
Applying Particle Swarm Optimization to Software Testing

Andreas Windisch
DaimlerChrysler AG

Research and Technology
Alt-Moabit 96a, D-10559

Berlin, Germany
Phone: +49 30 39982 463

Stefan Wappler
Technical University of Berlin

DaimlerChrysler AITI
Ernst-Reuter-Platz 7, D-10587

Berlin, Germany
Phone: +49 30 39982 358

Joachim Wegener
DaimlerChrysler AG

Research and Technology
Alt-Moabit 96a, D-10559

Berlin, Germany
Phone: +49 30 39982 232

ABSTRACT
Evolutionary structural testing is an approach to automat-
ically generating test cases that achieve high structural code
coverage. It typically uses genetic algorithms (GAs) to search
for relevant test cases.

In recent investigations particle swarm optimization (PSO),
an alternative search technique, often outperformed GAs
when applied to various problems. This raises the question
of how PSO competes with GAs in the context of evolution-
ary structural testing.

In order to contribute to an answer to this question, we
performed experiments with 25 small artificial test objects
and 13 more complex industrial test objects taken from var-
ious development projects. The results show that PSO out-
performs GAs for most code elements to be covered in terms
of effectiveness and efficiency.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging —
Test coverage of code, Testing tools

General Terms
Verification

Keywords
evolutionary testing, genetic algorithm, particle swarm op-
timization, automatic test case generation

1. INTRODUCTION
Evolutionary structural testing [8, 12, 14, 15], a search-

based approach to automatically generating relevant unit
test cases, is a well-studied technique that has been shown
to be successful for numerous academic test objects as well
as for various industrial ones. Because of the complex search
spaces that most test objects imply and that are often hard
to understand due to their high dimensionality, genetic al-
gorithms have been regarded as being especially adequate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

search strategies since they are able to deal with multi-
modality, non-linearity, and discontinuity quite well.

However, genetic algorithms have started getting competi-
tion from other heuristic search techniques, such as the par-
ticle swarm optimization. Various works (e.g. [1, 4, 5, 9, 7])
show that particle swarm optimization is equally well suited
or even better than genetic algorithms for solving a number
of test problems1. At the same time, a particle swarm algo-
rithm is much simpler, easier to implement and has a fewer
number of parameters that the user has to adjust than a ge-
netic algorithm. The performance and the above-mentioned
characteristics of the particle swarm optimization favor its
application as a search engine for evolutionary structural
testing.

This paper reports on our results from an empirical com-
parison of a genetic algorithm and a particle swarm algo-
rithm applied to evolutionary structural testing. We se-
lected 25 artificial test objects that cover a broad variety
of search space characteristics (e.g. varying number of lo-
cal optima), and 13 industrial test objects taken from vari-
ous development project. The results indicate that particle
swarm optimization is well-suited as a search engine for evo-
lutionary structural testing and tends to outperform genetic
algorithms in terms of code coverage achieved by the deliv-
ered test cases and the number of needed evaluations.

The paper is structured as follows: section 2 introduces
evolutionary structural testing, section 3 describes the used
genetic algorithm and particle swarm optimization in more
detail, section 3.3 deals with previous comparisons of PSO
and GA in general, section 4 includes the results of the ex-
periments, and section 5 summarizes the paper and gives
suggestions for future work.

2. EVOLUTIONARY STRUCTURAL TEST-
ING

Since it is apparently impossible to exercise a software
unit with all possible combinations of input data, a subset of
test data must be found that is considered to be relevant or
adequate, respectively. Therefore the generation of relevant
test cases for a given software unit is a critical task that
directly affects the quality of the overall testing of this unit.
A test case is a set of input data with which the unit is to be
executed, and the expected outcome. Often, the structural
properties of the software unit are considered to answer the

1The term test problem does not relate to software test-
ing but rather to well-defined optimization problems used
to compare the performances of different optimization tech-
niques.

1121

question as to what relevant test cases are. For instance, a
set of test cases that lead to the execution of each statement
of the software unit under test are said to be adequate with
respect to statement coverage. Branch coverage, another
coverage criterion requiring all branches of the control flow
graph of the unit under test to be traversed, is demanded
by various industrial testing standards and guidelines.

