
Size Matters: Scaling of Organisms and Genomes for
Development of Emergent Structures

Gunnar Tufte
Norwegian University of Science and Technology

Department of Computer and Information
Science

Sem Selandsvei 7-9 7491 Trondheim Norway

gunnart@idi.ntnu.no

Joacim Thomassen
Norwegian University of Science and Technology

Department of Computer and Information
Science

Sem Selandsvei 7-9 7491 Trondheim Norway

joacimt@stud.ntnu.no

ABSTRACT
An artificial Development approach aimed at development
of electronic circuits has functional circuits as the end prod-
uct. Functionality of circuits are given by the topology of
the phenotype. The article investigates if the iterative pro-
cessing of the genome in a development process can take
advantage of the information provided in the genome and
the information available in the emerging phenotype. The
development process described is a rule-based system on a
non-uniform Cellular Automata topology. The experiments
presented investigate scaling of available resources in the
phenotype for evolution of structural properties and genome
scaling for expressing functionality in the structure of the
emerging phenotype.

Categories and Subject Descriptors
B.6.1 [Hardware]: Design Styles—Cellular arrays and au-
tomata

General Terms
Design

Keywords
Development, Cellular Computation, Scaling

1. INTRODUCTION
In Evolvable Hardware (EHW), Evolutionary Algorithms

(EAs) are used to evolve electronic circuits. In general, a
one-to-one mapping for the genotype-phenotype transition
is assumed. Use of a one-to-one mapping assumes a geno-
type consisting of a complete blueprint of the phenotype.
For an electronic circuit, the genotype thus completely de-
scribes the circuit topology i.e. the components and their
interconnections. This description may be said to be a struc-
tural description. Interpretation of this structural informa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

tion provides us with the circuit functionality. Electronic
circuits may be said to be complex due to their complex
structure and/or complex functionality.

The approach of evolutionary design [3] may be an al-
ternative to today’s view on how circuits and computation
machines are designed and operates. If an alternative design
approach is to be used it may be that today’s view on a ma-
chine’s components and architecture constrains the design
approach [16].

The Cellular Computation paradigm [21] may be an alter-
native architecture. Cellular Computation offer a theoretical
platform [20] realisable in today’s hardware technology [27]
exploiting the principles of a global behaviour emerging from
local cell interactions in a parallel architecture.

The massive parallel computation power of cellular com-
putation is hard to exploit using traditional design and pro-
gramming methods. Moving away from a traditional ap-
proach towards adaptive methods [21], includes systems where
the programmer (or designer) can not explicitly specify the
complete system [20]. An adaptive approach, e.g. EAs, may
be suited but constraints of the algorithm itself can be added
into the design process. EAs are resource-greedy, accom-
panied by direct mapping and often suffer from a scaling
problem [4].

One solution to the resource greedy nature of EAs is to
follow nature’s example and shrink the genotype in some
way. Natures way of handling complexity clearly points in
the direction of a non one-to-one mapping from genotype to
phenotype. Natures process of development where a zygote
develop to a multicellular organism [30] can be included in
an EA to increase scalability [2].

In biological development, an initial unit — a cell, holds
the complete building plan (DNA). It is important to note
that this plan is generative — it describes how to build the
system, not what the system will look like. Units have inter-
nal state, can communicate locally, can move, spawn other
units or die. Groups of units may also exhibit group-wise
behaviour i.e. a group state.

The global developmental stages from the zygote (fer-
tilised egg) to the multicellular organism, although interde-
pendent and not strictly sequential, may be categorised as
pattern formation; morphogenesis; cell differentiation and
growth [30].

Evaluation of individuals in a developmental system is
usually based on properties of the phenotype i.e. the final
developed phenotype or the emerging phenotype. In con-
trast to a one-to-one mapping where the phenotype may be

identical to the genotype [12]. The genotype in a develop-
ment system may only provide information regarding the
phenotype or it’s functionality as the genome is processed
by the development process.

For development of structures e.g. flags [17], a graphical
representation of a flag is the output produced. Evaluation
is based on structural properties of the phenotype given by
cells representing structural parts of a global property e.g. a
desired pattern of cells expressing colours. The development
process in these flag examples have built a structure out of
cell interactions i.e. the global structure emerges out of local
interactions.

Development of functionality i.e. a phenotype structure
capable of computation, can use an evaluation based on the
behaviour of the emerging phenotype. The Cellular Compu-
tation paradigm [21] used herein offer massive parallel com-
putation power in a cellular array. The emergent phenotype
consists of computation elements in a cellular array. As such,
the evaluation can be based on the functional properties ex-
pressed in the cellular array i.e. cellular computation [23].

As stated above the processing of genomes in a develop-
ment system makes it quite different from a system using a
one-to-one mapping. The processing of the genome in the
development process in the cellular development approach
used herein is based on gene regulation [24]. Gene regulation
implies that different parts of the genome are expressed in
different cells at different time in the emerging phenotype.
The phenotype emerges as a result of an interplay between
the genome and the emerging phenotype i.e. a process of
gene regulation.

Way back in the work of Von Neumann [29] it was shown
that the number of available cell types and the number of
available construction instructions influence on what cellu-
lar structure that can be built. In the work of Sipper [20]
the number of available cell types required for general com-
putation is investigated for the purpose of cellular machines.
Inspired by such approaches we want to investigate how scal-
ing of available information influence on evolution of devel-
opmental genomes.

Available information is herein scaled by two parameters.
First, the available size of the phenotype i.e. the number of
cells that can be exploited by the growth and differentiation
process. Second, the available number of genes in the gene
regulation network. The scaling of genome i.e. number of
genes, changes the available actions a cell can express and
the number of regulation criteria the cell can interpret.

To explore the influence of these two scaling parameters
two very different approaches are presented. However both
uses the same cellular development process. Two different
EAs are used. An Evolutionary Strategy (ES) is used in
experimental investigation of the scaling of available cells
i.e. phenotype scaling. A Genetic Algorithm (GA) is used
to investigate the influence of available genes i.e. genome
scaling.

