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Problem statement |: Optimizing functions over discrete Methods for problems of type |

spaces
o Genetic Algorithms

e Individuals x are complete solutions

o Search space: A complete solution x consists of n o Evaluation is independent of other individuals — the search

components: X = Xg, X1, ..., Xp—1 process is stable
o Evaluation: A static fitness function for complete solutions ° D|ff|a;|ty: how can good combinations of components be
f(x) is given found:

o Cooperative Coevolution
e Individuals x; are components, i.e. partial specifications
o To evaluate an individual, the individual is combined with
other individuals to form a complete solution

@ Goal: Find a complete solution that satifies a property based
on f
Typically: find a complete solution that maximizes f

o Examples of components: o Thus, evaluation of an individual is dependent on other
o Partial neural networks evolving individuals — the search process may be unstable
E.g. a set of neurons, connections, and their weights o Example of a cooperative coevolution method:
o Bits given n — 1 components, what is the best choice for
o Note: if the components are bits, we have a regular GA component i?
problem o Optimize components in parallel

o Optimize components sequentially
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Problem statement |l: Test-based problems Methods for problems of type Il

o Evaluate solutions against all tests

@ Search space: A set S of complete solutions. o Generally infeasible

o Evaluation: A second search space T of tests is given. o Evaluate solutions against a random sample of tests
The quality of a solution s € S is determined by its o Sample may not be representative
performance against all tests t € T. o Finding high quality opponents may be a difficult search

problem in itself
@ Coevolve the set of tests

. . d h identify high lit t

o Example: Chess: find a first-player strategy that has a ° Secon ary search process may \dentity Mgh quafity opponents

. . o Potential for open-ended progress, as both solutions and tests
maximum expected outcome against a randomly chosen improve

@ Goal: Find a solution s € S that maximizes a performance
measure based on outcomes against t € T

opponent t. o Evaluation function develops as part of the search process
(cf. natural evolution)
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Constructing Reliable Coevolution Methods Methodology for coevolution

(]

Problem with 'naive’ coevolutionary setups:
o Without special arrangements, dynamic evaluation constitutes
a moving target
e Thus, no reason to assume the search process will converge
towards desired solutions

@ Step I: given an informal problem specification, select or
define a solution concept that specifies which objects qualify
as solutions

[Ficici, 2004]: importance of selecting a solution concept
@ Step II: Select or design a coevolutionary algorithm that

Solution concept: divides the search space into solutions and i
respects the chosen solution concept

non-solutions

Example: in a standard GA problem, the solution concept
specifies all (and only) maximum-fitness individuals to be
solutions.
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Solution Concepts for Cooperative Coevolution Solution Concepts: Simultaneous Maximization of All

Outcomes

Maximize the outcome over all possible tests simultaneously:

° MaX|m|ze fitness: find individuals x € X that maximizes SC = {se SV €S Ve T:G(s,T) > G(s, T)}
fitness f(x).

@ Maximize robustness: find individuals x such that each
component x; still forms an appropriate choice when the
remaining components are varied.

@ For many problems, a single solution that simultaneously
maximizes the outcomes of all tests does not exist

@ Thus, limited application scope

@ Monotonic progress: guaranteed by Rosin's Covering
competitive algorithm [Rosin, 1997].
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Solution Concepts: Pareto-Optimal Set Solution Concepts: Pareto-Optimal Equivalence Set

Pareto-coevolution . . S .
[Ficici and Pollack, 2000, Watson and Pollack, 2000]: Opponents Pareto-optimal set: may contain many individuals solving the same

may be viewed as objectives. set of tests. . . -
Pareto-dominance: Pareto-Optimal Equivalence set: remove such duplicate solutions.

