
The Multi-Objective Next Release Problem

Yuanyuan Zhang
King’s College London

Strand, London
WC2R 2LS, UK

yuanyuan.zhang@kcl.ac.uk

Mark Harman
King’s College London

Strand, London
WC2R 2LS, UK

mark.harman@kcl.ac.uk

S. Afshin Mansouri
King’s College London

Strand, London
WC2R 2LS, UK

afshin.mansouri@kcl.ac.uk

ABSTRACT
This paper is concerned with the Multi-Objective Next Re-
lease Problem (MONRP), a problem in search-based re-
quirements engineering. Previous work has considered only
single objective formulations. In the multi-objective formu-
lation, there are at least two (possibly conflicting) objectives
that the software engineer wishes to optimize. It is argued
that the multi-objective formulation is more realistic, since
requirements engineering is characterised by the presence
of many complex and conflicting demands, for which the
software engineer must find a suitable balance. The paper
presents the results of an empirical study into the suitability
of weighted and Pareto optimal genetic algorithms, together
with the NSGA-II algorithm, presenting evidence to sup-
port the claim that NSGA-II is well suited to the MONRP.
The paper also provides benchmark data to indicate the size
above which the MONRP becomes non–trivial.

Categories and Subject Descriptors
D.2.1 [SOFTWARE ENGINEERING]: Requirements/
Specifications—Methodologies

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Pareto optimality, next release problem, multi-objective ge-
netic algorithms

1. INTRODUCTION
In this paper we address the Multi-Objective Next Release

Problem (MONRP), in which a set of customers with vary-
ing requirements are targeted for the next release of an ex-
isting software system. Satisfying each requirement entails
spending a certain amount of resources which can be trans-
lated into cost terms. In addition, satisfying each require-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

ment provides some value to the software development com-
pany. The problem is to select the set of requirements that
maximize total value and minimize required cost. These
objectives are conflicting, so it would be difficult to assign
weights to each. This makes it inappropriate to combine
the two objectives into a single fitness function. Rather, a
multi-objective formulation is better suited to this problem.

The single objective problem to maximize the value, sub-
ject to a limited amount of resources (a fixed budget con-
straint), is an instance a Knapsack Problem which is NP-
hard [22]. As a result, the multi-objective problem stated
above is also NP-hard, and therefore cannot be solved us-
ing exact optimization techniques for large scale problem
instances.

As explained in Section 2, single objective formulations
of the Next Release Problem (NRP) have been considered
in the literature. Also, approaches have been considered,
where the multiple objectives are combined into a single ob-
jective using weight. However, the multi-objective version of
the problem, in which there are two or more competing ob-
jectives (which may conflict) has not been considered. The
multi-objective formulation is important because, in prac-
tice, a software engineer is more likely to have many con-
flicting objectives to address when determining the set of
requirements to include in the next release of the software.
As such, the MONRP is more likely to be appropriate than
the single objective NRP.

In this paper we apply metaheuristic search techniques
to find approximations of Pareto-optimal set (or front) for
the MONRP. This allows the decision maker to select the
preferred solution from the Pareto-optimal set, according to
their priorities. The Pareto front can also provide valuable
insights into the outcome of the selected set of requirements
to the software development company, because it captures
the trade-offs between the two competing objectives. The
results can also be used in ‘what if?’ analyses, for instance:

“what would we gain if we could securely assign
10% more resources to the project?””

Or

“what would we lose by reducing the project’s
budget by 20%?”

In such situations, a Pareto front is more useful in exploring
the outcome of these changes to the scenario, because it
captures the entire range of trade-off decisions, rather than
fixing on a single point. The single objective formulation of
the problem lacks the ability to provide such decision aids.

1129

The paper introduces a formal definition of the MONRP
and develops four different multi-objective search-based so-
lutions: Random Search, Single-Objective (Weighted) Ge-
netic Algorithm, a Pareto GA and Non-dominated Sorting
Genetic Algorithm II (NSGA-II) approach proposed by Deb
et al. [8]. Random Search is included partly to provide a
‘sanity check’ that metaheuristic search techniques can out-
perform it (as would be expected) and partly to allow us to
empirically identify the point at which the number of cus-
tomers and requirements becomes sufficiently large to en-
sure that the problem is non–trivial. Results from applying
the four algorithms are presented that compare their per-
formance at finding approximations of the Pareto-optimal
front.

The primary contributions of the paper are as follows:

1. The paper formulates the Next Release Problem as
Multi-Objective Optimization Problem, treating the
‘cost’ constraint as an objective and combining it with
the ‘value’ objective. This is the first paper to gener-
alise the NRP to the Multi-Objective NRP (MONRP).