The two experiments presented targets evolution of genomes
for structural properties and functional properties respec-
tive. The goal of presenting two so different approaches is
to show that they have interesting concurrent results that
appear independent of the EA included in the system.

The developmental model used in both experiments is
based on cellular development. The model include a cell
with functional components in addition to the required genome
and development mechanisms. As stated the main long term

goal is functional circuits. As such, functional cell compo-
nents are required to express functionality. Expressing func-
tionality adds an extra process to the developmental system.
In addition to the processing of the developmental genome to
generate the emerging organism the functional components
of the emerging organism must be processed.

The resources required to process the developmental genome
as to generate the emerging phenotype usually depend on
the size of the genome and the amount of development steps.
The processing of the genome may be a sequential or parallel
process. To express cells’ functionality the cell’s functional
components must also be processed. As such, the amount
of computational power required for each cell depends on
the processing of the genome and the processing necessary
to express the cell’s functionality. The total amount of com-
putational power is given by the size of the cellular array,
i.e. the computational power required by the total number
of cells.

Herein the functional components of the cell are only pro-
cessed in the experiment of functional properties. The func-
tionality is evaluated on the final development step. How-
ever, the functionality expressed in the organism at the final
development step arises as a result of processing of the func-
tional components on all available development steps.

To be able to carry out experiments including process-
ing of the functional components and the desired genome
size in realistic time a hardware experimental platform has
been implemented. The hardware platform offer true paral-
lel computation for expressing the functionality of the cells,
i.e. the processing time is not influenced by the amount of
cells used. The processing of the genome is partly processed
in parallel offering a speed-up making it possible to scale up
the genome size and still be able to perform experiments in
realistic time for the desired amount of cells.

The speed-up offered by the hardware platform is neces-
sary for the experiments regarding functional properties. In
the experiments regarding structural properties the genome
size is much smaller and the functional components of the
cells are not processed. As such, a software solution is pos-
sible. The reason for using both software and a hardware
platform in experiments is to be able to exploit the raw
power of hardware when necessary and to be able to take
advantage of the flexibility offered by software. Flexibility
here relates to the ability to do flexible monitoring of inter-
nal processes of the development process. However, running
a software solution is constrained by increased computation
time for large genomes, simulation of functional components
and the amount of possible cells.

The article is laid out as follows: The cellular developmen-
tal model is presented in Section 2. Section 3 describes the
ES used and the experiments for phenotype scaling. The
GA used and experimental results for genome scaling are
presented in Section 4. A discussion of the experiments are
given in section 5. Finally, Section 6 concludes the work.

2. DEVELOPMENT MODEL
Including properties of biological development as described

above into artificial development do not need to achieve a re-
alistic model of development but are rather used to increase
the power of evolutionary computation or Evolvable hard-
ware (EHW) [6, 14, 18, 26, 28]. However, artificial devel-
opment may also be used in studies by biologists as demon-
strated by Kumar’s [10] computational models of develop-

ment based on, e.g. real biochemical pathways. The complex
3D shape and form in Kumar’s experiments, e.g. [11], il-
lustrate evolution together with development which achieve
complex structures.

Today’s electronic circuits are based on 2D silicon tech-
nology. As such, it is possible and desirable to limit the com-
plexity of the shape and form of the target for development.
In [6, 26] a 2D circuit close to the internal architecture of FP-
GAs are used as the target for development of electronic cir-
cuits. Both approaches uses a intracellular communication
restricted to a 2D Von Neumann neighbourhood. However,
the architecture and computation paradigme used is quite
different. In Gordons work [8] successful evolution of adders
and parity problems was demonstrated. The architecture
of the circuit and computation performed may be close to
a traditional circuit even if the circuit solutions found are
not traditional adder designs. The architecture of the de-
veloped circuit consists of combinatorial function generators
connected by wiring. As such, the circuit is a combinatorial
circuit consisting of inputs, computational elements and out-
puts. The work herein is based on the development model
in [26] using a different computational paradigm, i.e. cellular
computation. The computational elements, i.e. functional
components of the cell, are a sequential circuit including
memory and combinatorial logic. The architecture of the
developmental circuits is based on the cellular computation
paradigm. The circuits functionality is an emergent prop-
erty. As such, the work of Gordon targets development of
combinatorial circuits the work herein is aimed towards de-
velopment of emergent sequential circuits.

In [7] Gordon applies the developmental model to the task
of evolving pattern to demonstrate scalability. The results
show that the development model for electronic circuits also
can be applied to develop patterns. Herein a similar ap-
proach is taken. The development model is applied to the
task of development of a specific goal pattern. However, the
possible cell types are restricted to include only the required
types i.e. the number of exploitable cell states (given by the
cell types) are at a minimum. In contrast the possible cell
types (or cell states given by the possible protein concentra-
tion) in [7] are not constrained as the goal is scaling of the
phenotype itself. Scaling herein investigate scaling of avail-
able resources in the phenotype for evolution of structural
properties.

Figure 1 shows the building block of the developmental
system presented herein — the cell. The cell is divided into
three parts: the genome (the building plan); the develop-
ment process (mechanisms for cell growth and differentia-
tion) and the functional component of the cell. The genome
consists of rules of how to construct the multicellular organ-
ism i.e. a cellular array of functional components.

The genome is based on two types of rules i.e. change and
growth rules. Cell growth is a mechanism to expand the
organism and differentiation changes a cell’s type i.e. func-
tionality. These rules are restricted to expressions consisting
of the type of the target cell and the types of the cells in
its Von Neumann neighbourhood. The rules consist of a re-
sult and a condition. The result part of a change rule states
the type of cell the target is going to be changed into. The
conditional part describes the type of neighbourhood cells
to trigger the rule. A growth rule result gives the direction
of growth; grow from north Gn, east Ge, south Gs or west
Gw. Rules have the following valid conditions: valid cell

Out

Out

O
u

t

W

S

N O
u

t

Development
process

D

Q

Q
SET

CLR

LUTS
W

E
N

Cell type from
neighbouring cells

Functional
components

Out

E

Genome

CLK

S

N

W E

0
1
2
3

4

Figure 1: Components of the cellular Development
Model.

types, don’t care (DC), or empty. DC is not a valid target
condition.

