanics

! “Anybody who is not shocked by quantum

mechanics hasn’t understood it.” —Niels Bohr

! “No, you’re not going to be able to understand it.

... You see, my physics students don’t understand

it either. That is because I don’t understand it.

Nobody does. ... The theory of quantum

electrodynamics describes Nature as absurd from

the point of view of common sense. And it agrees

fully with experiment. So I hope you can accept

Nature as She is—absurd.” —Richard Feynman

Absurd but taken seriously
(not just quantum mechanics but also quantum computation)

! Under active investigation by many of the top

physics labs around the world (including CalTech,

MIT, AT&T, Stanford, Los Alamos, UCLA,

Oxford, l’Université de Montréal, University of

Innsbruck, IBM Research...)

! In the mass media (including The New York

Times, The Economist, American Scientist,

Scientific American, ...)

! Here.

A beam splitter

Half of the photons leaving the light source

arrive at detector A; the other half arrive at

detector B.

light B

A

An interferometer

! Equal path lengths, rigid mirrors.

! Only one photon in the apparatus at a time.

! All of the photons leaving the light source arrive at

detector B. WHY?

light

B

A

Possibilities count

! There is an “amplitude” for each possible

path that a photon can take.

! The amplitudes can interfere constructively

and destructively, even though each photon

takes only one path.

! The amplitudes at detector A interfere

destructively; those at detector B interfere

constructively.

Calculating interference

! “You will have to brace yourselves for this—not because it

is difficult to understand, but because it is absolutely

ridiculous: All we do is draw little arrows on a piece of

paper—that’s all!” —Richard Feynman

! Arrows for each possibility.

! Arrows rotate; speed depends on frequency.

! Arrows flip 180˚ at mirrors, rotate 90˚ counter-clockwise

when reflected from beam splitters.

! Add arrows and square the length of the result to determine

the probability for any possibility.

Adding arrows

+ =

Double slit interference

light

A

B

A B Sum

Interference in the interferometer

light

B

A + =

+ =

A photon-triggered bomb

! A mirror is mounted on a plunger on the bomb’s nose.

! A single photon hitting the mirror depresses the

plunger and explodes the bomb.

! Some plungers are stuck, producing duds.

! How can you find a good, unexploded bomb?

light BANG!BANG!

Elitzur-Vaidman bomb testing

! Possibilities count!

! Experimentally verified

! Can be enhanced to reduce or eliminate bomb loss
[Kwiat, Weinfurter and Kasevich]

light

B

A

Counterfactual quantum computation

! Hosten et al. used optical counterfactual computation to
conduct a search without running the search algorithm (Nature
439, 23 Feb 2006).

! They also used a “chained Zeno effect”—a sequence of
interferometers—to boost the inference probability to unity.

(Image scanned from the Nature article.)

! Grover’s quantum database search algorithm finds

an item in an unsorted list of n items in O()

steps; classical algorithms require O(n).

! Shor’s quantum algorithm finds the prime factors

of an n-digit number in time O(n3); the best known

classical factoring algorithms require at least time

Two interesting speedups

O(2
n

1/3
log(n)

2/3

).

Reminder:

exponential savings is very good!

Factor a 5,000 digit number:

– Classical computer (1ns/instr, ~today’s best alg)

» over 5 trillion years

(the universe is ~ 10–16 billion years old).

– Quantum computer (1ns/instr, ~Shor’s alg)

» just over 2 minutes

Quantum computing and the human brain

! Penrose’s argument

Brains do X (for X uncomputable)

Classical computers can’t do X

! Brains aren’t classical computers

– First premise is false for all proposed X. For

example, brains don’t have knowably sound

procedures for mathematical proof.

– Would imply brains more powerful than

quantum computers; new physics.

Quantum consciousness?

! Relation to consciousness etc. is much discussed,

unclear at best. (Bohm, Penrose, Hameroff, others)

! “[Penrose’s] argument seemed to be that

consciousness is a mystery and quantum gravity is

another mystery so they must be related.”