2. The paper presents the results of an empirical study
into the relative performance of four different multi-
objective search techniques for solving the problem.
The results show:

(a) That the weighted Single-Objective GA, Pareto
GA and NSGA-II can all outperform Random
search (passing the ‘sanity check’);

(b) That NSGA-II outperforms the Pareto GA, both
in terms of diversity of results and in terms of
quality of the results (which dominate all results
from the Pareto GA);

(c) That the weighted Single-Objective GA can be
helpful in finding extreme points on the Pareto
front, by a suitable choice of weights.

3. The paper presents the results of a second empirical
study, aimed at determining the size of problem for
which the MONRP becomes non–trivial. This reveals
that the number of requirements must be larger than
approximately 20, while the number of customers need
only be larger than 2 in order to produce a non–trivial
instance of the MONRP.

The rest of the paper is organised as follows:
Section 2 describes the context of related work in which

the current paper is located. Section 3 gives the definitions
of the Multi-Objective Optimization Problem (MOOP) and
the Pareto-optimal front. In Section 4 the research problem
is defined formally, while Section 5 introduces the search al-
gorithms studied and how they are tailored to the MONRP.
Sections 6 and 7 present the results of the experiments and
discuss the findings. Section 8 concludes.

2. RELATED WORK
The most closely related previous work to the content of

the present paper is the work on the Next Release Problem
(NRP) studied by several authors [2, 10, 14]. The term:
‘Next Release Problem’ was coined by Bagnall et al. [2]. In
the NRP, as formulated by Bagnall et al., the goal is to find
the ideal set of requirements that balance customer requests

within resource constraints, so the problem is a constrained
single objective optimization problem. They applied a va-
riety of techniques (including search based and non search
based algorithms) to a set of synthetic data. Greer and Ruhe
also studied the NRP, proposing a Genetic Algorithm–based
approach for planning software releases [10].

The NRP is an example of a Feature Subset Selection
(FSS) search problem. Other FSS problems in previous work
on SBSE include the problem of determining good quality
predictors in software project cost estimation, studied by
Kirsopp et al. [15] and chosing components to include in
different releases of a system, studied by Harman et al. [11].

Previous work, both on the NRP and other FSS problems
in SBSE has been solely concerned with single objective for-
mulations of the problems concerned. The present paper is
the first paper to generalise the NRP to the Multi-Objective
NRP (MONRP). Indeed, much of the other existing work on
SBSE has also tended to consider software engineering prob-
lems as single objective optimization problems. However, a
recent trend appears to be developing, in which multiple
objectives are considered. This would seem to be a natural
and realistic extension of the initial work on SBSE, since so
many software engineering problems are inherently multi-
objective.

Other existing SBSE work that does consider multi-objective
formulations of software engineering problems, tends to use
the weighted approach to combine fitness functions for each
objective into a single objective function using weighting co-
efficients to denote the relative importance of each individ-
ual fitness function. For example, in the seminal work of the
Drexel group [9, 17, 18, 19] on search based clustering, the
two objectives of cohesion and coupling are combined into a
single objective by the Module Quality Metric (MQ), which
has been widely studied, both by the Drexel group and also
by other authors [5, 12, 16]. For search based refactoring,
both Seng et al. [23] and O’Keeffe and O’Cinnéide [20] use
a weighted multi-objective search, in which several metrics
that assess the quality of refactorings are combined into a
single objective function. In the domain of search based
project planning [1], Chicano and Alba [3] combined several
project management metrics into a single objective function,
using weighting to guide resource allocation.

The present paper is one of the first papers on SBSE
to consider the set of objectives independently in order to
explore the search space towards the Pareto-optimal front
(rather than simply weighting each objective to form a uni-
fied objective function which, at best, is capable of directing
to a single Pareto-optimal solution).

The Pareto approach is more suitable when it is difficult to
combine fitness functions into a single overall objective func-
tion. Such a combination is difficult in many situations, for
example, because the fitness functions measure fundamen-
tally different properties (so combining them would be to
seek to ‘compare apples and oranges’), because weights can-
not be adequately determined or because the use of weights
biases the search to a certain part of the solution space. As
the results presented in the present paper indicate, for the
MONRP, the weighting approach suffers from this problem;
the weights force the search towards certain small areas of
the Pareto front so several runs with different weights are
required to find diverse approximations of Pareto fronts.