Solution s; dominates s, if: For each combination of tests that can be solved, the

sl-s2 = Pareto-Optimal Equivalence Set contains at least one candidate

Vte T:G(s,t) > G(so,t) A 3te T:G(s,t)> G(sot) solution that solves it. Since multiple such sets may exist, we 54 is
- ) — ) . b b

Set of all non-dominated individuals: non-dominated set the collection of all such sets:
SC={scCSNT'CT:

SC = {seS|fs’cS:s ~s} ds € S : solves(s, T') = 3s’ € sc : solves(s’, T')}
o Equivalently: set that for each member of the Pareto-front
@ Represents all different ways to trade off the different contains an equivalent candidate
objectives o Monotonic progress: guaranteed by the Incremental
@ Minimal assumptions Pareto-Coevolution Archive (IPCA) [De Jong, 2004a]

@ May be very large
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Solution Concepts: Nash Equilibrium (I) Solution Concepts: Nash Equilibrium (II)

Players are distributions over the spaces of solutions and tests.
Nash equilibrium: no player can profitably deviate given the
strategies of the other players.

Mixed-strategy Nash equilibrium:

n classes of individuals: Iy, b, ... 1, o General, game-theoretic solution concept
Eg. h=Sand h=T. Let | = Xjepnlj, with N ={1,2,...,n}.
A(l;): the set of probability distributions over ;

Q = xjenA(l).

Mixed strategy profile a € Q: probability distribution for each class
of individuals.

Expected outcome for the i*" class of individuals in a mixed
strategy profile: @ Monotonic progress: guaranteed by Ficici's Nash Memory
E(Gi(a)) =] ,EI'INaj(aj)G,-(a), where G;(a) returns the outcome [Ficici and Pollack, 2003]

A mixed-strategy asx is a Nash-equilibrium if:
SC ={ax € Q|Vi:Va; € A(l;) : E(Gi(ax)) >
E(Gi(a*1, .., a1, Qj, kg1, .., o))

@ Can specify a relatively small set of individuals

@ But: there can be (infinitely) many Nash equilibria, part of
which may be dominated

@ Finding a Nash equilibrium does not guarantee that the
highest possible outcomes.

ael
for the it/ individual.

Foundational Concepts
0000000000000 800

Foundational Concepts
0000000000008000

Solution Concepts: Maximization of Expected Outcome Pareto-coevolution: informativeness

Maximize the expected score against a randomly selected o Ficici [Ficici and Pollack, 2001]: a test t is informative if it
opponent: assigns different outcomes to solutions s, s':
G(s,t) > G(5, t).
_ / . '
SC = {seSvs' € S E(G(s, 1)) = E(G(s', 1)) @ By using an informative set of tests, accurate evaluation is

where E is the expectation operator and t is randomly drawn from achieved [Bucci and Pollack, 2002].
T. o Pareto-coevolution: solution s dominates s’ if and only if:
. / . /
o Appropriate for many problems, e.g. identifying the best chess Jte T:G(s,t) > G(s',t) and Bt € T : G(s', 1) > G(s, 1)
player. @ Thus, the only required information to determine dominance
between s and s’ is whether a test exists that makes a

@ Equivalent to maximizing the sum of an individual's outcomes SR
distinction between them.

over all tests, or to a uniform linear weighting of the
objectives. @ Therefore, given a set of n solutions, a set TS of at most

n? — n tests is guaranteed to exist such that evaluation using

. ) TS as objectives is equivalent to using all tests T as
@ Monotonic progress: guaranteed by the MaxSolve algorithm objectives [De Jong and Pollack, 2004].

@ Assumes all tests are equally important
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Underlying Objectives Coevolutionary pathologies revisited

@ The set of all tests specifies a complete set of objectives
@ Overspecialization: solutions improve on a subset of the

@ However, for many practical problems, similar tests may test
underlying objectives

on similar aspects.

@ Disengagement: for one or more underlying objectives, tests
are too far apart from solutions to provide a gradient, and
thus insufficiently informative

o Example: two devices that test whether a bridge can stand
forces greater than 8.000 and 10.000 kg respectively.

