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Top 5 Experimental Analysis 
Myths in EC

i. Results from 1 run is all that is needed
• Example:  "With this new edge-flipping algorithm, we achieved a 

successful tour length of 512.3 units.  
Therefore, the edge-flipping algorithm is successful."

• Reality:  you have proved that it is possible to achieve a success.  
The odds of that occurring are now known to be greater than 0.  
You have no idea of how likely that 512.3 result was, whether it
was a typical or unusual result, and so on.

ii. The best value achieved in a set of runs tells you something 
about the population distribution 
• Example:  "The best score was achieved using a population size of 

500 and using a crossover rate of 75%.  Therefore, we recommend 
using 500 individuals and using crossover with this algorithm."

• Reality:  your "best score" is the best of the parameter settings you 
tried.  This is the same faulty "1 run" logic as above, taken across 
parameter settings.

Top 5 Experimental Analysis 
Myths in EC

iii. Using the same random number generator seed for both 
systems provides a fairer comparison
• Example:  "We repeated the experiment for each of the three 

parameter settings (no crossover, 50% and 100% crossover), using
the same random number generator seed in each case."

• Reality:  using the same seed generates only trouble.  You are not 
interested in a single run, but the performance on average or the 
best achievable performance.  Holding the seed constant is 
pointless in this case, as the seed will vary across many values.

• If you are trying to use the same test problem, and fixing the seed 
generates the same test problem, then say that.  Normally you want 
to say that across many test problems, your technique is better –
hence fixing the seed is still the wrong thing to do.  But for 
debugging, fixing the seed to generate the same dataset can be 
very useful.

Top 5 Experimental Analysis 
Myths in EC

iv. One system is obviously better than the other when looking 
at the data or graph - no statistics are necessary
• If it is so obvious, then will be easy to show statistically 
• Doing the stats shows that you can be objectively confident in 

your conclusion, and that others are justified in being confident in 
your conclusion as well.

v. "My average is better than yours" means "my technique is 
better than yours"
• Example:  "In comparing the data, our new edge-flip operator 

scored an average distance of 460 for the Travelling Salesperson 
Problem, in comparison to the default edge-flip operator, which 
scored 465 with the same parameter settings."

• Reality:  You may have just been lucky.
• Reality:  Your parameters may be more finely tuned than for the 

default operator, thus giving better scores
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Myth: Averages are Everything
• We might get unlucky with our data distribution – a simple 

comparison between two averages might not give the same 
result as the comparison between two distributions

• We will demonstrate with a few examples
• Consider the following samples of two distributions (blue 

and green), which are normally distributed and are drawn 
from the distributions with these parameters:

N = 100, 5σ = 5, 10, 50-10
N = 100, 5σ = 5, 10, 50+10
RepsStdDevMean

Sampling From Two 
Normal Distributions

-75 0 75

-75 0 75

-75 0 75

Number of Runs = 5

7.9-5.7

5.9-6.2

19.1-5.4

Problem 1

Problem 2

Problem 3

System 2 Avg.System 1 Avg.

Sampling From Two 
Normal Distributions

-75 0 75

-75 0 75

-75 0 75

+10-10True Avg.

7.9-5.7

5.9-6.2

19.1-5.4

Variation 
Expected:
σ = 5

Variation 
Expected:
σ = 10

Variation 
Expected:
σ = 50

Problem 1

Problem 2

Problem 3

Number of Runs = 5

Sampling From Two 
Normal Distributions

-75 0 75

-75 0 75

-75 0 75

Number of Runs = 100+10-10True Avg.

Variation 
Expected:
σ = 5

Variation 
Expected:
σ = 10

Variation 
Expected:
σ = 50

Problem 1

Problem 2

Problem 3
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Sampling From Two 
Normal Distributions

-75 0 75

-75 0 75

-75 0 75

10.5-9.7

9.7-10.7

7.9-2.5

Number of Runs = 100+10-10True Avg.

Variation 
Expected:
σ = 5

Variation 
Expected:
σ = 10

Variation 
Expected:
σ = 50

Problem 1

Problem 2

Problem 3

Probability Function
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Probability Density Function
• The greater the density of observed outcomes, the larger the density 

function's value
• Important:  *** Probability = integration (sum) of the density 

function within an interval  ***

D
ensity

What Are We Interested In?