In general, the process of test case generation is time-
consuming and error-prone when done manually. Evolution-
ary structural testing (EST) [15, 8, 12, 14], an automatic
test case generation technique, has been developed in order
to provide relief. EST interprets the task of test case gener-
ation as an optimization problem and tries to solve it using
a search technique, i.e. a genetic algorithm. A genetic algo-
rithm is a meta-heuristic optimization technique, which is
dealt with in more detail in section 3.1. It requires a fitness
function to be provided, which is used to assess the abil-
ity of a particular solution to solve the given optimization
problem. Depending on the selected coverage criterion, the
source code under test is partitioned into single test goals
that have to be optimized separately. In the context of EST,
the construction of fitness functions using the two distance
metrics approximation level and branch distance has proven
of value [14]. The approximation level relates to the con-
trol flow graph of the unit under test. It corresponds to the
number of critical branches that are in between the problem
node and the target (where the target is the code element
to be covered and the problem node is the node at which
execution diverges down a branch that makes it impossible
to reach the target). Branch distance relates to the condi-
tion assigned to the problem node. It expresses how “close”
the evaluation of this condition is to delivering the boolean
result necessary for reaching the target node.

3. APPLIED SEARCH TECHNIQUES
This section describes both search techniques to be com-

pared, namely genetic search and particle swarm optimiza-
tion. Section 3.1 and 3.2 characterize both strategies in
detail whereas section 3.3 summarizes previous comparisons
and their results.

3.1 Genetic Search
Genetic search, carried out by a genetic algorithm, is a

meta-heuristic optimization technique that mimics the prin-
ciples of the Darwinian theory of biological evolution. Its
adequacy for solving non-linear, multi-modal, and discon-
tinuous optimization problems has drawn the attention of
many researchers and practitioners during the last decades.

A genetic algorithm works with a set of potential solutions
for the given optimization problem. Through multiple mod-
ifications applied iteratively to the current set of solutions,
better solutions and finally an optimum solution is supposed
to be found. These modifications include crossover and mu-
tation. While crossover generates new offspring solutions by
combining multiple existing solutions, mutation randomly
changes parts of an existing solution to yield a new one.
The selection of candidate solutions that should undergo
crossover and mutation is based on their fitness. The fitness
of a solution is its ability to solve the optimization problem
at hand; it is calculated using the fitness function. This
function is problem-specific; its suitability essentially con-
tributes to the success and performance of the optimization
process. Figure 1 shows the main workflow of a genetic

Initialization of candidate
solutions

Evaluation of new
candidate solutions

Selection of promising
candidate solutions

Crossover

Mutation

Termination
criterion met?

Result:
Global best solution

Y

N

Figure 1: Workflow of a genetic algorithm

algorithm. The evaluation of the new candidate solutions
comprises the calculation of the fitness values. The algo-
rithm terminates if either an optimum solution is found or
other predefined termination criteria apply, e.g. a maximum
number of iterations has been reached.

3.2 Particle Swarm Optimization
In comparison with genetic search, the particle swarm op-

timization is a relatively recent optimization technique of
the swarm intelligence paradigm. It was first introduced in
1995 by Kennedy and Eberhart [10, 2]. Inspired by social
metaphors of behavior and swarm theory, simple methods
were developed for efficiently optimizing non-linear mathe-
matical functions. PSO simulates swarms such as herds of
animals, flocks of birds or schools of fish.

Similar to genetic search, the system is initialized with a
population of random solutions, called particles. Each par-
ticle maintains its own current position, its present velocity
and its personal best position explored so far. The swarm
is also aware of the global best position achieved by all its
members. The iterative appliance of update rules leads to
a stochastic manipulation of velocities and flying courses.
During the process of optimization the particles explore the
D-dimensional space, whereas their trajectories can prob-
ably depend both on their personal experiences, on those
of their neighbors and the whole swarm, respectively. This
leads to further explorations of regions that turned out to
be profitable. The best previous position of particle i is
denoted by pbesti, the best previous position of the entire
population is called gbest.