1130

3. PARETO-OPTIMAL FRONT
The Multi-Objective Optimization Problem (MOOP) can

be defined as the problem of finding a vector of decision
variables −→x , which optimizes a vector of M objective func-
tions fi(

−→x) where i = 1, 2, . . . , M ; subject to inequality
constraints gj(

−→x) ≥ 0 and equality constraints hk(−→x) = 0
where j = 1, 2, . . . , J and k = 1, 2, . . . , K. The objective
functions form a mathematical description of performance
criteria that are usually in conflict with each other [21].

Without loss of generality, a MOOP can be defined as
follows:

Maximize {f1(
−→x), f2(

−→x), . . . , fM (−→x)}
subject to:

gj(
−→x) ≥ 0; j = 1, 2, . . . , J

and

hk(−→x) = 0; k = 1, 2, . . . , K.

where −→x is vector of decision variables; fi(
−→x) is the i-th ob-

jective function; and g(−→x) and h(−→x) are constraint vectors.
These objective functions constitute a multi-dimensional

space in addition to the usual decision space. This additional
space is called the objective space, Z. For each solution −→x
in the decision variable space, there exists a point in the
objective space:

−→
f (−→x) = Z = (z1, z2, . . . , zM)T

In a Multi-Objective Optimization Problem, we wish to
find a set of values for the decision variables that optimizes
a set of objective functions. A decision vector −→x is said to
dominate a decision vector −→y (also written as −→x � −→y) iff:

fi(
−→x) ≥ fi(

−→y) ∀ i ∈ {1, 2, . . . , M};
and

∃ i ∈ {1, 2, . . . , M} | fi(
−→x) > fi(

−→y).

All decision vectors that are not dominated by any other
decision vector are called non-dominated or Pareto-optimal
and constitute the Pareto-optimal Front. These are solu-
tions for which no objective can be improved without de-
tracting from at least one other objective.

4. PROBLEM STATEMENT
This section gives definitions and characteristics of the

MONRP problem as an extension of the traditional NRP
model.

4.1 NRP Model
It is assumed that for an existing software system, there

is a set of customers,

C = {c1, . . . , cm}
whose requirements are to be considered in the development
of the next release.

The set of possible software requirements is denoted by:

R = {r1, . . . , rn}
It’s assumed that all the requirements are independent. In
order to satisfy each requirement, some resources need to

be allocated. The resources needed to implement a partic-
ular requirement can be transformed into cost terms and
considered to be the associated cost to fulfill the require-
ment. The resultant cost vector for the set of requirements
ri(1 ≤ i ≤ n) is denoted by:

Cost = {cost1, . . . , costn}
Each customer has a degree of importance for the company
that can be reflected by a weight factor. The set of relative
weights associated with each customer cj(1 ≤ j ≤ m) is
denoted by:

Weight = {w1, . . . , wm}
where wj ∈ [0, 1] and

�m
j=1 wj = 1.

It is assumed that all requirements are not equally im-
portant for a given customer. The level of satisfaction for a
given customer depends on the requirements that are satis-
fied in the next release of the software, which provide value
to the company. Each customer cj(1 ≤ j ≤ m) assigns a
value to requirement ri(1 ≤ i ≤ n) denoted by: value(ri, cj)
where value(ri, cj) > 0 if customer j has the requirement i
and 0 otherwise.

Based on above, the overall score or importance of a given
requirement ri(1 ≤ i ≤ n) can be calculated by:

scorei =
m�

j=1

wj · value(ri, cj)

The ‘score’ of a given requirement is represented as its
overall ‘value’ for the company.

The decision vector −→x = {x1, . . . , xn} ∈ {0, 1} determines
the requirements that are to be be satisfied in the next re-
lease. In this vector, xi is 1 if requirement i is selected and
0 otherwise.

4.2 MONRP Formulation
In the formulation of the MONRP, two objectives are

taken into consideration in order to maximize customer sat-
isfaction (or total value for the company) and minimize re-
quired cost. We treat cost in the current research as an
objective instead of a constraint for the first time in our
MONRP model. The reason is to explore the whole set
of points on the Pareto-optimal front; this is a valuable
source of information for the decision maker to understand
the trade-offs inherent in meeting the conflicting objectives.

The following objective function is considered for maxi-
mizing total value:

Maximize
n�

i=1

scorei · xi

The problem is to select a subset of the customers’ require-
ments which results in the maximum value for the company.