• For most statistical analysis for EC the question is
• Is my new way better than the old way?
• Statistically this translates into a statement about the 

difference between means:  “Is the difference between ‘my 
mean’ and ‘the old mean’ greater than zero?”

• We will approach this question in 2 steps:
1. What can we say about the true mean of a single distribution?
2. How can we compare the true means of two or more 

distributions?
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Distribution of the Mean

• Consider the distribution of the average of a set of n
independent samples
• If n = 1, the distribution of the average is just the distribution 

itself, since we have only the single data point
• If n is larger than one, the distribution of the mean must be 

narrower than the distribution of the population
• i.e. the variance and standard deviation must be smaller

• In fact, the standard deviation of the mean of n samples is
given by

nx
σσ =

Distribution of the Mean 
(Standard Normal Distribution)

Mean of one sample                           Mean of 5 samples

Mean of 25 samples                          Mean of 100 samples

Confidence Intervals

• As the “finger” gets narrower, the mean of the samples 
approaches the true mean

• We’d like to say that in the overwhelming majority of 
all possible experiments, the true mean of this 
distribution will lie within a specified interval
• Example:  In 99% of cases, the true mean of the distribution, 

estimated from our 50 samples, lies within the interval 
[ 64 , 79 ] – called a confidence interval for the mean

t Distribution

• Of course, we don’t know the true mean,    , or true standard 
deviation,   

• We do know the mean of the samples,    , the sample size, n, 
and the sample standard deviation, 

• If the source distribution is normally distributed, the shape and 
size of the “finger” is known exactly!
• We can determine the odds that the true mean lies within a 

specified range of
• The distribution of the sample average follows a 

t distribution with n - 1 degrees of freedom, where

µ
σ

X
Xs

n
s
X

s
XT

XX

)()( µµ −=−=

X
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t Distribution

• The t “distribution” is really a family of distributions – the 
shape of the distribution changes as the number of samples, n, 
changes
• This parameter is called the 

degrees of freedom of the 
distribution

• In the limit of many d.f.,
t distribution approaches 
a standard normal 
distribution

4 d.f.; n = 5
9 d.f.; n = 10

99 d.f.; n = 100

Estimating the Mean:
Confidence Intervals Around the Average

05.0=α

If samples taken from a standard normal distribution (µ = 0, σ = 1), 
the sample average has a t distribution. 

95%

0 2.01-2.01

0 2.68-2.68

99.9%

0 3.50-3.50

• For Confidence Intervals, we can 
use cutoff t values

• The wider the cutoff values, 
the more likely the true mean 
will fall between them

• α is the probability of obtaining 
values outside the cutoffs

• Confidence Level is 1 – α
• Cut off t values can be computed 

using Excel:    =TINV(α, n - 1)
• Note: TINV() is already 2 sided

01.0=α

001.0=α

Based on 50 runs

99%

01.2)49(
2
05.0 =t

68.2)49(
2
01.0 =t

50.3)49(
2
001.0 =t

Estimating the Mean:
Confidence Intervals Around the Average

• We know that 

which can be rewritten as

n
sntX X

X )1(
2

−±= αµ

±tα
2
(n −1) cutoff t-values we can form a Confidence Interval

n
s

XT
X

X )( µ−=

that has a 1 - α C.L with n - 1 degrees of freedom

n
s

Xnt
X

X )()1(
2

µ
α

−=−±
• Substituting the cutoff values from the C.I. into the above equation produces

• Using the

Estimating the Mean:
Confidence Intervals Around the Average

• Confidence Intervals can be written in 3 equivalent ways

n
sntX

n
sntX X

X
X )1()1(

22
−+≤≤−− αα µ





 −+−−∈

n
sntX

n
sntX XX

X )1(,)1(
22
ααµ

Error Bounds

Confidence Intervals

n
sntX X

X )1(
2

−±= αµ
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Estimating the Mean:
Confidence Intervals Around the Average

Example: 
• An EC experimenter runs a GA on a TSP
• At the end of each run, the smallest length tour 

that had been found during the run was recorded
• The GA is run 50 times on the same TSP problem
• On average the GA found solutions with a tour length of 272 
• The standard deviation of these tours is 87
• We want to compute a Confidence Interval using a 99% Confidence level

Estimating the Mean:
Confidence Intervals Around the Average

• From the problem we know that the average GA run produced tours of

so
  
µ X = X ± 2.68 sX

50
= X ± 0.38sX

with a 99% C.L.

so the ±t cutoff value is )49()150(
2
01.0

2
01.0 tt =−

using Excel we see that TINV(0.01,49) is 2.68

n
sntX X

X )1(
2

−±= αµWe know that

• Also from the problem n = 50 and α = (1 - 0.99) = 0.01

272=X that had 87=Xs

and so 305239 ≤≤ Xµ

i.e. there is only a 
1% chance that the true 
mean lies outside the 
confidence interval 
formed around average 

Using Confidence Intervals to 
Determine Whether My Way is Better

If we have two different EC systems how can we tell if one is better 
than the other?