Figure 2 shows the general workflow of a PSO-algorithm.
The termination criterion can be either a specific fitness
value, the achievement of a maximum number of iterations
or the general convergence of the swarm itself.

Since its first presentation, many improvements and ex-
tensions have been worked out to improve the algorithm in
various ways and have provided promising results for the

1122

Initialization of candidate
solutions

Termination
criterion met?

Result:
Global best solution

Y

N

Update velocities

Update positions

Evaluate fitnesses

Update personal/global
fitnesses (if necessary)

Figure 2: Workflow of a PSO algorithm

optimization of well-known test functions. A novel and aus-
picious approach is the Comprehensive Learning Particle
Swarm Optimizer [11] (CL-PSO). It applies a new learning-
strategy, where each particle learns from different neigh-
bors for each dimension separately dependent on its assigned
learning rate Pci. This happens until the particle does not
achieve any further improvements for a specific number of
iterations called the refreshing gap m; finally yielding a re-
assignment of particles.

The mentioned learning-rate Pci of particle i is a probabil-
ity lying between 0.05 and 0.5, determining whether particle
i learns from its own or another particle’s pbest for the cur-
rent dimension. This probability is assigned to each parti-
cle during initialization and remains unchanged for assuring
the particle’s diverse levels of exploration and exploitation
abilities. If the considered dimension is to be learned from
another particle’s pbest, this particle will be appointed in
a tournament selection manner: two particles are randomly
chosen and the better one is selected. This is done for each
dimension d and the resulting list of particles fi(d) is used
in the following velocity update rule for time step t:

vd
i (t)← ω ·vd

i (t−1)+c ·rd
i ·(pbestd

fi(d)(t−1)−xd
i (t−1)) (1)

where the D-dimensional vectors xi = (x1
i , ..., x

d
i , ..., xD

i)�

and vi = (v1
i , ..., vd

i , ..., vD
i)�, with xd

i ∈
[
lbd, ubd

]
, vd

i ∈[−V d
max, V d

max

]
, d ∈ [1, D] represent the position and ve-

locity of particle i. lbd, ubd describe dth dimension’s lower
and upper bounds whereas V d

max defines its respective max-
imum and minimum velocity. Accordingly, pbestd

fi(d) is the
personal best position found by the particle assigned for di-
mension d. The inertia weight ω controls the impact of the
previous history on the new velocity. c is an acceleration
coefficient weighting the influence of the cognitive and so-
cial component respectively in proportion to ith particle’s
present momentum. Finally, rd

i is a uniformly distributed
random variable in the range of [0, 1] for dimension d.

The fitness of a particle often depends on all D parame-

ters. Hence a particle close to the optimum in some dimen-
sions can probably be evaluated with a poor fitness when
processed by the original PSO version, due to the poor solu-
tions of the remaining dimensions. This is counteracted by
the learning strategy presented in [11], which consequently
enables higher quality solutions to be located. It was shown
that CL-PSO in comparison to some other PSO variants
yields significantly better solutions for multi-modal prob-
lems.

Owing to this, we chose CL-PSO as PSO variant for the
upcoming comparison; its detailed configuration is shown in
section 4.2.

3.3 Comparison of GA and PSO
Genetic algorithms have been popular because of the par-

allel nature of their search and essentially because of their
ability to effectively solve non-linear, multi-modal problems.
They can handle both discrete and continuous variables with-
out requiring gradient information. In comparison, PSO is
well-known for its easy implementation, its computational
inexpensiveness and its fast convergence to optimal areas of
the solution space. Although it yields its best performance
on continuous-valued problems, it can also handle discrete
variables after slight modifications.