The second objective function is defined as follows to min-
imize total cost required for the satisfaction of customer re-
quirements:

Minimize
n�

i=1

costi · xi

In order to convert the second objective to a maximiza-
tion problem in the MONRP, the total cost is multiplied by
-1. Therefore, the MONRP model consisting of fitness func-
tions can be represented as follows:

1131

Maximize f1(
−→x) =

n�

i=1

scorei · xi

Maximize f2(
−→x) = −

n�

i=1

costi · xi

5. THE SOLUTION APPROACHES
This section describes the search algorithms used in this

paper. As stated earlier, in the solution of MOOPs there
exist multiple and possibly conflicting objectives to be op-
timized simultaneously. There are various approaches to
solve MOOPs. Among the most widely adopted techniques
are: sequential optimization, ε-constraint method, weighting
method, goal programming, goal attainment, distance based
method and direction based method. For a comprehensive
study of these approaches, readers may refer to Szidarovsky
et al. [25] and Collette and Siarry [6].

Among meta-heuristics, Evolutionary Algorithms (EAs)
seem particularly desirable to solve MOOPs. EAs are used
to solve problems of this nature mainly because of the pop-
ulation based nature of EAs which enables them to capture
the dominance relations in the population as a vehicle to
guide the search towards Pareto-optimal front. They deal
simultaneously with a set of possible solutions (the so-called
population) which unlike traditional mathematical program-
ming techniques, can find good approximations of Pareto-
optimal set in a single run. Additionally, EAs are less sus-
ceptible to the shape or continuity of the Pareto-optimal
front, whereas these two issues are a real concern for math-
ematical programming techniques.

EAs usually contain several parameters that need to be
‘tuned’ for each particular application, which is, in many
cases, highly time consuming. In addition, since the EAs are
stochastic optimizers, different runs tend to produce differ-
ent results. Therefore, multiple runs of the same algorithm
on a given problem are needed to statistically describe their
performance on that problem. For a more detailed discus-
sion on application of EAs in multi-objective optimization
see Coello et al. [4] and Deb [7].

To solve the MONRP, Multi-Objective EAs need to fulfill
two major tasks:

1. Guiding the search towards the Pareto-optimal set to
accomplish fitness assignment.

2. Maintaining a diverse population to achieve a well dis-
tributed non-dominated front.

We examine three search techniques namely: NSGA-II, a
Pareto GA and a Single-Objective GA for the solution of the
MONRP. These techniques are also compared with the Ran-
dom Search to verify viability of applying computationally
expensive search techniques for the MONRP.

5.1 NSGA-II
Non-dominated Sorting Genetic Algorithm-II (NSGA-II),

introduced by Deb et al.[8] is an extension to an earlier
Multi-Objective EA called NSGA developed by Srinivas and
Deb [24]. NSGA-II incorporates elitism to maintain the so-
lutions of the best front found. The rank of each individual is
based on the level of non-domination. NSGA-II is a compu-
tationally efficient algorithm whose complexity is O(mN2),

compared to NSGA with the complexity O(mN3), where m
is the number of objectives and N is the population size.

The population is sorted using the non-domination rela-
tion into several fronts. Each solution is assigned a fitness
value according to its non-domination level. In this way,
the solutions in better fronts are given higher fitness values.
The NSGA-II uses a measure of crowding distance to pro-
vide an estimation of the density of solutions belonging to
the same front. This parameter is used to promote diversity
within the population. Solutions with higher crowding dis-
tance are assigned a better fitness compared to those with
lower crowding distance, thereby avoiding the use of the fit-
ness sharing factor [13].

Assume that every individual i in the population has two
attributes:

1. nondomination rank (irank);

2. crowding distance (idistance).

We now define a partial order ≺n as

i ≺ j if (irank < jrank)

or ((irank = jrank) and (idistance > jdistance))

That is, between two solution with differing nondomina-
tion ranks, we prefer the solution with the lower(better)rank.
Otherwise, if both solutions belong to the same front, then
we prefer the solution that is located in a lesser crowded
region[8].

The algorithm can be described as follows. Initially, a
random parent population P0 is created. The population
size is N. Tournament selection, crossover, and mutation
operators are used to create a child population Q0 of size N .
The NSGA-II procedure executes the main loop described
in Algorithm 1.

Algorithm 1: NSGA-II (main loop)

while not stopping rule do
Let Rt = Pt ∪ Qt;
Let F = fast-non-dominated-sort (Rt);
Let Pt+1 = ∅ and i = 1;
while |Pt+1| + |Fi| � N do

Apply crowding-distance-assignment(Fi);
Let Pt+1 = Pt+1 ∪ Fi;
Let i = i + 1;

end
Sort(Fi,≺n);
Let Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)];
Let Qt+1 = make-new-pop(Pt+1);

Let t = t + 1;
end

5.2 Pareto GA
The Pareto GA algorithm used in this research is a varia-

tion of the simple genetic algorithm. A simple GA maintains
the populations of candidate solutions that are evaluated ac-
cording to a single fitness value. In the MONRP there are
at least two fitness values for each solution which are used
in tournament selection. The algorithm uses Pareto domi-
nance relations between solutions to select candidates for the

1132

mating pool. The new population is created by recombining
the selected solutions through crossover and mutation oper-
ators. The main procedure of the Pareto GA is described in
Algorithm 2.