Trivial method:  Find confidence intervals around both means
• If the CIs don't overlap 

• Then it is a rare occurrence when the two systems do have identical means
• The system with the better mean can be said to be better on average with a 

probability better than the Confidence Level
• If the CIs do overlap

• Can't say that the two systems are different with this technique
• Either:

1. The two systems are equivalent
2. We haven't sampled enough to discriminate between the two

Confidence Interval Example

-75 0 7510.5-9.7

10-10
10+10
σµ

100
100

n

-6.4-13.13.310.1-9.7
13.87.23.310.010.5

UpperLowersXX

[ ]
[ ]

1.96 sX

n

95% Confidence Level
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Confidence Interval Example

-75 0 757.9-2.5

50-10
50+10
σµ

100
100

n

7.7-12.710.252.1-2.5
17.1-1.39.247.17.9

UpperLowersXX

[ ]
[ ]

1.96 sX

n

95% Confidence Level

Improving the Sensitivity: 
The Student t Test

• The Student t Test is the basic test used in statistics
• Idea: Gain sensitivity by looking at the difference between the 

means of the two systems
• If there is no difference between the actual means of the 2 

systems
• then the difference between the sample averages should be 0, 

with some error that should follow the t distribution
• this is because the difference btw 2 normal distributions is also normal
• so the sample average should be a t distribution as usual

• now we can see if the computed difference of the sample 
averages falls outside a confidence interval (for some α) for the 
t distribution

The Student t Test
Where the normalized difference falls on the t distribution determines whether 

difference expected if both systems were actually performing the same

99%

0 2.68-2.68

• Normalized difference called the t score

• Distribution again differs for different 
sample sizes

• Degrees of Freedom is now
= n1 + n2 – 2

• t test either succeeds or fails
• t score greater than cutoff for a 

given C.L. or not

Based on 50 runs
α = 0.01

99%

0

99%

0

2

2

1

2
12

21

score

n
s

n
s

XXt
XX +

−=

2.68-2.68

2.68-2.68

The Student t Test: p-values

0

• The cut-off values produces a binary 
decision: true or false

• loses information
• Better to report the probability that two 

systems are different
• This is the complement of the probability 

that they are the same
• 1 – Pr(T < t score)
• Called the p-value

Based on 50 runs

0.5

0.15

0 2.4

0 1.1

0.01



8

t Test Step by Step

1. Compute the 2 averages X1 and X2

2. Compute standard deviations s1 and s2

3. Compute degrees of freedom: n1 + n2 - 2
4. Calculate T statistic:

5. Compute the p-value
• p-value = the area under the t distribution outside [-T, T]
• Use =TDIST(T, n1 + n2 - 2, 2) in Excel

• The final “2” in Excel means “two-sided”

( )

2

2
2

1

2
1

21

n
s

n
s

XXT
+

−=

t Test with Binary 
Distributions

• Often, we are counting the number of successes versus the 
number of failures
• same as counting the number of heads vs. number of tails in a coin flip

• This produces a Binomial 
Distribution
• b is the binomial count for the n

repetitions 
• i.e. the number of successes
• the number of repetitions are called 

Bernoulli trials
• p is the true probability of success

• q = 1 - p is the probability of failure

t Test with Binary 
Distributions

• P = b/n is a random variable that equals p as n→ ∞
• The sample standard deviation is

    
σ = p ⋅ q

n
≅ P ⋅ (1− P)

n

    
p = P ± tα

2
(n −1) P(1− P)

n

• The error bounds would be

• Two compare two Binomial Distributions, use the t Test using 
the above standard deviation and success frequency

• This approximation is fairly accurate if np > 5 and n(1-p) > 5

Assumptions, assumptions

• All we have said so far applies only if the source distribution is a 
normal distribution

• What if the source distribution is not a normal distribution?
• In EC, the source distribution is essentially never normal!