Many researchers have compared both optimization tech-
niques over the last years. Hodgson [5] compared them by
applying them to the atomic cluster optimization problem.
The task consists of minimizing a highly multi-modal en-
ergy function of clusters of atoms. His calculations show
PSO to be noticeably superior to both a generic GA and
a purpose-built problem-specific GA. Clow and White [1]
compared both techniques by using them to train artificial
neural networks used to control virtual racecars. Due to the
continuousness of the neural weights being optimized, PSO
turned out to be superior to GA for all accomplished tests -
yielding a higher and much faster growing mean fitness. Has-
san, Cohanim and De Weck [4] compared both techniques
with a set of eight well-known optimization benchmark test
problems, and concluded that PSO was equally effective and
more efficient in general. Nevertheless, the superiority of
PSO turned out to be problem-dependent. The difference
in computational efficiency was found to be greater when the
search strategies were used to solve unconstrained problems
with continuous variables and less when they were applied
to constrained continuous or discrete variables. Jones [9]
also compared both approaches by letting them identify two
mathematical model parameters. Although he noted that
both approaches were equally effective, he concluded that
GA outperformed PSO with regard to efficiency. However,
attention should be paid to Jones’ PSO variant, as it used
the same random variables for all dimensions during one ve-
locity update - which turned out to perform worse than using
different variables for each dimension as proposed originally.
This could be the reason for the poor results for PSO pre-
sented by Jones. Horák, Chmela, Oliva and Raida [7] ana-
lyzed the abilities of PSO and GA to optimize dual-band pla-
nar antennas for mobile communication applications. They
found that PSO was able to obtain slightly better results
than GA, but that PSO took more cpu-time.

The higher effectiveness and efficiency generally ascribed
to PSO leads to the hypothesis that it will improve evolu-
tionary structural testing, too.

1123

4. EMPIRICAL COMPARISON
This section describes the experimental setup and the

achieved results. Sections 4.1 and 4.2 describe the test sys-
tem used to realize evolutionary structural testing and the
configuration of both search engines to be compared, respec-
tively. Section 4.3 provides some insight into the test objects
used and section 4.4 presents the obtained results.

4.1 Test System
Over the last years, DaimlerChrysler has developed a test

system that implements the ideas of evolutionary structural
testing [14]. Figure 3 shows a high-level view of the struc-
ture of this system. The inputs to this system are the source

Source Code

Test Preparer

Test
Control

Search
Engine

Interface Settings

Candidate
Solutions

Fitness Values

Solution
Format

Final Set of Test Cases

Parser
Instrumen-

ter
Compiler Linker

Test
Object

Meta-
data

Figure 3: Abstract view of test system structure

code under test (including the main module, all required
header files and dependent modules) and the interface set-
tings. These settings describe which function to test and
which value ranges to use for the input variables. For in-
stance, binary signal variables represented by an integer in-
put variable in the source code might be restricted to the
values {0, 1}. The output of the test system is a set of test
cases that are intended to achieve a high structural coverage
of the given source code. At the moment, the coverage met-
rics statement coverage, branch coverage, and two versions
of condition coverage are implemented and selectable by the
user.

The test system consists of the three major components
Test Preparer, Test Control, and a search engine. Test Pre-
parer analyzes the given source code and adds the instru-
mentation statements. These statements are necessary to
comprehend the execution flow taken when executing the
function under test with a particular set of input values. It
also compiles and links the instrumented source code. Ad-

ditionally, it provides descriptive metadata for the test ob-
ject, such as the interface specification and the control flow
graph. Test Control takes the instrumented test object and
performs individual optimizations for each code element to
be covered (e.g. in the case of branch coverage, it runs an
optimization for each branch of the control flow graph of
the function under test). An optimization consists of the
following steps: Initially, the interface of the function under
test (the input variables) is reported to the search engine in
order to generate test inputs that correspond to the func-
tional interface. Afterwards, the search engine provides a
set of test inputs. Test Control executes the function under
test using the provided inputs and calculates the fitness val-
ues based on the produced execution flow. Then, it reports
the fitness values to the search engine and waits for the next
set of test inputs unless a test input is found that covers the
code element under question or another termination crite-
rion applies. These steps are repeated for each test goal.
Finally, Test Control creates a final set of test cases that are
delivered to the user.

The test system has normally been configured to use the
Genetic and Evolutionary Algorithms Toobox (GEATbx) [3]
as a search engine. For our experiments, we developed a new
toolbox that implements the PSO algorithms mentioned in
section 3.2 and provides the same interface as the GEATbx.
Hence, the test system can easily switch between the two
different search engines.

