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Why Neuroevolution?

o Neural nets powerful in many statistical domains
— E.g. control, pattern recognition, prediction, decision making
— No good theory of the domain exists

o Good supervised training algorithms exist
— Learn a nonlinear function that matches the examples

e What if correct outputs are not known?

Sequential Decision Tasks
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e POMDP: Sequence of decisions creates a sequence of states
e No targets: Performance evaluated after several decisions

e Many important real-world domains:
— Robot/venhiclef/traffic control
— Computer/manufacturing/process optimization
— Game playing

Forming Decision Strategies

Win!

e Traditionally designed by hand
— Too complex: Hard to anticipate all scenarios

— Too inflexible: Cannot adapt on-line

e Need to discover through exploration
— Based on sparse reinforcement

— Associate actions with outcomes




Standard Reinforcement Learning
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e AHC, Q-learning, Temporal Differences
— Generate targets through prediction errors
— Learn when successive predictions differ

e Predictions represented as a value function
— Values of alternatives at each state

e Difficult with large/continuous state and action spaces

e Difficult with hidden states

Neuroevolution (NE) Reinforcement Learning

Sensors %{ Neura Net ]% Decision

e NE = constructing neural networks with evolutionary algorithms

Direct nonlinear mapping from sensors to actions

Large/continuous states and actions easy

— Generalization in neural networks

Hidden states disambiguated through memory

— Recurrency in neural networks
(Taylor GECCQO’06)

How well does it work?

Poles Method Evals Succ.
One VAPS 500,000 0%
SARSA 13,562 59%

Q-MLP 11,331

NE 589

[ Two ] NE | 24543

e Difficult RL benchmark: Non-Markov Pole Balancing
e NE 2 orders of magnitude faster than standard RL

e NE can solve harder problems

Role of Neuroevolution
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e Powerful method for sequential decision tasks*%4%"*

— Optimizing existing tasks
— Discovering novel solutions

— Making new applications possible
e Also may be useful in supervised tasks *>*°

— Especially when network topology important

e Unique model of biological adaptation and development #4967




Outline

Basic neuroevolution techniques

Advanced techniques

— E.g. combining learning and evolution

Extensions to applications

Application examples

— Control, Robotics, Artificial Life, Games

Neuroevolution Decision Strategies

Input variables describe the state

Output variables describe actions

Output units
left Risht Forward

Network between input and output
— Hidden nodes
— Weighted connections

Execution: e; 1

— Numerical activation of input 4 B ¢ » E I 2 3 4 3 \R"‘

— Nonlinear weighted sums Food ROPOL gy Fnensy
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Performs a nonlinear mapping Input units

— Memory in recurrent connections

Connection weights and structure evolved

Conventional Neuroevolution (CNE)

observation =

Neural Network

e Evolving connection weights in a population of networks Lz

e Chromosomes are strings of weights (bits or real)
— E.g. 10010110101100101111001
— Usually fully connected, fixed topology
— Initially random

Conventional Neuroevolution (2)
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e Each NN evaluated in the task
— Good NN reproduce through crossover, mutation
— Bad thrown away
— Over time, NNs evolve that solve the task

e Natural mapping between genotype and phenotype

e GA and NN are a good match!




Problems with CNE
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e Evolution converges the population (as usual with EAS)
— Diversity is lost; progress stagnates

e Competing conventions
— Different, incompatible encodings for the same solution

e Too many parameters to be optimized simultaneously
— Thousands of weight values at once

Advanced NE 1: Evolving Neurons
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e Evolving individual neurons to cooperate in networks >3%*°

e E.g. Enforced Sub-Populations (ESP*°)
— Each (hidden) neuron in a separate subpopulation
— Fully connected; weights of each neuron evolved
— Populations learn compatible subtasks

Evolving Neurons with ESP

Generation 1 Generation 20
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e Evolution encourages diversity automatically
— Good networks require different kinds of neurons

e Evolution discourages competing conventions
— Neurons optimized for compatible roles

e Large search space divided into subtasks
— Optimize compatible neurons

Advanced NE 2: Evolutionary Strategies
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Evolving complete networks with ES (CMA-ES*’)

Small populations, no crossover

Instead, intelligent mutations
— Adapt covariance matrix of mutation distribution
— Take into account correlations between weights

