Abstract:
|
The field of Evolutionary Computation has experienced tremendous growth over the past 15 years, resulting in a wide variety of evolutionary algorithms and applications. The result poses an interesting dilemma for many practitioners in the sense that, with such a wide variety of algorithms and approaches, it is often hard to se the relationships between them, assess strengths and weaknesses, and make good choices for new application areas. This tutorial is intended to give an overview of a general EC framework that can help compare and contrast approaches, encourages crossbreeding, and facilitates intelligent design choices. The use of this framework is then illustrated by showing how traditional EAs can be compared and contrasted with it, and how new EAs can be effectively designed using it. Finally, the framework is used to identify some important open issues that need further research.
|