4.2 Configuration of the search algorithms
Except for two slight modifications described below, we

used CL-PSO with all variables set to the values suggested
in [11]. The configuration is shown in table 1. The men-

Parameter Value

No. of particles 40
Inertia weight ω Lin. decreased: 0.9 to 0.4
Acceleration coefficient c 1.49445

Velocity bound V d
max (ubd − lbd)/2

Refreshing gap m 7
Boundary condition Damping walls
Termination 1200 iterations

Table 1: PSO settings

tioned modifications concern the ability to both handle dis-
crete variables and a changed search bounds condition. The
former is solved by simply rounding potential solutions to
the nearest integer number when the variables being inves-
tigated are discrete. CL-PSO originally uses a boundary
condition known as invisible walls [13], meaning that the
particles are allowed to exceed the borders, but their fit-
ness will solely be calculated and updated if they are within
the range. However our experiments with different bound-
ary conditions have shown that this behavior can lead to a
sustained and undesired non-observance of particles in some
particular cases. Other conditions such as absorbing and
reflecting walls [13] proved to be more or less appropriate
depending on the problem. Accordingly, we decided to use
the damping walls approach proposed by Huang and Mohan
[6], realizing a composition of both absorbing and reflecting
walls by stochastically reducing the momentum during re-
flection of particles on the imaginary boundary walls back
to the search space.

Table 2 shows the settings used for the experiments that

1124

applied the GA as search engine. These settings have emerged
over the last few years by experimentation with numerous
different industrial test objects. The first 3 rows indicate

parameter value

subpopulations number 6
size 40 individuals each

competition interval 10
rate 0.1
min. size 10

migration topology complete net
interval 13
rate 0.1

selection name stochastic univer-
sal sampling

pressure 1.7
generation gap 0.9

crossover type discrete
rate 1.0

mutation type real number
precision 17

mutation ranges subpop. #1 0.1
subpop. #2 0.01
subpop. #3 0.001
subpop. #4 0.0001
subpop. #5 0.00001
subpop. #6 0.000001

reinsertion type fitness-based
termination generations 200

Table 2: GA settings

that the GA implements a regional model with 6 subpopu-
lations. Due to the different mutation rates per subpopula-
tion, some subpopulations might be more successful than
others. Competition among these subpopulations means
that more successful subpopulations receive individuals from
less successful ones during the search. Regardless of com-
petition, the best individuals are exchanged among the sub-
populations each 13 generations via migration.

We decided to use branch coverage for the coverage crite-
rion since its relevance is widely accepted and enforced by
various industrial quality standards. Branch coverage mea-
sures the number of branches of the control flow graph of
the function under test that are traversed when the gener-
ated test cases are executed. For the purpose of test case
generation, each branch becomes an individual test goal for
which an individual optimization is carried out.

In order to acquire results with sufficient statistical signif-
icance, all experiments for both GA and PSO were repeated
30 times.

4.3 Test Objects
A total of 25 small artificial test objects have been created

that feature different grades of complexity. They differ in
both the number and type of parameters and the number
of local optima. The local optima relate to the search space
of the most difficult test goal that each test object exhibits.
Each test object has one condition that needs to be satisfied
- in the context of branch coverage in order to successfully
traverse its path of the corresponding control flow graph.
In this context, one branch is typically easy to be covered
without requiring an optimization while its sibling branch is
relatively hard to be covered and requires an optimization.