(Hawking)

Quantum information theory

! Quantum cryptography: secure key distribution

! Quantum teleportation

! Quantum data compression

! Quantum error correction

Good introductions to these topics can be found in

(Steane, 1998).

Physical implementation

! Ion traps

! Nuclear spins in NMR devices

! Optical systems

! So far: few qubits, impractical

! A lot of current research

S

C C

C C

H

H

Br

Br

Languages and notations

! Wave equations

! Wave diagrams

! Matrix mechanics

! Dirac’s bra-ket notation (‹"|#›)

! Particle diagrams

! Amplitude diagrams

! Phasor diagrams

! QGAME programs

Qubits

! The smallest unit of information in a

quantum computer is called a “qubit”.

! A qubit may be in the “on” (1) state or in

the “off” (0) state or in any superposition of

the two!

State representation, 1 qubit

! The state of a qubit can be represented as:

$0|0› + $1|1›
$0 and $1 are complex numbers that specify the

probability amplitudes of the corresponding states.

! |$0|
2 gives the probability that you will find the

qubit in the “off” (0) state; |$1|
2 gives the

probability that you will find the qubit in the “on”

(1) state.

Entanglement

! Qubits in a multi-qubit system are not

independent—they can become

“entangled.” (We’ll see some examples.)

! To represent the state of n qubits one

usually uses 2n complex number amplitudes.

State representation, 2 qubits

! The state of a two-qubit system can be represented

as:

 $0|00› + $1|01› + $2|10› + $3|11›

% |$|2 = 1

! Measurement will always find the system in some

(one) discrete state.

Measurement at the end of a computation

! %|$|2, for amplitudes of all states matching the

output bit-pattern in question.

! This gives the probability that the particular output

will be read upon measurement.

! Example:

0.316|00›+0.447|01›+0.548|10›+0.632|11›
The probability to read the rightmost bit as 0 is

|0.316|2+ |0.548|2=0.4

Partial measurement during a computation

! One-qubit measurement gates.

! Measurement changes the system.

! In simulation, branch computation for each

possible measurement.

Classical computation in matrix form

A state transition in a 4-bit system:

A quantum NOT gate

0 1

1 0

!

"

$

%

&

&

&

&

&
&

Applied to a qubit: 0 1

1 0

!

"

$

%

&

&

&

&

&
&

'
(
0

(
1

!

"

$

%

&

&

&

&

&
&

=
(
1

(
0

!

"

$

%

&

&

&

&

&
&

$0|0› + $1|1› & $1|0› + $0|1›

Explicit matrix expansion

To expand gate matrix G for application to an n-qubit system:

– Create a 2nx2n matrix M.

– Let Q be the set of qubits to which the operator is being

applied, and Q' be the set of the remaining qubits.

– Mij = 0 if i and j differ in positions in Q'.

– Otherwise concatenate bits from i in positions Q to

produce i*, and bits from j to produce j*. Mij = Gi*j*.

Implicit matrix expansion

To apply gate matrix G to an n-qubit system:

– Let Q be the set of qubits to which the operator is being

applied, and Q' be the set of the remaining qubits.

– For every combination C of 1 and 0 for qubits in Q':

» Extract the column A of amplitudes that results from holding C

constant and varying all qubits in Q.

» A' = G x A.

» Install A' in place of A in the array of amplitudes.

Amplitude diagrams

! Help to visualize amplitude distributions

! Scalable, hierarchical

! Can be shuffled to prioritize any qubits

01 1

2 2

2 2

$0 $4

$2 $6

$1 $5

$3 $7

|000› |100›

|010› |110›

|001› |101›

|011› |111›

0

1

A square-root-of-NOT (SRN) gate

! Applied once to a classical state, this

~randomizes the value of the qubit.