@ Such similar tests can be combined onto a single objective,

thus reducing the dimensionality of the evaluation space @ Intransitivity: by viewing opponents as objectives, rather than

as other solutions, any intransitive relations are transformed
into transitive ones
[Bucci and Pollack, 2003a, De Jong, 2004b].

@ The underlying objectives
[Bucci et al., 2004, De Jong and Pollack, 2004] of a problem
are a minimal set of objectives that provide evaluation
equivalent to the set of all tests T.
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Introduction to Evolutionary Game Theory Modeling the CCEA
@ Evolutionary Game Theoretic (EGT): o Populations are ratios of genotypes
o Tracking population state through time o Given n distinct genotypes in a population, For example:
o Dynamical systems model o XER", x€[0,1] A DXL, x=1 X=1(0.20.10.7)
o Discrete time system (map) @ Fitness modeled using a payoff matrix
o Interested in properties of limit behaviors o Treat A a the payoff matrix for a stage game
o ajj is the reward player 1 gets when playing strategy / against
@ Model assumptions & properties player 2's j strategy
o Population(s): single population, two-population o Strategies in game correspond with evolving individuals
o Payoff Properties: reward symmetry, role symmetry @ Replicator equations generate the next system state:
° ropulat!ons: infir)itj/popula?ions, f.in'ite populations o Fitness: The fitness of all strategies in a population is assessed
o Interactions: typically complete mixing — typically by playing all possible strategies for the other player
o Variation: typically none X :\::;r;czt):sn pairwise ° gZIF:ectign: yTF})]eypo;g)ulatiF:)n state vectogr is updated usingpay :
o Selection: typically proportionate selection selection method of some sort (typically a proportionate
o Updating: parallel update selection)
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Terminology Single Population, Test-based Coevolution [Ficici and Pollack, 2000]

Pure Strategy — A single strategy available to a player in a game

@ One population, but two players
Polymorphic (mixed) Strategy — A distribution of pure strategies @ Player 1 represents candidate solutions to the problem
Evolutionary Stable Strategy (ESS) — a strategy that, if adopted by a @ Player 2 represents tests to challenge the solution
population, cannot be invaded by any alternative strategy @ Individuals serve both as strategies for players 1 & 2 (role symmetry)
Nash Equilibrium — a strategy set of players in a game with the
property that, if all players are playing one of the Fitness: F(X) = AX
strategies, no individual player has anything to gain by Selection: S(F(%),x) Xl{ = a”'; e

deviating from their strategy

@ Population may represent polymorphic solutions
Fixed Point (f.p.) — A point that maps to itself, X = f(x) @ Simple CEA cannot recognize such solutions
Stable Fixed Point — A fixed point with the property that all points @ CEA can be lead astray by search constrained attractive Nash eq.

near it stay near it . . . .
y @ Different dynamics can result from two-population algorithms

Basin of Attraction (BOA) — Set of initial conditions that will operating on same payoff matrix

eventually map to some limit behavior (f.p., cycle, etc.) o Different dynamics can result if different selection methods are used

Analyzing CEAs Analyzing CEAs
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Two-Population, Compositional Coevolution |wiegand et al., 2003] Applicability of EGT on Finite Population Systems

Not Applicable

@ Two population, two players

. . ) : Applicable [Ficici et al., 2000]:

@ Player 1 represents candidate for the 15' component of the solution [Fogel et al., 1995] PP [ ]

@ Player 2 represents candidate for the 2"¢ component of the solution © Pick a simple, two-strategy @ Be careful to model the algorithm properly
problem (e.g., Hawk—Dove) (if you implement truncation selection, model

@ (i), whether evaluating for player 1 or 2 (reward symmetry)

@ Pick a simple, finite truncation selection)

Fitness: Fu(%,¥) i= Ay population CEA @ Use the correct predictions (e.g., predictions
' Fy(X,¥) w=ATx @ Does the real CEA converge for model adjusted for no self-play)
27 2 /Ui to the EGT-predicted ESS? @ There are modest adjustments to