The characteristics of the test objects are shown in table

3. Column vars shows the number of input parameters the

test object vars local opt. b
o
o
le

a
n

in
te

g
er

d
o
u
b
le

f01 1 0 x
f02 1 0 x
f03 1 0 x
f04 1 1 x
f05 1 1 x
f06 1 1 x
f07 1 4 x
f08 1 4 x
f09 2 0 x
f10 2 0 x
f11 2 0 x
f12 2 24 x x
f13 3 0 x
f14 3 0 x
f15 3 0 x
f16 3 0 x x x
f17 3 49 x x x
f18 6 0 x
f19 6 0 x
f20 6 0 x
f21 6 0 x x x
f22 12 0 x
f23 12 0 x
f24 12 0 x
f25 12 0 x x x

Table 3: Artificial test objects

test object possesses and that are to be optimized. Local
opt. shows the number of local optima of the search space.
Column boolean, integer and double indicate the types of pa-
rameter. For example, f12 is a function with two parameters
(one of type integer and one of type double), constructed to
realize the fitness landscape shown in figure 4. It features
a total of 24 local optima around the global one in position
(0, 0). Double valued parameters were limited to the range
[−10e6, 10e6] to minimize the huge search space.

−4

−2

0

2

4

−4

−2

0

2

4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Variable 1 (integer)Variable 2 (double)

F
itn

es
s

Figure 4: Fitness landscape of true branch of test
object f12

Our assortment of industrial test objects is shown in ta-
ble 4. These functions are taken for example from current

1125

Test object / Function L
in

es
o
f
co

d
e

N
o
.

o
f

b
ra

n
ch

es

N
o
.

o
f

va
ri
a
b
le

s

BrakeAssistant1 405 108 33
BrakeAssistant2 405 108 33
ClassifyTriangle 36 26 8
De-icer1 171 56 12
De-icer2 79 18 12
EmergencyBrake 202 62 31
ICCDeterminer 60 30 7
LogicModule 259 70 38
Multimedia 861 264 66
Preprocessor 990 92 33
PrototypingTool 232 46 135
Reaction 310 96 776
Warning 404 100 13

Table 4: Industrial test objects

Mercedes and Chrysler development projects. They differ
in complexity with regards to code length and both the
numbers and types of variables. Both BrakeAssistant1 and
BrakeAssistant2 are used for brake coordination in the brake
assist system, whereas ClassifyTriangle is an often used test
function, that performs a classification of triangles based on
their side lengths. De-icer1 and De-icer2 are both intended
to control the windshield defroster heating units. Emergen-
cyBrake is a part of an emergency brake system. ICCDe-
terminer determines the reasons why the cruise control of
the vehicle could not be activated. LogicModule is used for
the definition of the current operational mode of the engine
and Multimedia for the handling of peripheral equipment.
Preprocessor realizes parts of the object preprocessing re-
quired for situation analysis, and PrototypingTool controls
the interaction of new code with a prototype of the engine
for testing purposes. Reaction supervises possible system
modes and determines the expected reaction on emerging
failures, and Warning manages warnings that occur.

4.4 Results
The convergence characteristics of the artificial test ob-

jects are shown in figure 5. The results for the test objects
f01, f04, f09, f13, f18 and f22 have been omitted. These test
objects exclusively use boolean variables and both GA and
PSO found optimum solutions during initialization.

Considering the functions that use several parameters of
the same type (functions f02, f10, f14, f19 and f23 for type
integer and functions f03, f11, f15, f20 and f24 for type dou-
ble), it becomes obvious that both techniques need more
time with the more parameters there are. An analysis of
these results in detail reveals that GA was unable to reach
the desired global optimum within the given number of fit-
ness function evaluations when it had to optimize more than
one parameter. In contrast, PSO reached it when optimizing
one, two and three parameters, regardless of the parameter
type. Although both algorithms were unable to converge
successfully when optimizing six or twelve parameters, PSO
reached better solutions using the same number of itera-
tions. The inclusion of artificially constructed local optima
(functions f05, f06, f07 and f08) yielded similar results.

For the functions that use a mixed parameter set includ-
ing boolean, integer and double valued parameters (func-
tions f16, f21 and f25), PSO outperformed GA in all cases.

Either it reached the global optima using less function eval-
uations or it yielded a better result after the expiration of
permitted evaluations. Adding local optima to two sim-
ple mixed parameter functions (f12 and f17) resulted in a
slightly faster convergence of GA compared to PSO.

In 13 of the 19 cases shown, PSO outperformed GA, while
in the remaining 6 cases GA outperformed PSO. However,
while the difference is significant in 8 of the 13 cases in
which PSO outperformed GA, there is no case in which the
superiority of the GA is significant.