! Applied twice in a row, this is ~equivalent

to NOT:

1

2

! 1
2

1

2

1

2

"

$

$

$

$

$

$

$

%

&

'

'

'

'

'

'
'

1

2
!
1

2

1

2

1

2

"

$

$

%

&

'

'
*

1

2
!
1

2

1

2

1

2

"

$

$

%

&

'

'
=
0 !1

1 0

"

$
%

& '

SRN amplitude diagrams

01 0 01
'2

1
'2

00 1 0-1
'2

1
'2

0-1 0

0-1
'2

-1
'2

00 -1 01
'2

-1
'2

01 0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Other quantum gates

! Controlled NOT (CNOT):

There are many small “complete” sets of gates

[Barenco et al.].

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

!

"

$

%

&

&

&

&

&

&

&

&

1

2

1 1

1 !1

"

$

$

$

%

&

'

'

'

cos(!) sin(!)

"sin(!) cos(!)

$

%

%

%

&

'

(

(

(

!Hadamard (H):

!Rotation (U():

More quantum gates

! Conditional phase:

! U2:

All gates must be unitary: U†U=UU† =I,
where U† is the Hermitean adjoint of U, obtained by taking the

complex conjugate of each element of U and then transposing the

matrix.

Rotation polar plot for real vectors

|0›

|1›

1-1

1

-1

(

Hadamard polar plot for real vectors

|0›

|1›

1-1

1

-1

reflection across)/8

CNOT amplitude diagrams

1 00

0

1

$ *

+ ,
1 00

0

1

$ *

, +

CNOT(0 [control], 1 [target])

Polarizing beam-splitter CNOT gate
[Cerf, Adami, and Kwiat]

! Two qubits encoded in one photon, one in

momentum (direction) and one in polarization.

! Polarization controls change in momentum.

! Cannot be scaled up directly, but demonstrates an

implementation of a 2-qubit gate.

light B

A

Gate array diagrams

H H

H U)/5

1

0

Example execution trace

Hadamard qubit:0

Hadamard qubit:1

U-theta qubit:0 theta:pi/5

Controlled-not control:1 target:0

Hadamard qubit:1

H H

H U)/5

1

0

Trace, cont.

0 11

0

1

1 0

0 0
0 11

0

1

1
'2

0 0

1
'2

1 00

0

1

1
'2

1
'2 0

0

H[0]

H[1] 1 00

0
1
2

1
2

1
2

1
2

1

0 11

0
1
2

1
2

1
2

1
2

1

U([0]()/5) 0 11

0

0.698 0.111

1

0.698 0.111

Trace, cont.

1 00

0

1

CNOT[1,0]

H[1] 1 00

0

1

0 11

0

0.698

0.111

1

0.6980.111

0 11

0

0.698 0.111

1

0.698 0.111

0.698

0.698

0.111

0.111

0.572

-0.4160.572

0.416

state probability

|00› 0.33

|01› 0.33

|10› 0.17

|11› 0.17

The database search problem

! Given an unsorted database containing n

items but only one “marked” item, find the

address of the marked item with a minimal

number of database calls.

! Lov Grover’s algorithm uses O() calls in

general, and only one call for a 4-item

database.

Oracle problems

! The database search problem is an example of an

“oracle problem.”

! We are given a “black box” or “oracle” function (in

this case the database access function) and asked to

find out if it has some particular property.

! Many other known quantum algorithms are for oracle

problems.

! Often the oracle is “hard” to implement, so complexity

is figured from the number of oracle calls.

Grover’s algorithm for a 4-item database

H

H

U)/4

DB

high

low

H H

U)/2

U)/2

low

high2

1

0

! Start in the state |000›.
! Read answer from qubits 2 and 1.

Cube diagram for a 3-qubit system

Initial State, |000>

(0) Grover’s algorithm, item at 0,0

After Hadamard[2]

(1) Grover’s algorithm, item at 0,0 (2) Grover’s algorithm, item at 0,0

After Hadamard[1]

(3) Grover’s algorithm, item at 0,0

After U([0]()/4)

(4) Grover’s algorithm, item at 0,0

After Database Call [in: 2,1; out:0]

Note position

of DB call

effect.