• Fortunately, there is one nice property that can help us out
• The Central Limit Theorem:  the sum of many identically 

distributed random variables tends to a Gaussian
• Equation of the mean:

• So the mean of any set of samples tends to a normal 
distribution

∑
=

=
n

i
ix

n
X

1

1



9

Central Limit Theorem

• The sum of many independent, identically distributed (IID)
random variables approaches a Gaussian normal curve

• E.g.  Uniform distribution on [0, 1]:
Mean of one sample                             Mean of two samples

Central Limit Theorem

• E.g.  Uniform distribution (continued):
Mean of five samples                         Mean of 25 samples

Exponential Distribution
Mean of one sample                      Mean of two samples

Mean of five samples                    Mean of 25 samples

Binomial Distribution (p = 0.1)
Mean of one sample                      Mean of five samples

Mean of 25 samples                      Mean of 100 samples
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When The CLT Fails You

• Everything we have done so far depends on the Central Limit Theorem 
holding

• But this is not always true
• In fact for EC it rarely holds

• Problems occur when
• …you have a non-zero probability of obtaining infinity

• Mean and standard deviation are infinite!
• …the sample average depends highly on a few scores

• When the mean of your distribution is not measuring what you want, consider using 
the median instead (rank-based statistics)

• EC alert!
• Many data in evolutionary computing are often highly skewed because some 

local optima in the search space are very unfit
• Example follows

When The CLT Fails You
• From a node layout problem where fitness is absolute error (minimization)

• Here are the PDFs of 2 EC parameter settings, named Broad and Narrow 
for convenience

• Here Broad’s mean is much worse than Narrow’s because of its 
extended tail, even though Broad often beats Narrow in practice!
• We don’t really care about the 8% of trials where Broad performs badly

0%

2%

4%

6%

8%

10%

12%

10
.1

10
.2

10
.3

10
.6

11
.0

11
.8

13
.2

15
.6

20
.0

27
.8

41
.6

66
.2

11
0.

0
18

7.
8

32
6.

2
57

2.
3

10
10

.0
17

88
.3

31
72

.3
56

33
.4

10
01

0.
0

17
79

2.
8

31
63

2.
8

Fitness (log-offset scale)

M
as

s Narrow
Broad

µ Narrow  = 12.4
µ Broad = 263.2

So what should we do?

• There are tests that use Ranks instead of actual values
• These are called Non-Parametric Tests 
• They measure how interspersed the samples from the 

two treatments are 
• If the result is “alternating” it is assumed that there is no 

effective difference

Non-Parametric Tests

• Ranks are uniformly distributed 
(think of percentiles – uniform on [0%, 100%] = [0, 1])

• The sum of ranks and average of ranks will be approximately 
normally distributed because of the Central Limit Theorem, as 
long as we have 5 or more samples
• This result is independent of the particular distributions of the 2 treatments 
• So we can perform a t test on the ranks 

• 2 other techniques with similar results are commonly seen
• Wilcoxon’s Rank-Sum test
• Mann-Whitney U test

• All are effectively equivalent, and the test is often called the
“Mann-Whitney-Wilcoxon test” by statisticians
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How To Rank the Data
• Augment each data point with a treatment identifier and 

an additional slot for its rank
• Sort the data sets together by value

• record the ranks of all values in their rank slot
• assign the average rank of tied values to each tied value

• Resort by the original order thus splitting the data sets back out 
• keep the combined ranking with each data point

• Apply your t test on the ranked values

0.27A

0.16A

0.91A

0.16A

0.16A

0.64A

0.99A

0.64A

0.91A

0.03A

0.64B

0.03B

0.03B

0.16B

0.01B

0.02B

0.27B

0.16B

0.08B

0.64B

Ranked Example

Two sets of Data

0.64B

0.03B

0.03B

0.16B

0.01B

0.02B

0.27B

0.16B

0.08B

0.64B

0.27A

0.16A

0.91A

0.16A

0.16A

0.64A

0.99A

0.64A

0.91A

0.03A

Ranked Example

Combine the data into a single array

0.01B

0.02B

0.03B

0.03B

0.03A

0.08B

0.16B

0.16B

0.16A

0.16A

0.16A

0.27B

0.27A

0.64B

0.64B

0.64A

0.64A

0.91A

0.91A

0.99A

Ranked Example

Sort the combined data
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200.01B