Smaller space, less convergence, fewer conventions




Advanced NE 3: Evolving Topologies
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® Optimizing connection weights and network topology

53,56
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E.g. Neuroevolution of Augmenting Topologies (NEAT

Based on Complexification

Of networks:
— Mutations to add nodes and connections

Of behavior:
— Elaborates on earlier behaviors

How Can Crossover be Implemented?

e Problem: Structures do not match
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e Solution: Utilize historical markings
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How can Innovation Survive?

e Problem: Innovations have initially low fithess

e Solution: Speciate the population
— Innovations have time to optimize
— Mitigates competing conventions

— Promotes diversity

How Can We Search in Large Spaces?

e Need to optimize not just weights but also topologies

e Solution: Start with minimal structure and complexify
— Hidden nodes, connections, input features "

Minimal Starting Networks
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Population of Diverse Topologies
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Advanced NE 4: Indirect Encodings
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e Instructions for constructing the network evolved
— Instead of specifying each unit and connection

e E.g. Cellular Encoding (CE?%)

e Grammar tree describes construction
— Sequential and parallel cell division
— Changing thresholds, weights

2,33,51,73

— A “developmental” process that results in a network

Properties of Indirect Encodings

Smaller search space

Avoids competing conventions

Describes classes of networks efficiently

Modularity, reuse of structures

— Recurrency symbol in CE:
XOR — parity

— Useful for evolving morphology

Not all that powerful (yet)

Much future work needed >’
— More general L-systems
— Developmental codings, embryogeny

— Designing evolvable representations “°
(Reisinger GECCO’06)

How Do the NE Methods Compare?

Poles Method Evals
Two-1 CE (840,000)
CNE 87,623

ESP 26,342

NEAT 24,543

Two-2 CMA-ES 6,061 - 25,254
ESP 7,374

NEAT 6,929

Two poles, no velocities, 2 different setups:
e Advanced methods better than CNE
e Advanced methods about equal
e Indirect encodings future work

e DEMO

Further NE Techniques

Incremental evolution #9372

Utilizing population culture *32

Evolving ensembles of NNs 2%4469

Evolving neural modules*’
7,48,60

Evolving transfer functions and learning rules

Combining learning and evolution




Combining Learning and Evolution

Good learning algorithms exist for NN
— Why not use them as well?

Evolution provides structure and initial weights

Fine tune the weights by learning

Lamarckian evolution is possible
— Coding weight changes back to chromosome

Difficult to make it work
— Diversity reduced; progress stagnates

Baldwin Effect
/ \ With learning
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Without learning

Fitness
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Learning can guide Darwinian evolution>%°
— Makes fitness evaluations more accurate

With learning, more likely to find the optimum if close

Can select between good and bad individuals better
— Lamarckian not necessary

e How can we implement it?
— How to obtain training targets?

Targets from a Related Task

predicted
motor output sensory input

proprioceptive sensory input
input

e Learning in a related task is sufficient

e E.g. foraging for food in a microworld **
— Network sees the state, outputs motor commands
— Trained with backprop to predict the next input
— Training emphasizes useful hidden-layer representations

— Allows more accurate evaluations

Evolving the Targets

Motor Output

angle target angle distance  target distance

angle distance
Sensory Input

e Evolve extra outputs to provide targets
e E.g. in the foraging task*®

— Motor outputs and targets with separate hidden layers
— Motor weights trained with backprop, targets evolved

— Targets do not correspond to optimal performance:
Direct system towards useful learning experiences




Targets from the Population
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Train new offspring to imitate parents/champion 3
— Trained in population “culture”

Local search around good individuals
— Limited training: 8-20 backprop iterations

Becomes part of the evaluation
— Individuals evolve to anticipate training
— Perform poorly at birth, well after training

Evolution discovers optimal starting points for learning!

