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Issues with GP

» Function/terminal set must have “closure”
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» Single types only
» Trees grow, or “bloat”

Biological Phenomena

» No simple one to one mapping
» Genes produce proteins

» Proteins combine to create phenotype

» Linear strings
» Genomes are always held on strings

» Unconstrained search
» Repair not performed




Grammatical Evolution

» Grammatical Evolution (GE)

» GA to evolve programs
» Morphogenetic Effect:

» Genotype mapped to phenotype
» Phenotype is a compilable program
» Genome governs mapping of a BNF/attribute grammar
definition to the program

Grammatical Evolution

» Here genome (a binary string) is mapped to compilable C
code

» Can potentially evolve programs in any language, with
arbitrary complexity

» Any structure than be specified with a grammar, e.g.
graphs, neural networks, etc.

Language Definition

» Backus Naur Form (BNF)
» Notation for expressing a languages grammar as
Production Rules

» BNF Grammar consists of the tuple < T,N,P,S > where

» Tis Terminals set

» N is Non-Terminals set

» P is Production Rules set

» S is Start Symbol (a member of N)

» BNF Example

T = {Sin, Cos, Tan,Log, +, —, /,* X, (,)}

S =< expr >

BNF Definition

N = {expr,op,pre_op}
» And P can be represented as:

(1) <expr> := <expr> <op> <expr> (A)
| ( <expr> <op> <expr> ) (B)
| <pre-op> ( <expr> ) (C)
| <var> (D)

(2) <op> == + (A)
| - (B)
|/ (C)
| * (D)




BNF Definition

(3) <pre-op> ::= Sin (A)

Architecture

| Cos (B) Problem
| Tan (C) -
g g
(4) <var> = X (A) Grammar E'% Program
» A Genetic Algorithm is used to control choice of production 5 §
rule ol
Search Algorithm
Related GP Systems Repair
Name Genome | Representation
Koza Tree Direct
Banzhaf et al Linear Direct CXPr CXPr
Gruau Tree Graph Grammar
Whigham Tree Derivation Tree
Wong & Leung | Tree Logic Grammars BXPI‘ Op BXPI‘ c Pl" OP CXPr
Paterson Linear Grammar ‘ ‘ ‘ ‘ eXPpr op expr
> Repair mechanisms.. var 4+ var var + ‘ F ‘
| | | var + var

Koza - none needed

Banzhaf - required for syntactically legal individuals
Gruau - none needed

Whigham - all crossovers subject to repair

Wong & Leung - all crossovers subject to repair
Paterson - under/overspecification.
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Grammatical Evolution

» |n contrast GE uses

» BNF - Paterson/Whigham/Wong etc.
» Variable Length Linear Chromosomes -
Koza/Gruau/Banzhaf

» Genome encodes pseudo-random numbers
» Degenerate Genetic Code

» Several genes map to same phenotype
» Wrap individuals
» Use 8 bit codons
» Each codon represents at least one Production Rule
» Gene contains many codons

» Pseudo-random numbers determine what production rule
will be used

Grammatical Evolution

» Expression of a Codon results in an Amino Acid
(choice in the derivation sequence)

» Amino acids can combine to form a functional protein (i.e.
Terminals such as +, X or Sin, can combine)

Grammatical Evolution Biological System
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Example Individual

» To complete BNF definition for a function written in a
subset of C we include

<func> ::= <header>

<header> ::= float symb(float X) <body>
<body> ::= <declarations><code><return>
<declarations> ::= float a;

<code> 1= a = <expr>;

<return> := return (a);

» Note implementation detalils.....
» Function is limited to a single line of code
» If required can get GE to generate multi-line
functions.....modify
<code> := <line>;
| <line>; <code>

Example Individual

» In this subset of C all individuals of the form

float symb(float x)
{

float a;
a = <expr>;
return(a);

}

» Only < expr > will be evolved

» Each non-terminal is mapped to a terminal before any
others undergo a mapping process




Example Individual

» Given the individual
220 [ 203 [ 51 | 123 | 2 | 45 |....what will happen?