190.02B

180.03B

170.03B

160.03A

150.08B

140.16B

130.16B

120.16A

110.16A

100.16A

90.27B

80.27A

70.64B

60.64B

50.64A

40.64A

30.91A

20.91A

10.99A

Ranked Example

Give each data element 
its corresponding rank

ranks

200.01B

190.02B

180.03B

170.03B

160.03A

150.08B

140.16B

130.16B

120.16A

110.16A

100.16A

90.27B

80.27A

70.64B

60.64B

50.64A

40.64A

30.91A

20.91A

10.99A

Ranked Example

Identify ties

ranks

t5

t5

t5

t4

t4

t4

t4

t4

t3

t3

t2

t2

t2

t2

t1

t1

17t5

12t4

8.5t3

5.5t2

2.5t1

Average tied ranks
together

200.01B

190.02B

170.03B

170.03B

170.03A

150.08B

120.16B

120.16B

120.16A

120.16A

120.16A

8.50.27B

8.50.27A

5.50.64B

5.50.64B

5.50.64A

5.50.64A

2.50.91A

2.50.91A

10.99A

Ranked Example

Replace tied ranks 
with average tied ranks

ranks

t5

t5

t5

t4

t4

t4

t4

t4

t3

t3

t2

t2

t2

t2

t1

t1

17t5

12t4

8.5t3

5.5t2

2.5t1

Average tied ranks
together

Ranked Example

Resort by treatment

ranks

200.01B

190.02B

170.03B

170.03B

150.08B

120.16B

120.16B

8.50.27B

5.50.64B

5.50.64B

170.03A

120.16A

120.16A

120.16A

8.50.27A

5.50.64A

5.50.64A

2.50.91A

2.50.91A

10.99A
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Ranked Example

Perform t test on Ranks

ranks

200.01B

190.02B

170.03B

170.03B

150.08B

120.16B

120.16B

8.50.27B

5.50.64B

5.50.64B

170.03A

120.16A

120.16A

120.16A

8.50.27A

5.50.64A

5.50.64A

2.50.91A

2.50.91A

10.99A

BrankArank

5.335.28stdDev

13.157.85avg

Ranked t Test

0.038p-value

2.23

2.37 n = 10
B

B

A

A
T n

s
n
ss

22
+=

TBA savgavg /)( − tR score

Ranked t Test:  What do we pay?

• t Test is optimized for the normal distribution
• t Test on the ranks is not

• How much do we pay?

12

34

34

16

32

# Samples for 
t Test on Ranks

15

54

55

27

52

# Samples of tR, 
normalized to 50 

runs of t

29Exponential

31Uniform

31Bimodal

40

31

# Samples 
for t Test

Normal

Chubby Tails

Distribution

A Non-Parametric ‘Mean’: 
The Median

• Average of a data set that is not normally distributed 
produces a value that behaves non-intuitively
• Especially if the probability distribution is skewed

• Large values in ‘tail’ can dominate
• Average tends to reflect the typical value of the “worst” data

not the typical value of the data in general

• Instead use the Median
• 50th percentile
• Counting from 1, it is the value in the 

• If n is even, (n+1)/2 will be between 2 positions, 

average the values at that position

n +1
2

 position

A Confidence Interval Around 
the Median: Thompson-Savur

• Find the b the binomial value that has a cumulative 
upper tail probability of α/2
• b will have a value near n/2

• The lower percentile l =

• The upper percentile u = 1 – l

• Confidence Interval is [valuel,valueu]
• i.e. 
• With a confidence level of 

b
n −1

valuel ≤ median ≤ valueu

1−α
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A Confidence Interval Around 
the Median: Thompson-Savur

• In Excel: 
• To calculate b use
CRITBINOM(n,1/2,α/2)

• to compute the valueu use the function 
PERCENTILE(dataArray, u)

• to compute the valuel use the function 
PERCENTILE(dataArray, l)

A Confidence Interval 
Alternative to the Ranked t Test

• Find the median confidence interval for the two data 
sets

• If the confidence intervals do not overlap
• Data sets are taken from different distributions
• With a confidence level of 1 - α where α is the upper tail 

probability used in computing b
• Advantages: 

• Gives better understanding of system 
• see median values with error bounds

• Easy to draw and productive on a graph
• Disadvantage:

• Not as sensitive as the ranked t test

Does My Difference Matter?