Algorithm 2: Pareto GA

t = 0;
Generate population P0;
while not stopping rule do

Evaluate objective functions for ∀i ∈ Pt;
Let t = t + 1;
Let i = 0;
while i < N do

Consider two solutions x and y ∈ Pt at
random;
Let selected solution = ∅;
if x � y then

Let selected solution = x;
Let i = i + 1;

end
else if y � x then

Let selected solution = y;
Let i = i + 1;

end
Add selected solution to mating pool;

end
Apply genetic operators (crossover and
mutation) to Pt;

end

5.3 Single-Objective GA
To apply a Single-Objective GA to MONRP, we use the

weighting method that combines the objective functions into
a single objective using a weight factor ω(0 ≤ ω ≤ 1). The
fitness value of a given solution −→x in the Single-Objective
GA is calculated as follows:

F (−→x) = (1 − ω) · f1(
−→x) + ω · f2(

−→x)

By changing the weight factor ω ∈ [0, 1], one can explore
various regions of the Pareto-optimal front. This approach is
employed to compare the performance of the Single-Objective
GA with other search techniques.

5.4 Random Search
We also applied the Random Search technique to the MONRP.

This is merely a ‘sanity check’; all metaheuristic algorithms
should be capable of comfortably outperforming Random
Search for a well-formulated optimization problem. Thus
the Random Search technique was given the same number
of fitness evaluations as the other algorithms to provide a
useful lower bound benchmark for measuring the other al-
gorithms’ performance.

6. EXPERIMENTAL SET UP
In this section, we describe the test problems used to com-

pare the performance of NSGA-II with Pareto GA, Random
Search and Single-Objective GA.

The test problems were created by assigning random choices
for value and cost. The range of costs were from 1 through to
9 inclusive (zero cost is not permitted). The range of values

were from 0 to 5 inclusive (zero value is permitted, indicat-
ing that the customer places no value on, i.e. does not want,
this requirement). This simulates the situation where a cus-
tomer ranks the choice of requirements (for value) and the
cost is estimated to fall in a range, very low, low, medium,
high, very high. Each algorithm was executed 5 times for
each data set.

The four algorithms were applied to two test problem sets,
for two separate empirical study cases: Empirical Study 1
(ES1) and Empirical Study 2 (ES2). In the ES1 we report
results concerning the performance of the four algorithms
for what might be considered ‘typical’ cases, with the num-
ber of customers ranging from 15 to 100 and the number
of requirements ranging from 40 to 140. In ES2, we are
concerned with bounding the problem below, to determine
the size of problem for which search is not appropriate; the
point at which the problem becomes too small. In order to
do this, we seek to find the point at which the metaheuris-
tic techniques can (only just) outperform a Random Search,
since we deem this to indicate that the problem is suffi-
ciently large for it to be worth considering the application
of metaheuristic search techniques.

All approaches were run for a maximum of 10,000 func-
tion evaluations. The initial population was set to 200. We
used a simple binary GA encoding, with one bit to code for
each decision variable (the inclusion or exclusion of a re-
quirement). The length of a chromosome is thus equivalent
to the number of requirements. Each experimental execu-
tion of each algorithm was terminated when the generation
number reached 51 (i.e after 10,000 evaluations). All genetic
approaches used the tournament selection (the tournament
size is 5), single-point crossover and bitwise mutation for
binary-coded GAs. The crossover probability was set to
Pc = 0.8 and mutation probability to Pm = 1/n (where n is
the string length for binary-coded GAs) were used.

7. RESULTS AND ANALYSIS

7.1 Empirical Study 1—Scale Problem
In ES1 we investigate the relative performance of the four

approaches to the MONRP for cases that we consider typi-
cal. We consider three ‘scales’ of problem that we hope are
characteristic of some of the problems to which the approach
may be applied. The number of customers and requirements
for each scale problem is listed in Table 1:

Table 1: Scale test sets

Scale Customer Requirement
S1 15 40
S2 50 80
S3 100 140

The results of S1, S2 and S3 are shown in Figure 1(a-
c). The figure shows typical results from the 5 runs of each
algorithm. Space does not permit us to show all results, but
the results from other runs were very similar to those shown
in the figure. In each picture, the results show the non-
dominated front obtained after 50 generations with NSGA-
II, Pareto GA, Single-Objective GA, and all 10,000 solutions
obtained by Random Search.