» <expr> has 4 production rules to choose from

(1) <expr> := <expr> <op> <expr> (A)
| ( <expr> <op> <expr> ) (B)
| <pre-op> ( <expr> ) (C)
| <var> (D)

» Taking first codon 220 we get 220 MOD 4 =0
» Gives <expr>< op >< expr >

» Next choice for the first <expr>

» Taking next codon 203 we get 203 MOD 4 = 3
» Gives <underline var>< op >< expr >

Example Individual

» <var> involves no choice

» Mapped to X...only one production
» Now have X <op>< expr >

1220 | 203 | 51 | 123 [ 2| 45 |
» Read next codon to choose <op>
» Next is third codon , value 51, so get 51 MOD 4 =3
» Now have Xx <expr>

» Next choice for <expr>

» Next codon is 123 so get 123 MOD 4 = 3
» Now have Xx <var>

» Again <var> involves no choice
» Finally we get X x X
» The extra codons at end of genome are simply ignored in
mapping the genotype to phenotype

Example Mapping Overview

| 220] 20351 [123 2 b5 |

<exXpr>
(<expr> 4 choices) \}

<EXprr<op><expt>
(<expr> 4 choices) ‘L

<var><op><expr>

(<var> Nochoices)

X <op=<expt>
(<op> 4 choices)

X * <expr>
(<expr> 4 choices)

X * «<var>
(<var> 2 choices)

X * X

Figure: Example Mapping Outline

<expr> : = <expr><op><expr> |(<expr><op><expr>)
|<pre-op>(<expr>) |<var>

Derivation Tree Structure

1 2 5 7
220 | 203 | 51 | 123 | 2 | 45

1
<expr>

<e)jpr>2 <op>  <expr>’
.

4}
<vars % <var>®

‘4 ‘9

X

» Not all nodes require a choice!




Codons are polymorphic

» When mapping < expr >, we calculate

220 mod 4

» However, if we were mapping < pre — op > with 220, we
would calculate
220 mod 3
because there are just three choices
» Meaning of a codon depends on its context

Mapping Process

» No simple one to one mapping in GE

» Mapping Process to generate programs
Separate Search and Solution Spaces
Ensure validity of individuals

Remove language dependency
Maintain diversity
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Genetic Code Degeneracy

GENETIC CODE  PARTIAL PHENOTYPE

CODON AMINO ACID
(A group of 3 Nucleotides) tProtein Companent)
GGC
GGA —_— Glycine
GGG

GE GENE GE RULE

00000010
00010010 e
00100010
For Rule where
<code> :: = <line> (0)
| <code><line> (1)
i.e. (GE Gene Integer Value) MOD 2 = Rule Number
Every second value gives the same phenotype

Figure: The Degenerate Genetic Code

Genetic Code Degeneracy

» Neutral Mutations
» Mutations having no effect on Phenotype Fithess
» Help preserve individual validity

» Gradual accumulation of mutations without harming
functionality

» Revisit later




Initialisation

» Individuals are strings of random numbers
» No guarantee that they will terminate

» Individuals can be very short.

<expr> = <expr> <op> <expr>
| ( <expr> <op> <expr> )
| <pre-op> ( <expr> )
| <var>

» Production
<expr>-><var>
always leads to termination

> <expr>
is the start symbol
» On average, a quarter of all individuals are just one point

Sensible Initialisation

» Generate a spread of individual sizes.
» Based on Ramped Half and Half initialisation in GP

» For all tree depths from 2 to maximum size

» Generate an equal number of trees of that size
Use full for 50%

» Use grow for 50%

» Similar in GE, but generate derivation trees of equivalent
size

v

Sensible Initialisation - 2

v

Record which number choice was made for each step
Perform an “unmod” on list of choices

» Produce a number between 0 and 255 that produces the
original number when moded by the number of choices for
that productionrule

Ensures that all individuals are valid
Reduces the number of clones (easier to detect)
Eliminates single point individuals (if desired)
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Genetic Operators

» Perform unconstrained Evolutionary Search
» GE employs standard operators of Genetic Algorithms
» Point mutation, one-point crossover etc.

» Sometimes modified version of one-point crossover,
Sensible Crossover, is used:

» Effective length
» Actual length
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Crossover

» What actually happens in crossover?
» Preliminary : Visualisation.
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» Crossover is performed at genotypic level

Ripple Crossover

» Analyse 1-point crossover in terms of derivation & syntax

trees
» Use a closed grammar

E:= (+ E E) {0}
I(- E E) {1}
I(- E E) {2}
I(- E E) {3}
|X {4}
Y {5}

» No polymorphism, because there is only one non-terminal,

i.e. one context

Different Views of Crossover

8T 6[4[5[9[4[ 5[ 2[0]

Rebuilding individuals

» Parent left with “spine”
E

e
A

+ E E

» Tail swapped with other parent
4594520522
» Unmapped E terms must be mapped

» Use tail from other parent




Intrinsic Polymorphism

» With more than one non-terminal, a codon could be used
differently in the offspring

100 0 100201 100201
BT T
| opr sﬁpr y -
Vfr - expr = var | expr op expr
‘ opr = +I1*¥1-1%
X y -
var = xly

Effects of Ripple Crossover

» Symbolic Regression Grammars

Closed Grammar
E =X

| + EE) | (* E E)

| - EE)| ( EE)
And the context free grammar:
Exp = Var | Exp Op Exp
Var = X
Op =+ |*]-]/

Effects (contd.)