Change rules have one restriction: a target cell can not
be changed from an empty to a valid non-empty cell type.
The reason behind this restriction is that we want growth
to handle the expansion of the organism. Growth rules have
two restrictions. First, the target cell must be empty – this
is to prevent growing over an existing cell and, therefore,
specialising the cell with a new cell type. Secondly, the cell
to be copied into the target can not be empty.

Action

Active?

Cond

Active?

Cond

Active?

Cond

Active?

Cond

Active?

Cond

Active?

W

S

C E

N

ConditionResult

Figure 2: Regulation of genes as interplay between
the genome and the emerging phenotype.

Firing of a rule can cause the target cell to change type, die
(implemented as a change of type) or cause another cell to
grow into it. The current cell together with the neighbouring
cells control whether a rule is to be fired or not. Figure 2
illustrates the process of evaluating a rule. For each cell
condition, the cell type is compared and if the condition is
true then that part of the rule is active. If all conditions
are active then the result will become active and the rule
will fire. Activation of the result gene is expressed in the
emerging phenotype according to the action specified in the
result.

In a development genome multiple rules are present. Mul-
tiple rules imply that more than one rule of a given cell may

be activated at the same time if their conditions hold. To
ensure unambiguous rule firing, rule regulation is part of
the development process. If the first rule is activated, the
second and third rule can not be activated. Activation of
the second rule prevent activation of the third rule, etc i.e a
gene regulation network.

The development process presented is an autonomous pro-
cess. All cells in the cellular array can run the development
process in parallel. The functional components of the cells
are also a parallel architecture. As such parallel cellular de-
velopment starting from a single cell can develop to a multi-
cellular functional organism i.e. a cellular array constructed
of different cell types.

The functional components of the cell is an Sblock [9].
The context of the Sblock’s look-up table (LUT) defines
it’s functionality and is herein also used to define Sblocks
as cell types based on their functionality. The LUT is the
combinatorial component and the flip-flop is the memory
element capable of storing the cell state. The output value
of an Sblock is synchronously updated and sent to all its
four neighbours — its Von Neumann neighbourhood, and
as a feedback to itself.

One update of the cell’s type given by the genome and
the execution of the development process is termed a de-
velopment step (DS). A development step is a synchronous
update of all cells in the cellular array. The update of the
cell’s functional components i.e. one clock pulse on the flip-
flop, is termed a state step (SS).

The POE-model [19] has been established as a taxon-
omy of biological inspired hardware. The POE-model clas-
sifies biological inspiration in the design of computing ma-
chines along three axes: phylogeny, ontogeny, and epigene-
sis. The phylogeny axis encompasses evolution. Ontogeny
embraces systems taking inspiration from biological devel-
opment. Systems capable of acquiring and exploiting infor-
mation i.e. learning, are placed along the epigenesis axis. A
common property for designs exploiting ontogeny and epige-
nesis, is the ability to shrink the level of information needed
to form a large complex organism [28].

A possible approach to hardware development of cell based
circuits is to include the genome, functional units and devel-
opment process in each cell [14, 15]. In the POEtic project
the goal is to include all of the three axes of the POE-model
in digital hardware. Others have included the evolution-
ary process in the hardware platform [13] targeting fault-
tolerance.

Another approach is to simplify each cell, in keeping with
the properties of cellular architectures, by removing the genome
and development process from the cell itself [25] thus in-
creasing the parallelism available to the functional parts of
the cell. The principle of a common genome is still retained
as all the cells’ development actions are controlled by the
same shared genome even if it is not stored in every cell.

Figure 3 illustrates the hardware implementation of the
cells with a centralised genome and development process
used in section 4. The fixed partition consists of a com-
munication module (COM) for external communication and
genome download. The CTRL module manages the other
modules. The different Cell types, i.e. LUT definitions are
stored in the Sblock definition module. The genome is stored
in the Rule Memory. The Development Process updates the
emerging phenotype based on the properties of the emerg-
ing phenotype and the genome. CONFIG is the interface

COM

Fixed partition

FPGA

Reconfigurable partition

Development
Process

BRAM 0CTRL

Sblock
definition

BRAM 1

CONFIG ReadBack

Rule
Memory

Fitness

Figure 3: Development process integrated on-chip
together with an Sblock array.

to update the phenotype in the reconfigurable partition of
the FPGA. The ReadBack module can be used to collect
information from the phenotype. The emerging phenotype
develops in the reconfigurable partition. Each circle include
the functional components of the cell shown in Figure 1. The
Fitness module can be used to implement hardware fitness
functions [1]. A detailed description of the modules can be
found in [25].

3. PHENOTYPE SCALING
The objective is to evolve genomes that can produce an

emerging phenotype using structural properties of the phe-
notype as the main evaluation criteria. The structural prop-
erty chosen is development of a predefined pattern expressed
by the cell types in the finalised phenotype i.e. at the last
available development step.

The target pattern is a chessboard. To represent the
chessboard only two types of cells are required i.e. cell type
is expressed as black or white. The development process
starts from a single cell and develops to an organism of size
given by the predefined maximum phenotype size. In the
initial condition for development all cells but the first single
cell is defined as empty.

The chessboard pattern is highly scalable and can pro-
vide a good foundation for exploration of the evolution and
development processes.

In this experiment the main scaling parameter investi-
gated is the phenotype size i.e. organism. As such, the
number of available cells in the phenotype is scaled while
keeping the genotype size constant. The experiments are
repeated for an increasing genotype size as an attempt to
relate the results to the genome scaling for evolution of func-
tional properties presented in section 4.

The development process used is the development model
presented in section 2. Even though a hardware implemen-
tation is available the experiments in section 3 are carried
out on a software platform. The experiments only take ad-
vantage of the cell types. The functional components of the

cell in Figure 1 are not implemented. However, the cells
express their type as an intercellular property. In an evalua-
tion only targeting structural properties the cell type itself is
enough to express a cellular building block in the phenotype
structure.