Selection: S(Fx(%.¥).X) X = gy ; i implementation that provide bette

election: S(F,(X,%),7) yi==L.y @ Conclusion: No. Even for implem ! \at provi r

NI, JSooowy very large populations, predictive correlation (e.g., Baker's SUS
@ Nash equilibria are stable, attracting fixed points quantization problems and rather than proportionate selection)
@ Non-optimal stable f.p. can attract many, most, or all trajectories stochastic noise force the @ Conclusion: Yes. Properly modeled, EGT
@ Validation studies suggest that the size of BOAs associated with sysggm_to deviate from can be predictive
predictions

basis vector f.p. increase as cumulative column/row increase
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Finite vs. Infinite Population Models

[Liekens et al., 2004]

Finite models behave differently:

Some initial observations:

@ Construct infinite population model
@ Infinite populations simplifies using traditional methods (Vose, 1999)

analysis (populations represented @ Construct finite population-genetics

based Markov model (Fischer, 1930)

@ Include proportionate selection &
bit-flip mutation in both models

simply, models are deterministic)

@ Finite populations complicates
things (use Markov methods,

consider all possible populations & X .
@ Consider three simple 2 x 2 games:

Neutral game, Hawk-Dove, &
Prisoner's Dilemma (two pop.)

compute fixed-point distributions)

@ Prevailing wisdom: predictions
of large population models
approximate predictions of
infinite model @ Conclusion: In all cases, small pop.

sizes translate to very different

behavior from the infinite models

@ Analysis by model iteration

@ Reality: Drift can be a powerful
factor of finite populations

Analyzing CEAs
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Coevolutionary Convergence [Schmitt, 2003]

Markov process with certain algorithmic constraints:
@ Fully-positive mutation matrix

@ Bounded mutation and crossover rate annealing schedule
(power-law scaling, with logarithmic exponent)

@ Power-law scaled proportionate selection

@ I strategy set with strictly maximal fitness (i.e., is strictly superior
as measured by the other population)

Conclusions:

@ A wide variety of (properly scaled versions of) commonly used
operators are included in this analysis

@ Populations in such CEAs converge asymptotically to a global
optima

@ Very large populations allow for slow annealing schedules

Analyzing CEAs
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Decomposing Solutions for Representation

Separability ~ problem’s true Representing candidate solutions

decomposition @ Problem decomposition (piece)

@ r inseparable pieces @ Representational decomposition

@ Each piece of length s (component)

@ n:=rs @ Two kinds of representational bias
°

Function is a linear sum of
subfunctions on r pieces

@ Decompositional bias
@ Linkage bias

Poor decomposition can increase cross-population epistasis. E.g.,:

components l X1XQ +++ X] | X(2—1)-(141) * " X2l ] T lx(k—z)-(l+1) o 'X(k—l)Jl X(k=1)-()41) =" Xn ]

pieces l X1X2 1t Xs l T l X(r=1):(s+1) * " " %n l

Empirical Analysis of Repr. Bias

[Wiegand et al., 2002a]

Traditional View: Understanding Repr. Bias:

@ Construct problems with different
non-linear properties

@ High CP epistasis — poor
coevolutionary performance

@ Use a mask to adjust linkage &
decompositional bias

@ Low CP epistasis — good
coevolutionary performance

o Compensate by using more o Consider a variety of collaboration
complicated interaction methods methods

@ Conclusion: It isn't the existence
of cross-population epistasis that
makes things hard, but the type

Thought Exercise:

@ Problem separability aligns
perfectly with representational
decomposition

@ Select any collaborator, or just an This is a bad example of

arbitrary fixed value f coevolutionary success
@ Observation: Coevolution is unnecessary!
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Partitioning & Focusing

[Jansen and Wiegand, 2004]

Analyzing CEAs
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Consider problems w/ different

Two key aspects of CCEAs: ,
properties:

@ Partitioning (separability is important) .
) ) o @ Separable across pop. boundaries

@ Focusing (increased exploration is | bi boundari
important) @ Inseparable across pop. boundaries