No Targets: Unsupervised Learning
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Hebbian adaptation during performance

E.g. handwritten character recognition ®®
— Evolution determines the starting point
— Competitive learning finishes the design

Starting points are poor recognizers
— Only bias learning away from local minima

Synergetic effect: Evolution utilizes learning

Future work: Constructing developmental systems

Extending NE to Applications

Evolving composite decision makers ®°

6,54,74

Evolving teams of agents

Utilizing coevolution>®

Real-time neuroevolution>*

Combining human knowledge with evolution

Applications to Control

e Pole-balancing benchmark
— Originates from the 1960s
— Original 1-pole version too easy
— Several extensions: acrobat, jointed, 2-pole,
particle chasing**
e Good surrogate for other control tasks
— Vehicles and other physical devices

— Process control ®*




Controlling a Finless Rocket Active Rocket Guidance

Task: Stabilize a finless version of
the Interorbital Systems RSX-2 sounding

rocket??

Used on large scale launch vehicles

e Scientific measurements in the upper (Saturn, Titan)

Typically based on classical linear
feedback control

atmosphere

® 4 liquid-fueled engines with variable
thrust

High level of domain knowledge required

e Without fins will fly much higher for ® Expensive, heavy

same amount of fuel

STAGE SATURN LAUNGH VEHIGLE

Rocket Stability Simulation Environment: JSBSim

® General rocket simulator

® Models complex interaction between air-
frame, propulsion, aerodynamics, and at-
mosphere

Lift

o Used by IOS in testing their rocket designs

o Accurate geometric model of the RSX-2

Thrust

/

(a) Fins: stable (b) Finless: unstable




Rocket Guidance Network
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Driving and Collision Warning

e Goal: evolve a collision warning system
— Looking over the driver’s shoulder
— Adapting to drivers and conditions
— Collaboration with Toyota?® (kohl GECCO'06)




The RARS Domain
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e RARS: Robot Auto Racing Simulator
— Internet racing community
— Hand-designed cars and drivers
— First step towards real traffic

Evolving Good Drivers

Evolving to drive fast without crashing

(off road, obstacles)

e Discovers optimal driving strategies

(e.g. how to take curves)

Works from range-finder & radar inputs

Works from raw visual inputs

e DEMO

Evolving Warnings

Evolving to estimate probability of crash

Predicts based on subtle cues (e.g. skidding off the road)
Compensates for disabled drivers

Human drivers learn to drive with it!

DEMO

Applications to Robotics

e Controlling a robot arm>®

— Compensates for an inop motor

e Robot walking ***°

— Various physical platforms

e Mobile robots 1014422

— Transfers from simulation to physical robots

— Evolution possible on physical robots




Robotic Soccer

e E.g. robocup soccer “Keepaway” task ®°
e Three keepers, one (algorithmic) taker

e Includes many behaviors:
Get-Open, Intercept, Evaluate-Pass, Pass...

Direct Evolution

e Mapping sensors directly to actions
— Difficult to separate behaviors

— Ineffective combinations evolve

e DEMO

Cooperative Coevolution

_ Play Keepaway

Possession No Pnsscs;icn e Evolve muItipIe actions

— Each one in a separate network

Hold Evaluate Pass| ici i i
old e T — Decision tree to decide on actions

— Or evolve a decision network

Pass Intercept Get Open |

Cooperative Coevolution (2)

Networks learn individual tasks

Learn to anticipate other tasks
— Lining up for a pass

Cooperative coevolution of composite behavior

e DEMO




Applications to Artificial Life

e Emergence of behaviors
i @ - — Signaling, herding, hunting...

= - e Future challenges
— Emergence of language

e Gaining insight into neural structure
— E.g. evolving a command neuron*

9

67,68,74

— Emergence of community behavior

Competitive Coevolution

Evolution requires an opponent to beat

Such opponents are not always available

Co-evolve two populations to outdo each other
How to maintain an arms race?** (Monroy GECC0'06)

Competitive Coevolution with NEAT

e Complexification elaborates instead of alters

— Adding more complexity to existing behaviors

Can establish a coevolutionary arms race
— Two populations continually outdo each other

— Absolute progress, not just tricks

Robot Duel Domain

e Two Khepera-like robots forage, pursue, evade °®
— Collect food to gain energy

— Win by crashing to a weaker robot




Early Strategies
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e Crash when higher energy

e Collect food by accident

e DEMO

Mature Strategies

e Collect food to gain energy
e Avoid moving to lose energy
e Standoff: Difficult to predict outcome

e DEMO

A Sophisticated Strategy

@

e “Fake”

a move up, force away from last piece

e Win by making a dash to last piece

e Complexification — arms race

e DEMO

Applications to Games
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e Good research platform
— Controlled domains, clear performance, safe
— Economically important; training games possible

e Board games: beyond limits of search
— Evaluation functions in checkers, chess
— Filtering information in go, othello 3¢>°