(5) Grover’s algorithm, item at 0,0

After Hadamard[2]

(6) Grover’s algorithm, item at 0,0

After CNOT [control: 2; target: 1]

(7) Grover’s algorithm, item at 0,0

After Hadamard[2]

(8) Grover’s algorithm, item at 0,0

After U([2]()/2)

(9) Grover’s algorithm, item at 0,0

After U([1]()/2), Read output from qubits 2 (high) and 1(low)

Note relation

to state after

DB call.

(3) Grover’s algorithm, item at 0,1

After U([0]()/4)

(4) Grover’s algorithm, item at 0,1

After Database Call [in: 2,1; out:0]

(5) Grover’s algorithm, item at 0,1

After Hadamard[2]

(6) Grover’s algorithm, item at 0,1

After CNOT [control: 2; target: 1]

(7) Grover’s algorithm, item at 0,1

After Hadamard[2]

(8) Grover’s algorithm, item at 0,1

After U([2]()/2)

(9) Grover’s algorithm, item at 0,1

After U([1]()/2), Read output from qubits 2 (high) and 1(low)

(3) Grover’s algorithm, item at 1,0

After U([0]()/4)

(4) Grover’s algorithm, item at 1,0

After Database Call [in: 2,1; out:0]

(5) Grover’s algorithm, item at 1,0

After Hadamard[2]

(6) Grover’s algorithm, item at 1,0

After CNOT [control: 2; target: 1]

(7) Grover’s algorithm, item at 1,0

After Hadamard[2]

(8) Grover’s algorithm, item at 1,0

After U([2]()/2)

(9) Grover’s algorithm, item at 1,0

After U([1]()/2), Read output from qubits 2 (high) and 1(low)

(3) Grover’s algorithm, item at 1,1

After U([0]()/4)

(4) Grover’s algorithm, item at 1,1

After Database Call [in: 2,1; out:0]

(5) Grover’s algorithm, item at 1,1

After Hadamard[2]

(6) Grover’s algorithm, item at 1,1

After CNOT [control: 2; target: 1]

(7) Grover’s algorithm, item at 1,1

After Hadamard[2]

(8) Grover’s algorithm, item at 1,1

After U([2]()/2)

(9) Grover’s algorithm, item at 1,1

After U([1]()/2), Read output from qubits 2 (high) and 1(low)

Shor’s algorithm

! hybrid algorithm to factor numbers

! quantum component helps to find the period r of a

sequence a1, a2, ... ai, ... , given an oracle function

that maps i to ai

! skeleton of the algorithm:

– create a superposition of all oracle inputs

– call the oracle function

– apply a quantum Fourier transform to the input qubits

– read the input qubits to obtain a random multiple of 1/r

– repeat a small number of times to infer r

Genetic Programming (GP)

....

....

....

....

....

....

....

GP for quantum computation

! Evolve:

– gate arrays

– programs that produce gate arrays

– hybrid classical/quantum algorithms

– input states or parameters

! Genome representation:

– QGAME program

– program (in any language) that generates a
QGAME program

– array of numbers

Fitness

! Assessing the composite matrix

– the trouble with oracles

! Assessing the results of simulation runs

! Criteria:

– Error

– Hits

– Oracle calls

– Number of gates

QGAME Quantum Gate and Measurement Emulator

http://hampshire.edu/lspector/qgame.html Primitives; gate-array-producing programs

! Gates: H, U(, CNOT, ORACLE, ...

! Qubit indices

! Gate parameters (angles)

! Arithmetic operators

! Constants indicating problem size (num-
qubits, num-input-qubits, num-output-
qubits)

! Iteration structures, recursion, data
structures, …

The scaling majority-on problem

! Does the oracle answer “1” for a

majority of inputs?

! Seek program that produces a gate

array for any oracle size.

Evolved scaling majority-on gate arrays

H DB

out1

0 H
DB

out

1

0

H

2

H

DB1

0

H

2

out3

H

etc.