» Santa Fe ant trail grammars
Closed grammar
E 1= move() | left() | right()
| iffoodahead(E E) | prog2(E, E)
Context free grammar:
Code := Line | prog2(Line, Code)
Line ::= Condition | Action
Action = move() | right() | left()
Condition ::= iffoodahead(Code, Code)

Symbolic Regresssion Success Rates

________________________________

— Subtree
«+ Ripple

- - Subtree CFG
.= Ripple CFG

L L L L L L L L L
0 B 10 15 20 25 30 35 40 45 50
Generations

Both ripple crossovers start more slowly, but reach higher
fitness.




Santa Fe Success Rates

— Subtree
0o - — Subtree CFG
“““ Ripple

‘= Ripple CFG

Success Rate
o
o

‘‘‘‘‘‘‘

Both ripple crossovers again start more slowly, but reach
similar fitness.

Santa Fe - Extended Run

T
- = Subtree CFG
0ol ‘= Ripple GFG
— Subtree
~+ Ripple

08

08

Success Rate

Success rates on the Santa Fe ant trail problem, averaged over
100 runs, for 250 generations. Ripple crossovers start slowly,

but reach higher fitness.

Other types of Crossover?

» Homologous Crossover
» Try not to cross in identical areas

» Uniform
» Same size homologous
» Same size two point

Homologous Crossover - First point

» Record rule histories for each individual

Codon Integers 2 13 40 1 3 240 100 23
Rules g1 0 11 3 0 3

PARENT 1

Codon Integers 2 13 40 7 4 5 1 100
Rules 01 0 40 2 1 0

PARENT 2

» Align rule histories of parents

Rules 01 0i 11 3 o0 3 PARENT 1

Rules 0oL 0 40 2 1 0 PARENT 2

First Crossover Point at Boundary of Similarity




Homologous Crossover - Second Point

» Choose second point outside of area of similarity

Rules 0.1 ()l 1 1$3 0 3 PARENT 1
Rules 01 0 40 2 1 0 PARENT 2

Crossover comparisons (Cumulative Freq. Success)

Grammatical Evolution on Santa Fe Trail Grammatical Evolution on Symbolic Regression
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1pt/2pt best, uniform worst.

Productivity of Operators

Ratio of individuals transfered to next generation and the total number of crossover events
°
N
b

0 2 4 & 8 10 12 14 18 18 20
R Generation

Ratio of the number of individuals undergoing crossover that
have been propagated to the next generation and the total
number of crossover events occurring in that generation

Relative size of crossover fragments

Grammatical Evolution on Santa Fe Trail Grammatical Evolution on Symbolic Regression
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°
P
T

Ratio of average crossover fragmert size to the average chromosome length

045 |- . R
04 1
‘\: e o P »(f“\y,x . x\%/x K ~ «
B 04 = g
03 i g e ek *
02 S S S S T R 035 S S S S SR R
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Generation Generation

Ratio of the average fragment size being swapped and the
average chromosome length at each generation averaged over
20 runs.




Headless Chicken - Crossover or Macromutation

» Appears Crossover works
» 50% material exchange with 1-point over entire runs

» If useful material exchanged then swapping random
fragments should degrade performance?

Headless Chicken Comparison

Crossover in Grammatical Evolution (Santa Fe Trail) Crossover in ical Evolution
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Figure: The Performance of Headless Chicken Crossover on
Benchmark Problems.

The GAUGE System

Genetic Algorithms using Grammatical Evolution

Purpose:
» Position independent genetic algorithm;
» No under- or over-specification;
» Independent of search engine.

Based on mapping process (similar to GE):

» Specify position and value of each variable at genotypic
level,

» Map genotype strings into functional phenotype strings.

Mapping in the GAuGE System

Transform binary string into integer string:
» Problem has 4 variables (¢ = 4), withrange 0. ..7;
» Choose position field size (pfs = 2);
» Choose value field size (vfs = 4);
» Calculate binary string length:

L = (pfs + vfs) x £ = (2 + 4) x 4 = 24 bits

Binary string
[olof1foof1[1]of1[1]o]1[o[1]o[1]ofofo[1]0[0[1]0]

SN

[ofof2f13]1]af1]2]
Integer string




Calculating Phenotype

P v

Integer string
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Calculating Phenotype

Integer string
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Calculating Phenotype

p v p

Integer string
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[ofol213[1]4af1]2]

Phenotype [1[2]2]¢]
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Calculating Phenotype

Integer string
p v p v p Vv p VvV
[o]of2f13]1[4af1]2]

Phenotype
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The GAUGE System

Integer string

p v p v p VvV P
1

[0fo]2]13[1]4]

v
[2]

p: 1 %1 =[0]
v: 2 % 8 =
Phenotype [1][2]4]6]

(@]

Where is Gauge useful?