In general, GA features a slightly faster convergence for
simple functions whereas PSO outperforms GA primarily
for complex functions with big search spaces. Additionally,
PSO achieved either an equal or a significantly better solu-
tion compared to GA for all artificial test objects.

Figure 6 presents the success rates of both GA and PSO
for the industrial test objects. Success rate means the rel-
ative frequency of a successful optimization (covering test
case found), averaged over all test goals (which correspond
to the branches) of a test object. The figure shows that PSO
was able to find a covering test case for more test goals than
GA.

 0

 20

 40

 60

 80

 100

BrakeAssistant1

BrakeAssistant2

ClassifyTriangle

De-icer1

De-icer2

Em
ergencyBrake

ICCDeterm
iner

LogicM
odule

M
ultim

edia

Preprocessor

PrototypingTool

Reaction

W
arning

S
uc

ce
ss

 r
at

e
(%

)

Testobjects

Effectiveness

GA
CL-PSO

Figure 6: Experimental results for the effectiveness
of GA and PSO regarding the industrial test objects

Figure 7 summarizes the efficiency of the two optimiza-
tion strategies for the industrial test objects. It shows the
number of fitness function evaluations required for finding
a covering test case or for failing - averaged over the test
goals of each test object. The figure also shows the estimated
standard deviation. In general, GA needed more evaluations

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

BrakeAssistant1

BrakeAssistant2

ClassifyTriangle

De-icer1

De-icer2

Em
ergencyBrake

ICCDeterm
iner

LogicM
odule

M
ultim

edia

Preprocessor

PrototypingTool

Reaction

W
arning

F
itn

es
s

fu
nc

tio
n

ev
al

ua
tio

ns

Testobjects

Efficiency

GA
CL-PSO

Figure 7: Experimental results for the efficiency of
GA and PSO regarding the industrial test objects

than PSO for all of the test objects. The smaller estimated
standard deviations of the results of PSO indicate that PSO
delivers a more reliable result than GA does. The huge
standard deviations are due to the averaging over each test
goal of the test objects. Some of these test goals were very
easy to reach whereas others could not be reached at all
or needed more generations or iterations respectively. Al-
though the average number of fitness function evaluations

1126

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f02

GA
PSO

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f03

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f10

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f11

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f14

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f15

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f19

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f20

GA
PSO

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f23

GA
PSO

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f24

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f16

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f21

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f25

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f05

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f06

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f07

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f08

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f12

GA
PSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

Test object f17

GA
PSO

Figure 5: The convergence characteristics of GA and PSO regarding the artificial test objects: the x-axis
shows the number of fitness function evaluations, the y-axis shows the best fitness value. Results are averaged
over 30 runs. Note that the range of the y-axis may be different for different charts.

1127

for PSO is smaller than for GA, it is worth mentioning that
some branches could be covered faster by GA. In order to
examine the statistical significance of the results, a t-test
was performed for all the test goals of each test object. The
outcome of this test indicates that the majority of the differ-
ences in efficiency between GAs and PSO was statistically
significant. About 80% of the differences turned out to be
statistically significant (confidence 95%). Overall 74% of the
differences turned out to be even very significant (confidence
99%).

The obtained results lead to the conclusion that, when ap-
plied to evolutionary structural testing, PSO tends to out-
perform GA for complex functions in terms of effectiveness
and efficiency.

5. CONCLUSION AND FUTURE WORK
This paper reported on the application of particle swarm

optimization to structural software testing. We described
the design of our test system that allows easy exchange of the
employed search strategy. This system was used to carry out
experiments with 25 artificial and 13 industrial test objects
that exhibit different search space properties. Both parti-
cle swarm optimization and genetic algorithms were used to
automatically generate test cases for the same set of test
objects.