Not better than classical.

Evolved database search gate array

H

U)/4

DB
high

H H

low

high

2

1

0

U5)/4

low

Initial State, |000>

(0) Evolved quantum database algorithm,

item at 0,0

(1) Evolved quantum database algorithm,

item at 0,0

After Hadamard [2]

(2) Evolved quantum database algorithm,

item at 0,0

After U([1] (5)/4)

(3) Evolved quantum database algorithm,

item at 0,0

After U([0] ()/4)

(4) Evolved quantum database algorithm,

item at 0,0

After DB [in:2,0; out:1](item in 0,0)

(5) Evolved quantum database algorithm,

item at 0,0

After CNOT [control: 1, target: 2]

(6) Evolved quantum database algorithm,

item at 0,0

After Hadamard [1]

(7) Evolved quantum database algorithm,

item at 0,0

After CNOT [control: 1, target: 0]

(8) Evolved quantum database algorithm,

item at 0,0

After Hadamard [1]

(9) Evolved quantum database algorithm,

item at 0,0

After CNOT [control: 2, target: 1]

Read output from qubits 1 (high) and 0(low)

(4) Evolved quantum database algorithm,

item at 0,1

After DB [in:2,0; out:1](item in 0,1)

(5) Evolved quantum database algorithm,

item at 0,1

After CNOT [control: 1, target: 2]

(6) Evolved quantum database algorithm,

item at 0,1

After Hadamard [1]

(7) Evolved quantum database algorithm,

item at 0,1

After CNOT [control: 1, target: 0]

(8) Evolved quantum database algorithm,

item at 0,1

After Hadamard [1]

(9) Evolved quantum database algorithm,

item at 0,1

After CNOT [control: 2, target: 1]

Read output from qubits 1 (high) and 0(low)

The and-or tree problem

ORACLE(1,1)ORACLE(0,1) ORACLE(1,0)ORACLE(0,0)

OR

AND

OR

Evolved and-or gate array Error/complexity measures

! Las Vegas / always correct, but may answer

“don’t know” with some probability

! Monte Carlo / may err, with some

probability

! pe
max / worst case probability of error

! qe
max / worst case expected queries

! Exact / pe
max= 0

Complexity of 2-bit AND/OR

! Classical Las Vegas: qe
max=3

– derived from [Saks and Wigderson 1986]

! Classical Monte Carlo: for qe
max=1, pe

max!1/3

– derived from [Santha 1991]

! Evolved Quantum Monte Carlo: pe
max = 0.28732

Derived better-than-classical OR

! Classical Monte Carlo: for qe
max=1,

pe
max!1/6 [Jozsa 1991, Beals 1998]

! Evolved algorithm qe
max=1, pe

max=1/10

GP/QC research directions

! Application to additional problems with incompletely
understood quantum complexity

! Exploration of communication capacity of quantum
gates

! Evolution of hybrid quantum/classical algorithms.

! Evolution guided by ease of physical implementation.

! QC applications in AI
– general AI search?

– and-or trees and Prolog: quantum logic machine?

– Bayesian networks?

! Genetic programming on quantum computers.

Book

Automatic Quantum Computer Programming: A
Genetic Programming Approach

Lee Spector. 2004.

Boston: Kluwer Academic Publishers.

ISBN 1-4020-7894-3.

http://hampshire.edu/lspector/aqcp/

Sources: selected articles
! A. Steane, 1998. “Quantum Computing,” Reports on Progress in Physics, vol. 61, pp. 117-173.

http://xxx.lanl.gov/abs/quant-ph/9708022

! P. Shor, 1998. “Quantum Computing,” Documenta Mathematica, vol. Extra Volume ICM, pp. 467–486.
http://east.camel.math.ca/EMIS/journals/DMJDMV/xvol-icm/00/Shor.MAN.ps.gz

! J. Preskill, 1997. “Quantum Computing: Pro and Con,” Tech. Rep. CALT-68-2113, California Institute of
Technology. http://xxx.lanl.gov/abs/quant-ph/9705032