3.1 Evolutionary Algorithm
The evolutionary strategy chosen incorporates survivor se-

lection with elitism. Only cloning and mutation are used as
genetic operators. The population size is constant and only
the best individual is cloned to next generation. If there
are two or more best individuals equally fit the newest one
is preferred. The rest of the individuals are deleted and
the new population is filled with mutants of the best. All
individuals are re-evaluated in each generation.

If an individual is mutated the mutation operator can
change one, two or three genes in the genome. The mu-
tation points are chosen randomly. A gene at a mutation
point is assigned a new random value. This might result in
no change.

Table 1: Defined Cell types.

Cell Type
Cell Graphical

name representation
B Black
W White
Z Empty

Table 1 list the available cells and their graphical repre-
sentation used herein. The only cell types available are the
empty, black and white. In addition to the given cell types
the growth directions and DC condition are valid gene types
in a rule.

Gene
0

Gene
 1

Gene
2

Gene
3

Gene
4

Rule 0

Gene
5

Gene
6

Gene
7

Gene
8

Gene
9

Gene
10

Rule 1

Gene
11

6

10

8: Z
7: DC
6: W
5: B
4: GW
3: GE
2: GS
1: GN

Gene
value to

gene type
LUT

mod 8 () +1
6 + 10

2

Figure 4: Mapping of gene values to gene types.

The genome is a symbolic representation of positive in-
tegers. Each rule is indirectly represented by six genes in
sequence. The representation of each gene type i.e. B, W,
Z, DC and growth direction, is not direct. Instead each gene
value represents an address to another gene in the genome.

Figure 4 illustrates the process of mapping the positive
integer gene representation in the EA to the gene type rep-
resentation used in the development genomes. In the exam-
ple a two rule genome is shown. The integer representation

represent each gene by a value from 0 to the number of avail-
able genes. Here 0 to 11. Each gene value is mapped to a
gene type in the following manner: The gene value, here 6
for the first gene, points to gene number 6. Gene number
6 has the gene value 10. The gene type for the first gene is
found by adding 1 to mod 8 of the average of the two gene
values. The result is used as an address to point in to a
gene value to gene type LUT. As shown the gene type for
the first gene in the first rule is a growth condition (Gn).

The genotype representation used in the EA have a neu-
tral mapping [5] to genomes that can be processed by the
development process described in section 2. The selection of
the newest individual if equally high fitness is obtained can
exploit neutral jumps in the phenotype space [5].

Condition

Cond

Action

Cond

Cond

Cond

Cond

C

N

S

W

E

Result
+3

+4
+5

+6
+7

Figure 5: Fitness points based on correct composi-
tion of genes in a rule.

3.2 Evaluation
As stated in section 1 evaluation in a development pro-

cess depends on the interplay between the processing of the
genome in the cells and the emerging phenotype. As such,
the development process require genomes capable of growth
and differentiation to provide feedback to the EA. As an at-
tempt to provide genomes containing valid rules to the de-
velopment process valid gene entry in rules are rewarded —
a rule fitness. To avoid waste of computation time only rule
fitness is calculated for genomes containing no valid rules
i.e. genomes are not processed by the development process
only rule fitness points are given.

The rule fitness is a function based on three properties of
each rule in the genome. First, each gene is given a reward
independent of rule composition. That is, if a gene entry is
valid i.e. no DC in the action and no growth entry in the con-
ditional part. Second, the rule is given an increasing number
of points based on the correctness of the rule composition
i.e. the restrictions for growth and change rules. Third, a
valid rule is given a reward.

The three different rule fitness properties are rewarded
and weighted. Each correct gene is given 2 points. The
calculation for correctness in rule composition is shown in
Figure 5. If the action part and centre (C) condition is
correct for a change or growth rule 3 points are given. If
the action, centre and north (N) condition is fulfilled 4 more
points are given, etc. A total of 25 points if all gene entries
are correct. Each rule in compliance with all restrictions
is given 20 points. Note that rule fitness value depends on
genome size.

Genomes including valid rules are developed and given a

(a) Initial pattern (b) Step 1 (c) Step 2 (d) Step 3 (e) Step 4

(f) Step 5 (g) Step 6 (h) Step 7 (i) Step 8 (j) Step 9

(k) Step 10 (l) Step 11 (m) Step 12 (n) Step 13

Figure 6: Development steps for final individual. The pattern is stable from step 12 until last step, step 20.
Grey cells are empty(Z).

fitness value based on the number of correct cell types in
the finalised developed phenotype i.e. on the last available
development step. Each structural correct cell type i.e. black
or white is given 50 points.

The development example in Figure 6 shows the steps for
the best individual after 3000 generations. This example
develops from single black cell to a multicellular organism
of 8 by 8 cells expressing the desired chessboard pattern.
The example shows a perfect solution. The phenotype is
structural stable at development step 12 i.e. no change in
the phenotype from development step 12.

The organism in Figure 6 obtained a fitness of 3200 for it’s
structural composition. A rule fitness of 286 in total where
100 was rewarded for the 5 correct rules. The individual is
rewarded a total fitness value of 3486.

Table 2: Genome for phenotype in Figure 6. Rule 4
have highest priority.

Rule
Result Center North South East West

[Action] [Cond] [Cond] [Cond] [Cond] [Cond]
4 Gw Z DC Z Z DC
3 Ge Z DC Z DC DC
2 Gs Z DC DC DC DC
1 W W W Z Z DC
0 B B B B B B

The genome for the development process shown in Fig-
ure 6 is presented in Table 2. The five exploited rules con-
sists of three growth rules and two change rules.

3.3 Experiment and Results
To investigate how phenotype size influence on the result

produced by the EA the number of cells available to develop-
ment was increased. Four different runs were conducted for
phenotypes of size 16, 64, 256 and 1024 cells. The genotype
size was set to 4 rules.