Consider 2 simple algorithms: Conclusions:

o (1+1) EA @ Separability insufficient for CCEA
advantage
e CC(1+1) EA

. . . @ Separability unnecessary for CCEA
Asymptotic run time analysis:

advantage
@ Randomized algorithm analysis @ Inseparability insufficient for EA
o Det. expected # evals to max advantage

@ Problem must require both

@ Bound probabilities L .
partitioning & focusing

Analyzing CEAs
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Conceptualizing the Information Content of Problems

Coevolutionary Problems:
@ Coevolutionary problems involve certain structures
@ E.g., underlying objectives, dimensions, etc.
Formalisms for Studying Problem Structure:

@ [Rosin and Belew, 1997] teaching set— set of individuals capable of
defeating all possible nonoptimal opponent

o [Ficici and Pollack, 2001] distinction— If learner x performs better
than learner y with respect to teacher j, we say that teacher j
distinguishes the learner pair (x,y) in favor of x

@ [Bucci and Pollack, 2003b] maximally informative test set— the set
of tests having neither incomparable elements nor equal elements

@ [De Jong and Pollack, 2003] complete evaluation set— set of
individuals capable to detecting all selectable differences between
learners

Empirical Studies of Methods of Interactions

Methods of Interaction:
@ Evaluation in coevolution requires interaction
@ Many ways to select competitors / partners
@ More interactions per eval — more information, less efficiency
@ Less interactions per eval — less information, more efficiency
Some Example Studies:

@ [Angeline and Pollack, 1993] Empirical study of different topologies
of competitive tournaments

@ [Bull, 1997] Broad empirical survey study of performance of partner
selection

o [Wiegand et al., 2001] Empirical study of certain properties of
collaborator selection

@ [Bull, 2001] Formalism for understanding partner selection

@ [Panait and Luke, 2002] Broad empirical survey study of
performance of competitive evaluations

Analyzing CEAs
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Problem Classes for Analysis

Constructing Problem Classes:
@ Tunable: A range of problem instances can be generated straightforwardly
@ Demonstrative: lIllustrate certain problem properties
o Simple: Preferably, analytically tractable in some way

@ Challenging: Possible to generate instances difficult for coevolution

Some Example Problem Classes:
@ [Kauffman and Johnsen, 1992] Probabilistic, coupled landscapes: NKC
@ [Watson and Pollack, 2001] Minimal substrate: Numbers games
© [Wiegand et al., 2002b] Tunable miscoordination: MAXOFTWOQUADRATICS
@ [Popovici and De Jong, 2006] Tunable best response: ridge / plateau functions
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Measuring Coevolution

Analyzing CEAs

Understanding Performance

Diagnosing CEA Behavior:

@ Red Queen dynamics & poor solution concept formulation make it
hard to discern coevolutionary progress

@ Coevolution generates many pathological behaviors

Some Example Measures:

[Cliff and Miller, 1995] Current individual vs. ancestral opponent
[Pollack and Ficici, 1998] Order statistics and measured entropy
[Stanley and Miikkulainen, 2002a] Dominance tournament

e 66 6 ¢

[Bader-Natal and Pollack, 2004] All of generation visualization

Representation in Coevolution
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Best Response:
@ Best-responses are a problem property Issues Analyzed:

@ Trajectories of best individuals through @ Competitions
the search space (algorithm property) [Popovici and De Jong, 2004]
tend to approximate the best responses o Collaboration methods in

@ Accuracy of approximation depends on compositional coevolution
CEA parameter settings [Popovici and De Jong, 2005a]

@ High accuracy bad when 3 multiple @ Population sizes & elitism in

nash equilibria (intersections of
best-responses) of different values

compositional coevolution
[Popovici and De Jong, 2005b]

Random Walk Theory: Issues Analyzed:
@ Consider a simple CEA @ Intransitivity
@ On variations of the numbers game [Funes and Pujals, 2005]

@ Compare behavior to random walk

Representation in Coevolution
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Choosing Opponents Is Not the Only Problem

@ How can new solutions be continually created that maintain
existing capabilities?