• Okay, so your results are significantly better than the 
published results.  So what?
• Statistics can answer, “is it better?”, but not “does it matter?”

• You perform 100 000 runs of your classifier and
100 000 runs of the reference classifier
• You get a t score of 31.6!  ☺
• The p-score is reported by Excel as 0!  (Actually 2.0x10-219)
• But…your way classifies data at 91.0% accuracy, whereas the 

reference technique classifies at 90.8% accuracy.
• Not much difference!

• Especially if your technique is much slower than the reference way

Measuring Effect Size

• One statistic for effect size:  Cohen’s d'
• d' is computed by

• Measures the difference between means in terms of 
the pooled standard deviation

• Cohen suggests that 0.25 is a small difference; 0.50 is 
a medium-sized difference; 0.75 is a large difference

• For our example, d' is 0.10
• Essentially an insignificant difference

• Problem:  we did too many runs!

2/)(
'

21 nn
td

+
=
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Perils of Computer Science

• Very easy to do a host of runs
• 1 000 000 runs of each group not too hard on a PC

• t-scores around 500
• Bizarre-looking results

• p scores show up as 0 or #NUM! in Excel

• We often know that there will be a difference 
between our method and the reference method
• Enough runs will detect this difference
• Difference might only be slight

• Use care in choosing sample sizes, or (better) compute 
Cohen’s d' 

Perils of Computer Science

• We can generate lots of data very quickly
• Leads to over-complicated experimental designs
• Many parameters in Evolutionary Computation

• 10 levels of A, 10 levels of B, 10 levels of C = 1000 treatments!
• Tough to analyze
• A simple t test on the ranks is nearly always better (and see following)

• Always draw a scatter plot or histogram of your data!
• This alerts you to strange things, like that the mean is very bad, 

but some individuals are very good
• Always record the performance of ALL the individuals

• You’ll need this for doing the t test on the ranks
• In EC, we mean ALL individuals of interest; i.e. best of run

Perils of Computer Science in 
Evolutionary Computation

• Don’t confuse Population averages with Best-of-Run 
averages!
• In any GA or GP, the average of the population tells you 

almost nothing of interest
• Use the median of the best-of-run, do the WHOLE experiment 

several times
• Use the tree size of the best-of-run individuals as well!

• They are the Heroes – hence they are of interest, unless you’re really 
looking to optimize average tree size during evolution

• Test 2 (or a few) parameter settings, one variable at a 
time
• Fewer runs required
• Get a feel for how the variation occurs

Repetitions

• What is the number of repetitions needed to see 
if there is a difference between two means or 
between two medians?
• Depends on the underlying distributions

• But underlying distributions are unknown

• Rule of thumb
• Perform a minimum of 30 repetitions for each system
• Performing 50 to 100 repetitions is usually better



16

More Than 2 Treatments

• Preceding stats to be used for simple experiment designs
• More sophisticated stats needs to be done if:

• Comparing multiple systems instead of just 2 treatments
• E.g. comparing the effect on a Genetic Algorithm of using 

no mutation, low, medium and high levels of mutation

• We say there are 4 levels of the mutation variable

• Need               possible comparisons to test all pairs of treatments

• Called a ‘multi-level’ analysis

4
2
 

 
 
 

 
 = 6

Multiple Levels: 
Post-hoc Analysis

• For 4 levels of mutation there are 6 comparisons possible
• Each one of the comparison holds at a 95% C.L. independent 

of the other comparisons
• If all comparisons are to hold at once the odds are 

0.95 x 0.95 x 0.95 x … x 0.95 = (0.95)6 = 0.735
• So in practice we only have 73.5% C.L

• Wrong 1/4 of the time

• For 7 levels of mutation there are 21 comparisons 
possible
• C.L. =  (0.95)21 = 0.341

• Chances are better than half that at least one of the decisions may be 
wrong!