The results of the experiments show that particle swarm
optimization is competitive with genetic algorithms and even
outperforms them for complex cases. Even though the ge-
netic algorithm yields a covering test case faster than par-
ticle swarm optimization in some cases, the latter is much
faster than the genetic algorithm in the majority of the cases.
This result indicates that particle swarm optimization is an
attractive alternative to genetic algorithms since it is just as
good as or even better than genetic algorithms in terms of
effectiveness and efficiency, and is a much simpler algorithm
with significantly fewer parameters that need to be adjusted
by the user.

However, more experiments with further test objects taken
from various application domains must be carried out in or-
der to be able to make more general statements about the
relative performance of particle swarm optimization and ge-
netic algorithms when applied to software testing. System-
atically varying the algorithm settings for the experiments
would also help to draw more comprehensive conclusions.
As an alternative comparison approach, a theoretical analy-
sis of both optimization techniques in the context of software
testing would give some more insights as to the suitability
of either approach. These directions are all items for future
work. The development of a testability meta-heuristic that
selects the most promising search strategy for each test goal
individually is especially interesting. Maybe software mea-
sures can help support this selection heuristic. Then, we
would not only assume that genetic algorithms and particle
swarm optimization are relevant search strategies, but would
also broaden the spectrum of candidate search techniques,
such as hill climbing, simulated annealing or even random
search.

Acknowledgments
We would like to thank our colleague Harmen Sthamer for
the thorough review of this paper and his valuable feedback.
This work was funded by EU grant IST-33472 (EvoTest).

6. REFERENCES
[1] B. Clow and T. White. An evolutionary race: A

comparison of genetic algorithms and particle swarm
optimization for training neural networks. In
Proceedings of the International Conference on
Artificial Intelligence, IC-AI ’04, Volume 2, pages
582–588. CSREA Press, 2004.

[2] R. C. Eberhart and J. Kennedy. A new optimizer
using particle swarm theory. In Proceedings of the 6th
International Symposium on Micromachine Human
Science, pages 39–43, 1995.

[3] Genetic and Evolutionary Algorithm Toolbox for use
with Matlab. http://www.geatbx.com.

[4] R. Hassan, B. Cohanim, and O. de Weck. A
comparison of particle swarm optimization and the
genetic algorithm. In Proceedings of the 46th
AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, 2005.

[5] R. J. W. Hodgson. Partical swarm optimization
applied to the atomic cluster optimization problem. In
GECCO, pages 68–73, 2002.

[6] T. Huang and A. S. Mohan. A hybrid boundary
condition for robust particle swarm optimization.
IEEE Antennas and Wireless Propagation Letters,
4:112–117, 2005.

[7] L. Oliva J. Horák, P. Chmela and Z. Raida. Global
optimization of the dual-band planar antenna: Pso
versus ga. In Radioelektronika, 2006.

[8] B. F. Jones, H. Sthamer, and D. E. Eyres. Automatic
test data generation using genetic algorithms. Software
Engineering Journal, 11(5):299–306, September 1996.

[9] K. O. Jones. Comparison of genetic algorithm and
particle swarm optimization. In Proceedings of the
International Conference on Computer Systems and
Technologies, 2005.

[10] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proceedings of the IEEE International
Conference on Neural Networks, volume 4, pages
1942–1948 vol.4. IEEE Press, 1995.

[11] J. J. Liang, A. K. Qin, P. N. Suganthan, and
S. Baskar. Comprehensive learning particle swarm
optimizer for global optimization of multimodal
functions. IEEE Transactions on Evolutionary
Computation, 10:281–295, 2006.

[12] R. P. Pargas, M. J. Harrold, and R. R. Peck.
Test-data generation using genetic algorithms. Journal
of Software Testing, Verification and Reliability,
9(4):263–282, 1999.

[13] J. Robinson and Y. Rahmat-Samii. Particle swarm
optimization in electromagnetics. IEEE Transactions
on Antennas and Propagation, 52:397–407, Feb. 2004.

[14] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary
test environment for automatic structural testing.
Information and Software Technology, 43(1):841–854,
2001.

[15] S. E. Xanthakis, C. C. Skourlas, and A.K. LeGall.
Application of genetic algorithms to software testing.
In Proceedings of the 5th International Conference on
Software Engineering and its Applications, pages
625–636, 1992.

1128

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