@ Mutations that lead to innovations could simultaneously lead
to losses

@ What kind of process ensures elaboration over alteration?

Alteration vs. Elaboration

Alteration
Original Strategy Strategy Fails Altered Strategy Strategy Fails
Elaboration
Original Strategy Strategy Fails Elaborated Strategy|  Skill Remains!

i
s
Q\‘
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Encoding Affects Performance Example Domain: Robot Duel
o Fixed length genomes limit progress P .
@ Dominant strategies that utilize the entire genome must alter = ‘\) (@/ =
and thereby sacrifice prior functionality
o If new genes can be added, dominant strategies can be - -
elaborated, maintaining existing capabilities
o — Complexification is an important process for the encoding - =

Robot with higher energy wins by colliding with opponent
Moving costs energy

Collecting food replenishes energy

Complex task: When to forage/save energy, avoid/pursue?

]
]
]
]
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Robot Neural Networks Set of Strategies Not Fixed or Known

Left Right Forward

@ Progress should continue indefinitely
@ Solutions should elaborate
@ Should not require estimating task complexity
@ — Use a method that complexifies
Food Sensors Robot Sensors
Wall  Energy
Difference
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Complexifying Method: NeuroEvolution of Augmenting

Topologies (NEAT)

Minimal Starting Networks

/X/\/XZ\;/\/\/\;/\

Population of Diverse Topologies

wR LA

o NEAT evolves increasingly complex neural network for control
[Stanley and Miikkulainen, 2004]

@ Mutations occasionally add new structure

@ Speciation protects innovative structures

@ Successful elaborations survive

@ — The populaton complexifies

Representation in Coevolution
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Evolution of Complexity

240 T T T T T T )
200 | Connections in Highest Dom. —+— Kl
Random Fitness Min. Connections -------

200 |- Random Fitness Max. Connections -------- 4

180 | 1
160 |- b

Connections

20 I I I I I I I I I

0 50 100 150 200 250 300 350 400 450 500
Generation

@ As dominance increases so does complexity on average

o Networks with strictly superior strategies are more complex
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Dominance Tournament Progress Measure

[Stanley and Miikkulainen, 2002b]

1@@@@@@4665§@@

loses
1st Dom

5

0110101010 658%}@

loses
3rd Dom.

3@@ ©0JO0]0) Gm

2nd Dom. 4th Dom

@ The first dominant strategy dj is the generation champion of
the first generation;

o dominant strategy d;, where j > 1, is a generation champion
such that for all i < j, dj is superior to (wins the 288 game

Representation in Coevolution
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Comparing Performance

Coevolution Type | Ave. Highest Average Equivalent

Dom. Level | Performance Generation
(out of 500)

Complexifying 15.2 91.4% 343

Fixed-Topology 12.0 40.4% 24

10 Hidden Node

Fixed-Topology 13.0 80.3% 159

5 Hidden Node

Fixed-Topology 14.0 82.4% 193

Best Network

Simplifying 23.2 57.3% 56
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Coevolution in Practice Some Final Remarks

@ It is important to know what we're solving

o Invest time in formalizing the solution concept of the problem
o Try to apply a CEA appropriate for that concept

o Evaluation is expensive

o Choosing opponents/teammates must involve sampling o Theory is progressing—many tools are now available:

o Even under theoretically-founded schemes o Evolutionary game theory & dynamical systems analysis
o Markov modeling & Markov chain analysis

Randomized run-time analysis

Order theory & information theoretic approaches
A variety of useful problem classes

Dynamics analysis (e.g., best-response)

@ Solution space is unknown /undefined

o Representation must be open-ended
o Genomes need to complexify

@ Is coevolution ready for real-world applications?

@ Practical applications of coevolution may require special
considerations

o Representation is critical
o Expanding the search space enables continual elaboration
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