The Bonferroni Correction
for Tests

• To correct, choose a smaller α

• Where m is the number of comparisons
• So for 95% CL use α = 0.025/6 = 0.004167
• For a Z test the critical value changes from 1.96 to 2.64

• Called a Bonferroni post-hoc correction
• Other post-hoc techniques such as Tukey and Scheffé that are more 

powerful than Bonferroni; also Holm’s and Sidak’s procedures can be useful

• You should apply the Bonferroni correction:
• To t tests (t tests and ranked t tests)
• To Confidence Intervals and Error Bounds
• Whenever you mean "all the significant results we found hold at once"

′ α = α
m

The Bonferroni Correction
for Experiments

• The Bonferroni Correction is more widely applicable than 
just for multi-level comparisons

• We really need to control for the dilution of the confidence 
levels throughout the study, whether or not the CLs are 
applied to analyses of independent 'phenomena'
• We must divide the α used for each CL test by the total number of CL 

tests in the study

• To apply the Bonferroni correction to p-values multiply the 
p-values by the number of CL tests performed
• “Probabilities” bigger than 1 means “not significant”
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The Bonferroni Correction 
for Experiments

• Example:
• A robot dog has been created

• Genetic Programming is used to control the ear wiggles of the robot
• a Genetic Algorithm is used to optimize its tail wagging ability

• A study is being done to improve both the ears and the tail 
independently, and we want to be 95% confident in our over 
all tests

• For the ears the GP is tested with 3 different sets of terminal nodes
• For the tail the GA is tested with 4 different fitness functions

• There are

• Consequently the α used for any CL should be α = 0.025 / 9 = 0.0028

3
2
 

 
 
 

 
 +

4
2
 

 
 
 

 
 = 3+ 6 = 9 total CL inferences used in the study

Multiple Factors

• Most of the time, there are many different properties 
we are interested in studying
• e.g. We may be trying out various kinds of crossovers, with 

and without mutation, under different selection pressures
• Each of the above parameters has multiple levels
• This is called a multiple factor analysis 

• with each factor having multiple levels

• Use Analysis of Variance or General Linear Models to 
analyze

• See text books on ANOVA and GLMs

Multiple Factors: 
Factorial Design

• When dealing with multiple factors with multiple levels
• Important that all combinations of factor levels are tried
• A given combination of factor levels is called a treatment
• If you want accurate information about each possible 

interaction, each treatment should be repeated at least 30 
times 

• If you interested largely in main effects, 10 repetitions is often fine, if 
you have enough levels

Multiple Factors: 
Factorial Design

E.g. if we have 2 EC systems, new and standard (New and Std)
and we want to see their behavior under 
• crossover and no crossover (x and x)
• 3 different selection pressures (p1, p2 and p3)

p3p2p1p3p2p1p3p2p1p3p2p1P

xxxxxxxxxxxxX

StdStdStdStdStdStdNewNewNewNewNewNewS

t12t11t10t9t8t7t6t5t4t3t2t1
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Multiple Factors: 
Factorial Design

• If we are performing 50 reps per treatment
• In previous example we have

S x X x P x 50 = 2 x 2 x 3 x 50 = 12 x 50 = 600 experiments 
to perform

• The number of experiments goes up as the product of 
the number of levels in each factor
• This is exponential in the number of factors
• Consequently, carefully choose the factors and factor levels 

that you study in your experiments
• Minimize what factors you vary 

(focus your experiments on the relevant factors)

Top 12 Statistics Myths in EC

1. My mean result being better than yours means my technique 
is superior to yours 
• In the best case you need to perform a t test to assert this claim

2. Reporting the mean value of a statistic is good enough
• You need some representative range

3. Reporting the mean and standard deviation of a statistic is 
good enough 
• Need number of runs

4. Your data are normally distributed 
• Not usually

Top 12 Statistics Myths in EC

5. The mean performance of the best-of-run individuals of your 
system is what matters 
• It’s usually the median you want

6. 10 runs is enough to show significant differences 
between groups 
• It can be, but the statistics required to show this are hairy

7. 95% confidence levels are generally sufficient 
• Try 99.9%

8. Drawing 95% confidence intervals around each sample mean 
on a graph implies that it’s a rare event if any of the true 
means fall outside the CIs 
• Nope; need Bonferroni correction

Top 12 Statistics Myths in EC

9. Reporting the results of several comparisons where each is made at a 
95% confidence level means that all conclusions are valid simultaneously 

• Nope; need Bonferroni correction for that too
10. 95% confidence intervals can be computed using the sample mean ± 1.96 

standard deviations of the mean 
• Nope; need the Student's t score given your degrees of freedom

11. An experimental setup where more than one parameter is varied can be 
treated like one where exactly one parameter varies 

• Need ANOVA, MANOVA or regression
12. One can infer trends from observed data beyond the data you’ve 

generated
• Generally, this would be a consequence of some model, and you probably 

haven’t supported said model with enough experimental data
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