8,16,17




Strategies in Othello
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Discovering Novel Strategies in Othello
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e Positional

(@) (b) (©

— Number of pieces and their positions

e Players take turns placing pieces
— Typical novice strategy

e Each move must flank opponent’s piece

e Mobility
e Surrounded pieces are flipped — Number of available moves: force a bad move
e Player with most pieces wins — Much more powerful, but counterintuitive

— Discovered in 1970’s in Japan

Evolving Against a Random Player Evolving Against an -3 Program
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Move Number

lago’s positional strategy destroyed networks at first

Move Number

e Network sees the board, suggests moves by ranking®’

- . Evolution turned low piece count into an advantage
e Networks maximize piece counts throughout the game

e A positional strategy emerges

[
[
e Mobility strategy emerged!
e Achieved 97% winning percentage ¢

Achieved 70% winning percentage




Example game
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Black’s positions strong, but mobility weak

White (the network) moves to f2

Black’s available moves b2, g2, and g7 each will
surrender a corner

The network wins by forcing a bad move

e Neuroevolution discovered a strategy novel to us
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e “Evolution works by tinkering”

— So does neuroevolution

(b)

— Initial disadvantage turns into novel advantage

Video Games

e Economically and socially important

e Adaptation an important future goal
— More challenging, more fun games
— Possible to use for training people

e How to make evolution run in real time?

Real-time NEAT
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e

high—fitness units
¢ 3

low—fitness

unit

Reproduction

#x3

l crossover

l mutation

@ new unit

A parallel, continuous version of NEAT >

Individuals created and replaced every n ticks
Parents selected probabilistically, weighted by fitness

Long-term evolution equivalent to generational NEAT




NERO: A Complex Game Platform

e Teams of agents trained to battle each other
— Player trains agents through excercises
— Agents evolve in real time

e New genre: Learning is the game

e Challenging platform for reinforcement learning
— Real time, open ended, requires discovery

e DEMO

Future Challenge: Utilizing Knowledge

e Given a problem, NE discovers a solution by exploring
— Sometimes you already know (roughly) what works
— Sometimes random initial behavior is not acceptable

e How can domain knowledge be utilized?
— By incorporating rules "
— By learning from examples®

Incorporating Rules into NE

E.g. how to go around a wall in NERO

e Specify as a rule:
— wall_ahead: move_forward, turn_right
— wall_45deg_left, move_forward, turn_right_slightly

e Convert into a network with KBANN *°

Incorporating Rules into NE (2)

move_forward  turn fire crouch

t T )
wall_ahead wall 45deg left wall 90deg lefi wall 45deg right wall 90deg right ~ oiher inpul sensors

KBANN network added to NEAT networks
— Treated as complexification

— Continues to evolve

— If advice is useful, it stays

Initial behaviors, on-line advice

Injecting human knowledge as rules
e DEMO




Lessons from NERO

. -

NEAT is a strong method for real-time adaptation
— Complex team behaviors can be constructed
— Novel strategies can be discovered

Problem solving with human guidance
Coevolutionary arms race
NE makes a new genre of games possible!

(NERO details, download: http://nerogame.org)

Numerous Other Applications

e Creating art, music®

e Theorem proving 2

e Time-series prediction>!

e Computer system optimization2°
e Manufacturing optimization 23
64,65

® Process control optimization

e Etc.

Evaluation of Applications

e Neuroevolution strengths
— Can work very fast, even in real-time
— Potential for arms race, discovery
— Effective in continuous, non-Markov domains

e Requires many evaluations
— Requires an interactive domain for feedback
— Best when parallel evaluations possible
— Works with a simulator & transfer to domain

Conclusion

e NE is a powerful technology for sequential decision tasks
— Evolutionary computation and neural nets are a good match
— Lends itself to many extensions
— Powerful in applications

e Easy to adapt to applications
— Control, robotics, optimization
— Atrtificial life, biology
— Gaming: entertainment, training

e |ots of future work opportunities
— Theory not well developed
— Indirect encodings
— Learning and evolution
— Knowledge and interaction
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