The initial condition was set to a single cell of type black
(the zygote). The number of available development steps
was set to 100. The population size is set to 5. The maxi-
mum number of available generations is 3000.

Table 3: Results of rule size 4: phenotype size scaled
from 16 to 1024 cells.

Rules Size SR
4 16 33%
4 64 41%
4 256 34%
4 1024 44%

Table 3 shows the results of the four runs increasing the
maximum size of the phenotype. In the table Rules gives the
number of possible rules in the genome. Size is the maxi-
mum number of cells available for development i.e. organism
size. The Success Ratio (SR) gives the percentage of perfect
solutions found over 100 repeated runs.

In Table 4 the number of rules is increased to 5 rules. The

Table 4: Results of rule size 5: phenotype size scaled
from 16 to 1024 cells.

Rules Size SR
5 16 55%
5 64 64%
5 256 59%
5 1024 61%

size of the phenotype is increased from 16 to 1024 cells. The
results of the runs are presented in the table.

Table 5: Results of rule size 6: phenotype size scaled
from 16 to 1024 cells.

Rules Size SR
6 16 68%
6 64 70%
6 256 73%
6 1024 66%

Finally in Table 5 the number of rules is increased to 6.
The size of the phenotype is again increased from 16 to 1024
cells as for the two previous experiments. The results are
presented in the table.

The gene activation pattern for development of one of the
5 rule genotypes that produced a perfect solution at the final
development step is presented in Figure 7. Figure 6 shows
the development of the phenotype. The plot in Figure 7
illustrates the gene activation together with the number of
active rules in the organism at each development step. Rule
numbers from 0 to 4 are placed on the left Y-axis. The
mark (+) in the plot indicates that the rule was activated
at the given development step. The right Y-axis show the
number of cells in the organism with a active rule on a given
development step. The number of active rule cells at each
development step is illustrated by the plotted line.

The plot has an increasing number of active rules from
the first development step to a maximum of 16 at develop-
ment step 6. From development step 6 the number of active
rules decreases down to 0 at the development step 12. The
phenotype has reached a state of structural stability.

4. GENOME SCALING
From the task of evolving genomes for development of

organism with structural properties in the previous section
the task is now changed to evolve genomes for development
of organisms with functional properties.

Functionality is expressed by the output of the functional
components of the cell shown in Figure 1. As such, state
steps are required to measure functionality in the phenotype.

Evolution of static and sequential behaviour is defined in
[23]. Herein static behaviour is the target behaviour. Static
behaviour is expressed as a global property of all cells in-
cluded in the phenotype at a given state step at a given de-
velopment step. The global properties chosen is the number
of cells outputting a logical ”1”. As such, the GA search for
genomes that can produce a phenotype consisting of suitable
cell types at a given development step producing a desired

 0

 1

 2

 3

 4

 0 5 10 15 20
 0

 2

 4

 6

 8

 10

 12

 14

 16

R
u
l
e

n
u
m
b
e
r

N
u
m
b
e
r

o
f

a
c
t
i
v
e

r
u
l
e
s

Development step

 0

 1

 2

 3

 4

 0 5 10 15 20
 0

 2

 4

 6

 8

 10

 12

 14

 16

R
u
l
e

n
u
m
b
e
r

N
u
m
b
e
r

o
f

a
c
t
i
v
e

r
u
l
e
s

Development step

Figure 7: Gene activation pattern showing the rule
activity in the development of the phenotype in Fig-
ure 6.

state output at a given state step.
To be able to produce an organism able to output the

desired function of 1024 logical ”1”s, the genome must be
capable of development of a structure that exploits all avail-
able cells. This structural requirement is not given in the
fitness function but is a result of the fact that empty cells
must be occupied to change their output value. As such,
the functional goal can not be achieved if the phenotype
structures do not exploit all available cells.

The cellular array used consists of 1024 cells –an array
of 32 by 32 cells. The genome size is scaled by increasing
the number of available rules that can be exploited by the
development process.

The experiments are executed on a cPCI machine includ-
ing a cPCI PC running the GA. The genomes are trans-
ferred on the cPCI bus to the FPGA card. The develop-
ment process and functional behaviour of the cellular array
are executed in the FPGA. Information from the developing
phenotype is available by readback to the GA.

4.1 Evolutionary Algorithm
The approach here is to evolve genomes that can produce

an emerging phenotype with functional properties. A fixed
number of cell types to be exploited by evolution is chosen.
The number of development steps and state steps is set to
be fixed. As such, evolution must be able to find a solution
within the given parameters. The set of cell types used are
given in Table 6 together with their functional LUT defini-
tion and graphical symbols for graphical presentation.

The EA chosen is a straight forward Genetic Algorithm
(GA) [22]. The GA’s crossover operator for multiple crossover
points is modified. The modification has two purposes.
First, to avoid the context of genes to be disturbed, i.e.
genes representing a cell type or growth direction is copied
unmodified by the crossover operator. Second, the num-
ber of crossover points is variable within a given range. The
variable number of points is implemented to be able to move
rules up and down in the ranking, i.e. placement within the
genome.

The representation of cell types and growth directions are
not represented as symbols. Each gene is represented by a

Table 6: Defined Cell types and their functionality

Cell Type
LUT Function Graphical
hex name representation

0 0xFFFF0000 Empty
1 0xFFFFFFFE T ≥ 1
2 0xFFFEFEE8 T ≥ 2
3 0xFEE8E880 T ≥ 3
4 0xE8808000 T ≥ 4
5 0x80000000 T ≥ 5
6 0x96696996 XOR5
7 0x00000001 T ≥ 1
8 0x00010117 T ≥ 2
9 0x0117177F T ≥ 3
10 0x177F7FFF T ≥ 4
11 0x7FFFFFFF T ≥ 5
12 0x69969669 XOR5

given number of bits. Seventeen bits are used to represent
the twelve used cell types in Table 6 together with the four
possible growth directions and the don’t care condition. The
gene value is the number (sum) of bits set to logical ”1” in
a gene.