1133

In the Single-Objective GA, there are nine different weight
coefficients ω for each objective ranging from 0.1 to 0.9 in
this paper. The step size of weight is 0.1. The algorithm was
executed 9 times for different choices of weight coefficients
to obtain different solutions within a single experiment.

The results lend evidence to support the following claims:

1. The NSGA-II algorithm performs the best in all three
scale problems. Figures 1 (a), (b) and (c) show a
smooth, non-interrupted Pareto-optimal front gener-
ated by NSGA-II. Clearly, it is able to find a better di-
versity of solution distribution and it also converges on
results that are better than those for any of the other
algorithms, because the front line dominates those pro-
duced by the other approaches. This provides empiri-
cal evidence that the NSGA-II algorithm is effective in
solving the MONRP and that it may outperform the
Pareto GA and the Single-Objective GA (as well, of
course, as random).

2. The solutions obtained using the weight-based Single-
Objective GA where ω was close to 0.0 or 1.0 drive the
search towards the extreme ends of the Pareto front.
These extreme parts of the Pareto front do not ap-
pear to be explored by NSGA-II, even though it does
produce a good spread of results. In such extreme so-
lutions, one objective is maximized to the almost total
exclusion of the other. Although the Single-Objective
GA may have difficulties in finding a good spread of
solutions near the Pareto-optimal front, these extreme
non-dominated solutions which the Single-Objective
GA managed to find provide a necessary supplement
to the NSGA-II solutions. They may be useful in real
world scenarios, because they allow the software engi-
neer to explore the extremes of the Pareto front, where
one objective dominates.

3. The trend we observed from the three experiments is
that the larger the scale of the test problem, the wider
the gap in performance, both between metaheuristic
techniques and Random Search and between the leader
(NSGA-II) and the runner up (Pareto GA). This indi-
cates that as the problem scales, the performance im-
provement offered by the use of NSGA-II also scales,
making it an increasingly preferred choice of solution
algorithm.

7.2 Empirical Study 2—Boundary Problem
In ES2, we want to explore the boundaries of MONRP.

For the lower boundary, there are two extreme situations,
namely many customers with very few requirements and vice
versa. In this section, we are interested in obtaining the
‘critical mass’ of both customers and requirements. Once
the critical mass exceeds a predetermined critical point, it
becomes worthwhile applying metaheuristic techniques to
the MONRP; below this point, the problem is too trivial to
merit a metaheuristic solution.

In the first situation, there are many customers and few
requirements. We set the number of customers to 100, with
the aim of finding the smallest set of requirements to meet
the critical point.

Figure 1(d) illustrates this critical point. From the figure
we can see that there is no gap between the solutions gen-
erated by the Random Search and the Pareto-optimal front

produced by NSGA-II. The number of requirements is set
to 20 in Figure 1(d). The NSGA-II and the Random Search
solutions share several common points. However, when we
increase the number of requirements to 25, as shown in Fig-
ure 1(e), we can see that there is a clear gap between the
solutions produced by the Random Search and the NSGA-
II. If we increase the number of requirements further, the
gap continues to widen.

In the second situation, there are few customers and many
requirements. We assume that the smallest number of cus-
tomers is 2. However, even with only 2 customers, with
sufficient requirements, there is a noticeable difference in
the performance of the metaheuristic search algorithms and
Random Search. This is illustrated in Figure 1(f), where
the number of requirements is 200. In this figure, NSGA-II
clearly outperforms other algorithms.

Thus it can be seen that the primary determinant of the
‘tipping point’ is a function of the number of requirements,
which should exceed about 20 requirements. By contrast
there is no number of customers that is ‘too small’ for the
problem to be worthwhile.

8. CONCLUSIONS AND FUTURE WORK
In this paper we address the Multi-Objective Next Re-

lease Problem (MONRP) for the first time, in order to opti-
mize both value and cost simultaneously. These objectives
are naturally conflicting so attaining a single optimal solu-
tion may not be possible in many cases. Instead, the set
of Pareto-optimal solutions are to be sought that enables
decision makers to select the best solutions in different cir-
cumstances based on their priorities. Four search techniques
namely: Random Search, Single-Objective GA, Pareto GA
and NSGA-II were examined to find approximations of the
Pareto front in different problem instances.