» GAUGE adapts the representation to the problem
» Useful where interactions between genes not known
» GAUGE is cheap

» Far less complicated than algorithms that try to model gene
interactions/relationships

» GAUGE discovers saliency
» Most important genes end up on left side of strings

Chorus

Mapping Independent Codons - no ripple effect
Codon % Total number of rules in the grammar

Competition between the Genes

>

>

>

» Concentration Table

» Variable length binary strings
>

8 bit codons

Grammar specification

S= <expr>

(0) <expr> := <expr> <op> <expr>
Q) | ( <expr> <op> <expr> )

(2) | <pre-op> ( <expr> )

3) | <var>

(4) <op> = +

®) | -

® |~

™ 1/

(8) <pre-op>::= Sin
(9) | Cos

(A) | Exp

(B) | Log

(C) <var> == 1.0

D) | X




Mapping

Four non-terminals:

» <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D48D9133

<ex>
<ex><o><e>
<V><o><e>
X<o><e>
X+<e>
X+<v>

X+X
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Number of individuals wrapped

» Wrap Count & Invalid Individuals
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Figure: Number of individuals wrapped on the symbolic regression

and Santa Fe trail problems.

Wrapping and Invalid Individuals

‘Symbolic Regression

aaaaaaaa

Generation

2

Figure: The number of invalid individuals for each generation in the
presence and absence of wrappinge.

Performance

» Freq. of Success
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Cumulative Frequency of Success
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Figure: Figure shows the cumulative frequency of success measures
on both problems with and without the presence of wrapping.




Definitions

» Actual length
» Entire length of individual
» Effective length

» Number of codons used
» (Note! Can be less than or greater than actual length)

Genome Lengths

Symbolic Regression Santa Fe Ant Trail

Genome Length (No. Of Codons)
Genome Length (No. Of Codons)
5 5

Figure: The figure shows the actual versus effective genome length
for symbolic regression and the Santa Fe trail in the presence and
absence of wrapping.

Summary

For SR (left) wrapping off has the longest actual length
Effective length virtually the same

For SF (right) wrapping on longer in both cases.
Conclusions:
» Wrapping improves frequency of success on Santa Fe ant
trail

» No effect on Symbolic Regression cumulative frequency
» Provides some constraint on genome lengths
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Cumulative Freq. with and without degeneracy

Symbolic Regression Sarta Fe Trail

168t ——

& Normal GE -~
a8t

4Bt -
Degensracy OFF - <

Cumulative Frequency of Sucoess
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Figure: Cumulative frequencies of success for both problem domains
in the presence and absence of genetic code degeneracy over 50
generations.




Variety

» No huge difference...
» Normal, 4- and 6-bit top three in both
» No degeneracy fourth in SR, last in SF

» Mean variety

‘Symbolic Ragrassion ‘Santa Fe Ant Trail

Generation Generation

Figure: The figure shows the genetic code degeneracy and mean
variety on symbolic regression and Santa Fe trail problems.

Unique Individuals

» Unique individuals

Symbolic Regression Santa Fe Ant Trail

No. Unique Individuals
g
No. Unique Individuals

168t —— | s 168t ——
12Bit J

Generation Generation

Figure: The figure shows genetic code degeneracy and unique
individuals (for actual genome) on both problem domains.

» Conclusions:
» Improves genetic diversity

Wrapping & Degeneracy

» Removing both....
» Cumulative frequency of success degrades
» Genome lengths increase over 60% on Symbolic
Regression

» Genetic diversity no worse than without degeneracy alone

Search Techniques

Problem

Grammar Program

Grammatical
Evolution

Search Algorithm

» Other techniques

» Simulated Annealing
» Hill Climbing
» Random Search




Comparison

» Three standard GP problems
» Santa Fe trail

» Symbolic Integration (integrate Cos(x) + 2x + 1)

» Symbolic regression x* + x3 + x2 + x

Metaheuristic
Problem RS |HC | SA | GA
Santa Fe 54% | 7% | 14% | 81%
Symbolic Integration | 66% | 4% | 3% | 100%
Symbolic Regression | 0% | 0% | 0% | 59%

The Future

» The Grammar (Attribute Grammars)
» Search & Evolutionary Dynamics

» Applications
» Newest Code Release
» http://waldo.csisdmz.ul.ie/libGE/