Further, the gene value does not directly reflect the gene
type i.e. cell type, growth direction or condition. Instead of
a direct translation of gene values to gene types a look-up
table is used to translate the gene value to a gene type. The
translation table used is given:
9, 15, 2, 3, 4, 5, 6, 17, 14, 7, 16, 17, 8, 0, 13, 11, 12, 10

A gene value of zero point to the first entry in the look-up
table defined as cell type 9 in Table 6. The entries 13 – 16
represents the four growth directions and 17 the don’t care
condition. Using a look-up table for gene translation has
two important properties. First, it is easy to remove cell
types from the available cells as cell types not represented
in the table can not be expressed in the phenotype. Second,
the table can be exploited by the genetic operators. A single
bit mutation in a gene will change the gene type one step
up or down the table.

The purpose of the uneven distribution of gene values to
gene types caused by the gene value representation is to keep
the experiments herein compatible with ongoing work.

4.2 Evaluation
The initial condition is applied before development starts.

This means that all cells are set or reset depending on the
given initial condition. To avoid empty cells updating their
output values from their Von Neumann neighbourhood, all
cells of type Empty are set to update their outputs based
on only their own output value at the previous clock pulse.
As such, a given empty cell will retain its initial state until
the emerging organism grows into it.

In contrast to the experiments in section 3, where a part of
the fitness function is defined to reward rules that are com-
posed correctly, here the fitness function rewards genomes
for including rules that is exploited during development.

In section 3 the argument for rewarding correct composi-
tion within a rule was to favour such genomes to be able to
exploit the genetic material towards genomes that was ca-

pable of growth and differentiation i.e. a zygote that starts
to develop. Here a different approach is taken. All genomes
in the initial population are made of gene combinations that
are valid rules. However, there are no mechanism preventing
the genetic operators to produce invalid rules.

A fitness function that included activated rules in the
emerging phenotype together with the number of cells out-
putting a logical ”1” at the final state step at the final de-
velopment step was defined. The fitness function is the sum
of activated rules multiplied by 2 added to the number of
cells outputting a logical ”1”. As such, the number of cells
outputting a logical ”1” defines the success of the structure
developed. Exploited rules keep useful exploitable genetic
material in the population.

The development example in figure 8 shows the develop-
ment of an organism of 32 by 32 cells over 50 development
steps. In the example a single cell of type XOR5 outputting
a logical ”1” (the zygote) develops to a multicellular organ-
ism of 1024 cells. The target for evolution is to produce
organisms outputting as many logical ”1”s as possible i.e.
1024. The finalised organism at the last available devel-
opment step is a structure of cell type 8 (T ≥ 2) and 11
(T ≥ 5). A genome size of 32 rules was used. Out of the
available rules 6 rules was exploited. The presented emerg-
ing phenotype is a result of 8619 generation of evolution.

The functional property of the phenotype was given a
score of 1024 points based on the number of logical ”1”
outputted on the last state step of the last available de-
velopment step. The rule fitness was given 12 points based
on the 6 exploited rules out of the available 32 rules in the
genome. A fitness of 1038 points.

Table 7: Genome for phenotype in Figure 8. Rule
31 have highest priority.

Rule
Result Center North South East West

[Action] [Cond] [Cond] [Cond] [Cond] [Cond]
0 Gs DC DC Gs 3 DC
1 DC DC Gs Gs DC DC
2 DC DC Gs Gs 6 DC
3 Gs 0 6 Gw Gs DC
4 8 6 DC DC DC 8
5 DC DC 5 Gs 8 Gw
6 6 5 Gs Gs Gw Gs
7 DC DC DC Gw 8 DC
8 8 6 DC DC 6 DC
9 DC Gw 5 6 6 Gs
10 DC DC 6 Gw Gw 4
11 DC 6 5 DC DC DC
12 DC 6 Gw Gs DC 0
13 DC 6 DC Gs DC 8
14 DC Gw Gs DC 5 Gw
15 DC Gw 6 6 Gw Gs
16 Gn 0 DC DC DC DC
17 Gs 0 6 DC 6 5
18 Gw 0 DC DC DC DC
19 DC Gs DC Ge 6 5
20 DC DC Gw 5 4 DC
21 6 DC 8 DC Gs Gs
22 Gs 0 DC DC DC DC
23 6 8 11 DC 5 DC
24 DC Gw Gs 0 Gs DC
25 DC Gs Gw DC DC Gs
26 8 DC 5 Gs Gw Gs
27 Gw DC 0 Gs DC DC
28 Gw 0 Gw Gs Gs 0
29 Gs 0 Gs DC 8 DC
30 Gs 0 5 Gw DC Gs
31 11 8 DC 6 DC DC

The genome for the development process shown in Fig-
ure 8 is shown in Table 7. The 6 exploited rules consists of
three growth rules and three change rules.

4.3 Experiment and Results
The initial state is set to be a single cell of type 6 (XOR5)

(a) Initial pattern (b) Step 1 (c) Step 2 (d) Step 3

(e) Step 3 (f) Step 4 (g) Step 5 (h) Step 6

(i) Step 7 (j) Step 8 (k) Step 9 (l) Step 10

(m) Step 11 (n) Step 12 (o) Step 13 (p) Step 49

Figure 8: Selected development steps for development of static behaviour. The output states of the cells
makes a bit array of 1024 cells outputting a logical ”1”.

the cell is set to output a logical ”1”. The population size
is set to 16. The genome size was scaled from 4 to 32 rules.
Development steps were set to 50. State steps for each de-
velopment step was set to 30. The number of activated rules
and the cell types in the cellular array was recorded together
with the fitness value.

Note that due to it’s functional properties of once set al-
ways producing a logical ”1” the cell type T ≥ 1 is not
included in the runs.

Table 8: Result of searching for static behaviour.

Rules
Used rules ”1”s Fitness Generation
best/mean best best/mean best/mean

4 4/3.4 909 917/438.2 10721/9222,6
8 6/4.8 920 932/744.7 8816/10731.4
16 7/5.5 1024 1038/931.9 17685/10000.3
32 8/6.8 1024 1040/1010.4 15565/10057.6

The result can be found in Table 8. The table contains the
4 different runs. Each run was repeated 10 times. For each
run the number of active rules, number of cells outputting a
logical ”1” and the fitness score for the best and mean over
the 10 runs is presented. In the last column the respective
generation for the best individual is presented together with
the mean generation for the best of 10 runs.