It was observed that the NSGA-II outperforms other tech-
niques in finding a large and important part of the Pareto
front in large problems. However, for these problems, a
Single-Objective GA (applied to the unified objective func-
tion) performs better in finding extreme regions along the
front when is run iteratively, using varying weights for the
two objectives.

In small problem instances, no major difference was ob-
served between the solution techniques in terms of quality of
the Pareto front found. In this way, the paper provides an
empirically determined lower bound benchmark on problem
size, indicating the point below which the MONRP becomes
trivial.

Future work will verify these findings by applying search
techniques to real world problems. This will provide valu-
able feedback to researchers and practitioners in search tech-
niques as well as software engineering communities. Other
reformulations of the MONRP considering different sets of
objectives and constraints including dependency relation-
ship between requirements will be experimented with. This
in turn may give rise to the need for the development of
more efficient solution techniques.

9. REFERENCES
[1] Antoniol, G., Penta, M. D., and Harman, M.

Search-based techniques applied to optimization of
project planning for a massive maintenance project. In
21st IEEE International Conference on Software

1134

0 2000 4000 6000 8000 10000 12000 14000
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Score

−
1*

C
os

t
NSGA−II
Pareto GA
Random search
Single−Objective GA

0 5000 10000 15000
−80

−70

−60

−50

−40

−30

−20

−10

0

Score

 −
1*

C
os

t

NSGA−II
Pareto GA
Random search
Single−Objective GA

(a) 15 customers; 40 requirements (d) 100 customers; 20 requirements

0 0.5 1 1.5 2

x 10
5

−400

−350

−300

−250

−200

−150

−100

−50

0

Score

−
1*

C
os

t

NSGA−II
Pareto GA
Random search
Single−Objective GA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−140

−120

−100

−80

−60

−40

−20

0

Score

−
1*

C
os

t

NSGA−II
Pareto GA
Random search
Single−Objective GA

(b) 50 customers; 80 requirements (e) 100 customers; 25 requirements

0 2 4 6 8 10 12

x 10
5

−550

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

Score

−
1*

C
os

t

NSGA−II
Pareto GA
Random search
Single−Objective GA

1 1.5 2 2.5 3

x 10
4

−800

−700

−600

−500

−400

−300

−200

−100

Score

−
1*

C
os

t

NSGA−II
Pareto GA
Random search
Single−Objective GA

(c) 100 customers; 140 requirements (f) 2 customers; 200 requirements

Figure 1: In (a), (b) and (c) metaheuristic search techniques have outperformed Random Search. The NSGA-
II performed better or equal to others for a large part of the Pareto front while Single-Objective performed
better in the extreme regions. The gap between search techniques and Random Search became larger as the
problem size increased. (d) shows the boundary case concerning the number of requirements beyond which,
Random Search fails to produce comparable results with metaheuristic search techniques. (e) shows 25%
increase in the number of requirements, the gap became significant. The NSGA-II performed the best, and
Pareto GA shared part of the front with NSGA-II. (f) shows that the gap was obviously large. The NSGA-II
has outperformed Pareto GA but not the Single-Objective GA in the extreme ends of the front.

1135

Maintenance (Los Alamitos, California, USA, 2005),
pp. 240–249.

[2] Bagnall, A., Rayward-Smith, V., and Whittley,

I. The next release problem. Information and Software
Technology 43, 14 (Dec. 2001), 883–890.

[3] Chicano, F., and Alba, E. Management of software
projects with gas. In 6th Metaheuristics International
Conference (MIC2005) (Vienna, Austria, Aug. 2005).

[4] Coello Coello, C. A., Van Veldhuizen, D. A.,

and Lamont, G. B. Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic
Publishers, New York, May 2002.

[5] Cohen, M., Kooi, S. B., and Srisa-an, W.

Clustering the heap in multi-threaded applications for
improved garbage collection. In GECCO 2006:
Proceedings of the 8th annual conference on Genetic
and evolutionary computation (Seattle, Washington,
USA, 8-12 July 2006), M. Keijzer, M. Cattolico,
D. Arnold, V. Babovic, C. Blum, P. Bosman, M. V.
Butz, C. Coello Coello, D. Dasgupta, S. G. Ficici,
J. Foster, A. Hernandez-Aguirre, G. Hornby,
H. Lipson, P. McMinn, J. Moore, G. Raidl,
F. Rothlauf, C. Ryan, and D. Thierens, Eds., vol. 2,
ACM Press, pp. 1901–1908.

[6] Collette, Y., and Siarry, P. Multiobjective
Optimization: Principles and Case Studies. Springer,
2004.