! A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H.
Weinfurter, 1995. “Elementary Gates for Quantum Computation,” submitted to Physical Review A.
http://xxx.lanl.gov/abs/quant-ph/9503016

! N.J. Cerf, C. Adami, P.G. Kwiat, 1998. “Optical Simulation of Quantum Logic,” Phys. Rev. A 57, 1477.
http://xxx.lanl.gov/abs/quant-ph/9706022

! L. Spector and H.J. Bernstein. 2003. “Communication Capacities of Some Quantum Gates, Discovered in Part
through Genetic Programming,” in Proc. of the Sixth Intl. Conf. on Quantum Communication, Measurement, and
Computing, edited by J.H. Shapiro and O. Hirota. Princeton, NJ: Rinton Press, Inc. pp. 500–503.
http://hampshire.edu/lspector/pubs/spector-QCMC-prepress.pdf

! H. Barnum, H.J. Bernstein, and L. Spector. 2000. Quantum circuits for OR and AND of ORs. Journal of Physics
A: Mathematical and General, Vol. 33 No. 45 (17 November 2000), pp. 8047–8057.
http://hampshire.edu/lspector/pubs/jpa.pdf

! L. Spector, H. Barnum, H.J. Bernstein, N. Swamy, 1999. “Quantum Computing Applications of Genetic
Programming,” in Advances in Genetic Programming 3, pp. 135–160, MIT Press.

! L. Spector, H. Barnum, H.J. Bernstein, N. Swamy, 1999. “Finding a Better-Than-Classical Quantum AND/OR
Algorithm Using Genetic Programming,” in Proc. 1999 Congress on Evolutionary Computation, IEEE Press.

! L. Spector, H. Barnum, H.J. Bernstein, 1998. “Genetic Programming for Quantum Computers,” in Genetic
Programming 1998: Proceedings of the Third Annual Conference, pp. 365–374, Morgan Kaufmann.

Sources: selected books

! Automatic Quantum Computer Programming: A Genetic Programming Approach. By Lee

Spector. Kluwer Academic Publishers. 2004.

! Quantum Computation and Quantum Information. By Michael A. Nielsen and Isaac L.

Chuang. Cambridge University Press. 2000.

! Schrödinger’s Machines: The Quantum Technology Reshaping Everyday Life. By Gerard J.

Milburn. W.H. Freeman and Company. 1997.

! Explorations in Quantum Computing. By Colin P. Williams and Scott H. Clearwater.

Springer-Verlag/Telos. 1997.

! The Fabric of Reality. By David Deutsch. Penguin Books. 1997.

! The Large, the Small and the Human Mind. By Roger Penrose, with Abner Shimony, Nancy

Cartwright, and Stephen Hawking. Cambridge University Press. 1997.

! QED: The Strange Theory of Light and Matter. By Richard P. Feynman. Princeton

University Press. 1985.

Sources: selected WWW sites

! Oxford’s Center for Quantum Computation: http://www.qubit.org/

! Stanford-Berkeley-MIT-IBM NMR Quantum Computation Project:

http://squint.stanford.edu/

! Quantum Information and Computation (Caltech - MIT - USC):

http://theory.caltech.edu/~quic/index.html

! Quantum Computation at ISI/USC:

http://www.isi.edu/acal/quantum/quantum_intro.html

! Los Alamos National Laboratory quantum physics e-print archive:

http://xxx.lanl.gov/form/quant-ph

! John Preskill’s Physics 229 course web page (many good links):

http://www.theory.caltech.edu/people/preskill/ph229/

! Samuel L. Braunstein’s on-line tutorial:

http://www.sees.bangor.ac.uk/~schmuel/comp/comp.html

! NIST Ion Storage Group: http://www.bldrdoc.gov/timefreq/ion/index.htm

! QGAME, Quantum Gate And Measurement Emulator:

http://hampshire.edu/lspector/qgame.html