The gene activation pattern for development of one of the
32 rule genotypes that produced a perfect solution of out-
putting 1024 logical ”1”s at the final development step is
presented in Figure 9. Figure 8 shows the development of
the phenotype. The plot in Figure 9 illustrates the gene
activation together with the number of active rules in the
organism at each development step. Rule numbers from 0 to
31 are placed on the left Y-axis. The mark (+) in the plot
indicates that the rule was activated at the given develop-
ment step. The right Y-axis show the number of cells in the
organism with an active rule on a given development step.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50
 0

 20

 40

 60

 80

 100

 120

 140

R
u
l
e

n
u
m
b
e
r

N
u
m
b
e
r

o
f

a
c
t
i
v
e

r
u
l
e
s

Development step

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50
 0

 20

 40

 60

 80

 100

 120

 140

R
u
l
e

n
u
m
b
e
r

N
u
m
b
e
r

o
f

a
c
t
i
v
e

r
u
l
e
s

Development step

Figure 9: Gene activation pattern showing the rule
activity in the development of the phenotype in Fig-
ure 8.

The number of cells with active rules at each development
step is illustrated by the plotted line.

The plot has an increasing number of active rules from the
first development step to a maximum of 80 at development
step 17. From development step 17 to 30 the number of
active rules is constant at 80 active rules. At development
step 32 the number of active rules decreases down to 0 at the
last development step. The phenotype has reached a state
of structural stability. Note that not all of the produced
phenotypes in the experiment reached structural stability.

5. DISCUSSION
In the experiments considering phenotype scaling the struc-

ture emerges as a result of the interplay between the genome
and the phenotype. The goal structure may be said not to
be a true emerging global structure. Each cell can take ac-
tion to express it’s correct cell type only by examining the
local neighbourhood. However, the genome presented to the
development process must be arranged in such a way that
it is able to develop the target pattern.

The true parallel cellular development process require gene
regulation. Regulating the genes to grow and differentiate
without constructing structural conditions that is not cov-
ered in the limited size of the genome or leads to oscillating
substructures. In the parallel cellular development process
all cells execute the development process in parallel. Cells
can only rely on the information provided by it’s neighbours
at the current development step. As such, a cells action
based on the structural information provided is unambigu-
ous regarding the cell’s development action i.e. change or
growth.

The result of evolution of developmental genomes for solv-
ing the cellular structure of a chess board indicate that the
ES can almost keep it’s performance or in some cases take
advantage of the increased number of available cells to in-
crease the success ratio.

The increased success ratio if the number of available rules
was increased also show that the ES was able to effective
exploit the available gene regulation network.

In the experiments for genome scaling a true global prop-

erty that can only be achieved as an emerging property out
of local interactions is the target. The genome and the de-
velopment process must construct a structure of functional
components that can meet the target criteria. The removal
of the cell type T ≥ 1 ensure that a solution exploit the func-
tional components of the cells using the state steps. There
are no cells avilable that can be used by growth and dif-
ferentiation alone to build a structure of cells outputting a
logical ”1”.

The result of the experiment shows that evolution was
able to exploit the increased genome size toward better so-
lutions. However, it is clear that only parts of the genome
are exploited. Looking at the gene activation plot in Fig-
ure 9 for the organism in Figure 8 only six of the rules are
exploited. However, the genome carry information from the
evolutionary process that is not exploited in the current gen-
eration.

Looking at the graphical presentation of development in
Figure 8 shows that the final phenotype is constructed of
two cell types only. However, the phenotype is developed
exploiting a third cell type in the growth and differentiation
process. This third cell is part of the actual result obtained
even if it is not present at the final development step. The
cell is part of the functionality expressed. The final output
bit pattern is a result of all development steps and state
steps from the first cell outputting a logical ”1”.

If the presented example of gene regulation plots in Fig-
ure 7 and Figure 9 and graphical presentation of the de-
veloping organisms in Figure 6 and Figure 8 are examined
both EAs found stable structural phenotypes at the last de-
velopment step available. There are no specific mechanisms
for self regulation available. Evolution is capable of find-
ing genomes that develop to organisms were self-regulation
emerges out of the local cell interactions.

In the experiments considering phenotype scaling and ex-
periments for genome scaling a common obstacle must be
solved. The number of available development steps was
set to be fixed. As such, the structural requirement in
both cases of exploiting all available cells the developmental
genome must provide a growth ratio that can expand the
organism in the appointed number of development steps.

6. CONCLUSIONS
The experiments regarding phenotype scaling presented

in section 3 and genome scaling in section 4 indicate that
increased number of available cells in the phenotype and
the size of the genome influence the results in a positive
direction.

The fact that both EAs were able to exploit the devel-
opment model was encouraging. This may indicate that a
development mapping may not be that sensitive to the EA
implementation and parameter tuning.

The increased performance in the experiments by the in-
creased size of the genome and to some extent the pheno-
type size indicates that the development process is capable
of exploiting the increased information available. Informa-
tion here is an increased number of structural chess board
cells that can be used in the developmental computation to
construct the finalized board. The increast number of avail-
able rules leading to a larger number of instructions also
provide an increast amount of information i.e. rules, that
can be exploited during the development process.

7. REFERENCES
[1] K. Aamot. Kunstig utvikling: Utvidelse av fpga-basert

sblock-plattform. Master’s thesis, The University of
Science and technology, Norway, 2005.

[2] P. Bentley and S. Kunar. Three ways to grow designs:
A comparison of embryongenies for an evolutionary
design problem. In GECCO, pages 35–43, 2000.

[3] P. J. Bentley, editor. Evolutionary Design by
Computers. Morgan Kaufmann Publishers,Inc, San
Francisco, USA, 1999.