[7] Deb, K. Multi-Objective Optimization Using
Evolutionary Algorithms. Wiley, Chichester, UK, 2001.

[8] Deb, K., Pratap, A., Agarwal, S., and

Meyarivan, T. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA–II. IEEE Transactions on
Evolutionary Computation 6, 2 (Apr. 2002), 182–197.

[9] Doval, D., Mancoridis, S., and Mitchell, B. S.

Automatic clustering of software systems using a
genetic algorithm. In International Conference on
Software Tools and Engineering Practice (STEP’99)
(Pittsburgh, PA, 30 August - 2 September 1999).

[10] Greer, D., and Ruhe, G. Software release planning:
an evolutionary and iterative approach. Information &
Software Technology 46, 4 (2004), 243–253.

[11] Harman, M., Steinhöfel, K., and Skaliotis, A.

Search based approaches to component selection and
prioritization for the next release problem. In 22nd

International Conference on Software Maintenance
(ICSM 06) (Philadelphia, Pennsylvania, USA, Sept.
2006). To appear.

[12] Harman, M., Swift, S., and Mahdavi, K. An
empirical study of the robustness of two module
clustering fitness functions. In Genetic and
Evolutionary Computation Conference (GECCO 2005)
(Washington DC, USA, June 2005), pp. 1029–1036.

[13] Horn, J., and Nafpliotis, N. Multiobjective
optimization using the niched pareto genetic
algorithm. Tech. Rep. IllIGAL 93005, Illinois Genetic
Algorithms Laboratory, University of Illinois at
Urbana-Champaign, Urbana, IL, 1993.

[14] Karlsson, J., Wohlin, C., and Regnell, B. An
evaluation of methods for priorizing software
requirements. Information and Software Technology 39
(1998), 939–947.

[15] Kirsopp, C., Shepperd, M., and Hart, J. Search
heuristics, case-based reasoning and software project
effort prediction. In GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference
(San Francisco, CA 94104, USA, 9-13 July 2002),
W. B. Langdon, E. Cant-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.
Schultz, J. F. Miller, E. Burke, and N. Jonoska, Eds.,
Morgan Kaufmann Publishers, pp. 1367–1374.

[16] Mahdavi, K., Harman, M., and Hierons, R. M. A
multiple hill climbing approach to software module
clustering. In IEEE International Conference on
Software Maintenance (Los Alamitos, California,
USA, Sept. 2003), pp. 315–324.

[17] Mancoridis, S., Mitchell, B. S., Chen, Y.-F.,

and Gansner, E. R. Bunch: A clustering tool for the
recovery and maintenance of software system
structures. In Proceedings; IEEE International
Conference on Software Maintenance (1999), IEEE
Computer Society Press, pp. 50–59.

[18] Mancoridis, S., Mitchell, B. S., Rorres, C.,

Chen, Y.-F., and Gansner, E. R. Using automatic
clustering to produce high-level system organizations
of source code. In International Workshop on Program
Comprehension (IWPC’98) (Los Alamitos, California,
USA, 1998), pp. 45–53.

[19] Mitchell, B. S., and Mancoridis, S. On the
automatic modularization of software systems using
the bunch tool. 193–208.

[20] O’Keeffe, M., and O’Cinneide, M. Search-based
software maintenance. In Conference on Software
Maintenance and Reengineering (CSMR’06) (Mar.
2006), pp. 249–260.

[21] Osyczka, A. In Multicriteria optimization for
engineering design (1985), Design Optimization,
pp. 193–227.

[22] Papadimitriou, C. H., and Steiglitz, K.

Combinatorial Optimization: Algorithms and
Complexity. Dover, 1998.

[23] Seng, O., Stammel, J., and Burkhart, D.

Search-based determination of refactorings for
improving the class structure of object-oriented
systems. In GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary
computation (Seattle, Washington, USA, 8-12 July
2006), M. Keijzer, M. Cattolico, D. Arnold,
V. Babovic, C. Blum, P. Bosman, M. V. Butz,
C. Coello Coello, D. Dasgupta, S. G. Ficici, J. Foster,
A. Hernandez-Aguirre, G. Hornby, H. Lipson,
P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan,
and D. Thierens, Eds., vol. 2, ACM Press,
pp. 1909–1916.

[24] Srinivas, N., and Deb, K. Multiobjective
Optimization Using Nondominated Sorting in Genetic
Algorithms. Evolutionary Computation 2, 3 (Fall
1994), 221–248.

[25] Szidarovsky, F., Gershon, M. E., and Dukstein,

L. Techniques for multiobjective decision making in
systems management. Elsevier, New York, 1986.

1136

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