[4] S. Droste, T. Jansen, G. Rudolph, H. Schwefel,
K. Tinnefeld, and I. Wegner. Theory of evolutionary
algorithems and genetic programming. In H. P.
Schwefel, I. Wegener, and K. Weinert, editors,
Advancec in Computational Intelligence Theory and
Practice, pages 107–144. Springer, 2003.

[5] M. Ebner, M. Shackleton, and R. Shipman. How
neutral networks influence evolvability. Complexity,
7(2):19–33, 2001.

[6] T. G. W. Gordon. Exploring models of development
for evolutionary circuit design. In 2003 Congress on
Evolutionary Computation (CEC 2003), pages
2050–2057. IEEE, 2003.

[7] T. G. W. Gordon and P. J. Bentley. Bias and
scalability in evolutionary development. In the 2005
Genetic and Evolutionary Computation Conference,
pages 83 – 90. ACM Press, 2005.

[8] T. G. W. Gordon and P. J. Bentley. Development
brings scalability to hardware evolution. In the 2005
NASA/DOD Conference on Evolvable Hardware
(EH05), pages 272 –279. IEEE, 2005.

[9] P. Haddow and G. Tufte. An evolvable hardware
FPGA for adaptive hardware. In Congress on
Evolutionary Computation(CEC00), pages 553–560,
2000.

[10] S. Kumar. Investigating Computational Models of
Development for the Construction of Shape and Form.
PhD thesis, University College London (UCL), 2004.

[11] S. Kumar and P. J. Bentley. Biologically inspired
evolutionary development. In 5th International
Conference on Evolvable Systems (ICES03), Lecture
Notes in Computer Science, pages 57–68. Springer,
2003.

[12] S. Kumar and P. J. Bentley, editors. On Growth, Form
and Computers. Elsevier Limited Oxford UK, 2003.

[13] J. Liu, H.and Miller and A. Tyrrell. Intrinsic evolvable
hardware implementation of a robust biological
development model for digital systems. In the 2005
NASA/DOD Conference on Evolvable Hardware
(EH05), pages 87 – 92. IEEE, 2005.

[14] D. Mange, S. Moshe, A. Stauffer, and G. Tempesti.
Towards robust integrated circuits: The embryonics
approach. Proceedings of the IEEE, 88(4):516–543,
April 2000.

[15] D. Mange, E. Sanchez, A. Stauffer, G. Tempesti,
P. Marchal, and C. Piruet. Embryonics: A new
methodology for designing field-programmable gate
array with self-repair and self-replicating properties.
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 6(3):387–399, September 1998.

[16] J. Miller and K. Downing. Evolution in materio:
Looking beyond the silicon box. In 2002 NASA/DOD

Conference on Evolvable Hardware, pages 167–176.
IEEE Computer Society Press, 2002.

[17] J. F. Miller. ”evolving developmental programs for
adaptation, morphogenesis, and self-repair. In Seventh
European Conference on Artificial Life, Lecture Notes
in Artificial Intelligence, pages 256–265. Springer,
2003.

[18] J. F. Miller and P. Thomson. A developmental
method for growing graphs and circuits. In 5th
International Conference on Evolvable Systems
(ICES03), Lecture Notes in Computer Science, pages
93–104. Springer, 2003.

[19] E. Sanchez, D. Mange, M. Sipper, M. Tomassini,
A. Prez-Uribe, and A. Stauffer. Phylogeny, ontogeny,
and epigenesis: Three sources of biological inspiration
for softening hardware. In T. Higuchi, M. Iwata, and
W. Liu, editors, Evolvable Systems: from Biology to
Hardware, ICES 96, volume 1259 of Lecture Notes in
Computer Science, pages 35–54. Springer, 1996.

[20] M. Sipper. Evolution of Parallel Cellular Machines
The Cellular Programming Approach. Springer-Verlag,
1997.

[21] M. Sipper. The emergence of cellular computing.
Computer, 32(7):18–26, 1999.

[22] W. M. Spears. Gac ga archives source code collection
webpage.
http://www.aic.nrl.navy.mil/galist/src/, 1991.

[23] G. Tufte. Cellular development: A search for
functionality. In Congress on Evolutionary
Computation(CEC2006). IEEE, 2006.

[24] G. Tufte. Gene regulation mechanisms introduced in
the evaluation criteria for a hardware cellular
development system. In 1st NASA/ESA Conference
on Adaptive Hardware and Systems (AHS-2006).
IEEE, 2006.

[25] G. Tufte and P. Haddow. Biologically-inspired: A
rule-based self-reconfiguration of a virtex chip. In 4th
International Conference on Computational Science
2004 (ICCS 2004), Lecture Notes in Computer
Science, pages 1249–1256. Springer, 2004.

[26] G. Tufte and P. C. Haddow. Building knowledg into
developmental rules for circuite design. In 5th
International Conference on Evolvable Systems
(ICES03), Lecture Notes in Computer Science, pages
69–80. Springer, 2003.

[27] G. Tufte and P. C. Haddow. Towards development on
a silicon-based cellular computation machine. Natural
Computation, 4(4):387–416, 2005.

[28] A. Tyrell, E. Sanchez, D. Floreano, G. Tempestti,
D. Mange, J. Moreno, J. Rosenberg, and A. E. P.
Villa. Poetic tissue: An integrated archtecture for
bio-inspired hardware. In 5th International Conference
on Evolvable Systems (ICES03), Lecture Notes in
Computer Science, pages 127–140. Springer, 2003.

[29] J. Von Neumann. Theory of Self-Reproducing
Automata. University of Illinois Press, Urbana, IL,
USA, 1966., 1966.

[30] L. Wolpert. Principles of Development, Second
edition. Oxford University Press, 2002.

http://www.aic.nrl.navy.mil/galist/src/

	Introduction
	Development Model
	Phenotype Scaling
	Evolutionary Algorithm
	Evaluation
	Experiment and Results

	Genome Scaling
	Evolutionary Algorithm
	Evaluation
	Experiment and Results

	Discussion
	Conclusions
	References

