
Center of Mass Encoding: A Self-Adaptive Representation
with Adjustable Redundancy for Real-Valued Parameters

Claudio Mattiussi
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
Laboratory of Intelligent

Systems, CH-1015 Lausanne,
Switzerland

http://lis.epfl.ch

claudio.mattiussi@epfl.ch

Peter Dürr
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
Laboratory of Intelligent

Systems, CH-1015 Lausanne,
Switzerland

http://lis.epfl.ch

peter.duerr@epfl.ch

Dario Floreano
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
Laboratory of Intelligent

Systems, CH-1015 Lausanne,
Switzerland

http://lis.epfl.ch

dario.floreano@epfl.ch

ABSTRACT
In this paper we describe a new class of representations for real-
valued parameters called Center of Mass Encoding (CoME). CoME
is based on variable length strings, it is self-adaptive, and it per-
mits the choice of the degree of redundancy of the genotype-to-
phenotype map and the choice of the distribution of the redundancy
over the space of phenotypes. We first describe CoME and then
proceed to test its performance and compare it with other represen-
tations and with a state-of-the-art evolution strategy. We show that
CoME performs well on a large set of test functions. Furthermore,
we show how CoME adapts the granularity of its discretization on
functions defined over nonuniformly scaled domains.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Performance, Experimentation

Keywords
CoME, center of mass encoding, genetic encoding, genetic algo-
rithms, evolutionary algorithms, redundant representation, adaptive
representation, real parameters

1. INTRODUCTION
In many applications of evolutionary computation there is the

need to represent real-valued parameters. A common approach is
to represent each parameter as a binary string of fixed length, in-
terpret the string as a binary or a Gray-coded integer, and map the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

integer linearly or exponentially to the desired real interval [2, 5].
A generalization of this approach is based on the use of a β-ary
alphabet with β > 2 in lieu of the binary alphabet [8]. These rep-
resentations give the user the flexibility of defining the represented
interval and the granularity of its quantization. However, this flexi-
bility is a mixed blessing, since the user must decide how many bits
to use for each parameter, with the risk of working with a quanti-
zation that is too coarse for the problem at hand if too few bits
are used, and the complementary risk of increasing too much the
size of the search space if too many bits are used. For this reason,
some authors have suggested techniques that adapt the represen-
tation during the course of the evolutionary runs. For example,
Schraudolph and Belew [9], Kwon et al. [4], and Streifel et al.
[10] proposed algorithms that periodically redefine the mapping of
fixed-length binary strings by changing the target interval of the
representation according to the history of the run. Other techniques
follow an iterative approach. Whitley et al. [12] suggest a strat-
egy that relaunches a genetic algorithm (GA) multiple times and
remaps the search space to a hypercube around the solution found
by the previous run.

The adaptive representations mentioned above are all based on
fixed-length strings and require the explicit definition of a policy
of change of the genotype-to-phenotype map based on the fitness
values of the population. Moreover, for all these representations
– as in the conventional binary and Gray coded representations –
the genotype-to-phenotype map is one-to-one. However, it is well
known that the presence of a certain degree of redundancy in the
genotype-to-phenotype map can be beneficial to the evolutionary
process, provided the “good” phenotypes are not grossly under-
represented [8]. Examples of redundant representation of parame-
ters can be found in [14, 5]. In this paper we describe a new class
of representations for real-valued parameters called Center of Mass
Encoding (CoME). CoME is based on variable length strings, it is
self-adaptive, and it permits the choice of the degree of redundancy
of the genotype-to-phenotype map and the choice of the distribu-
tion of the redundancy over the space of phenotypes. We will first
define CoME and then proceed to test its performance and compare
it with the state-of-the-art representations for real-valued function
optimization.1

1The computer code implementing CoME can be downloaded at
the web address http://lis.epfl.ch/software

1304

Figure 1: An example of mapping from a string s to the system
of particles whose center of mass is the value of the parameter
encoded by s. Note that the points x(A),x(B), . . . are not neces-
sarily equispaced along the interval.

2. PARAMETER REPRESENTATION
Our aim is to define a function that maps a sequence of characters

(i.e., a string) s = c1c2 . . .cl belonging to an alphabet A to a finite
real interval. Without loss of generality we can work with the in-
terval I = [0,1], with the assumption that the representation defined
on I will be linearly or nonlinearly mapped to the actual interval of
interest. The basic idea of CoME is to use the string s to define a
system of particles on I and to take the center of mass of this sys-
tem as the point represented by s. Each character ci in the string
is associated with a particle whose position x(ci) ∈ I is determined
by the value of the character and whose mass w(i) is determined
by the position i of the character in the string (Figure 1). The point
x(s) ∈ I to which the string is mapped is thus given by

x(s) = x(c1c2 . . .cl) =
∑l

i=1 x(ci)w(i)

∑l
i=1 w(i)

(1)

where l is the length of the string. This definition results in a large
variety of mappings, depending on the choice of the alphabet and
of the functions x(ci) and w(i). Let us consider some examples. To
simplify the notation we assume that the alphabet corresponds to
the set of integers {0, . . . ,β− 1}, where β is the cardinality of the
alphabet.

EXAMPLE 1. Totalistic encoding: The particles are distributed
evenly on the interval by setting x(ci) = ci/(β−1) and all the par-
ticles are given the same mass w(i) = µ. We obtain

x(s) =
∑l

i=1 ci

(β−1) l
(2)

For arbitrary alphabets the resulting point depends only on the sum
of the values of the characters in the string (borrowing the term
from the terminology of cellular automata we call this representa-
tion totalistic). For a binary alphabet this corresponds to the unary
encoding analyzed by Rothlauf [8], which maps a binary string to
a point that depends only on the number of 1s in the string. An
example of the distribution of the redundancy of this representation
is shown in Figure 2.

EXAMPLE 2. Non-redundant positional encoding: As in Exam-
ple 1 we set x(ci) = ci/(β − 1) but now the particle masses are
defined by w(i) = β−i. We obtain

x(s) =
∑l

i=1 ci β−i

(β−1) ∑l
i=1 β−i

(3)

Figure 2: The totalistic encoding is characterized by a highly
nonuniform distribution of the redundancy. The top plot shows
the number of times a given real value is obtained (i.e., its mul-
tiplicity) with Equation (2) by mapping all the strings of length
l = 4 over an alphabet of cardinality β = 26. The bottom his-
togram shows the frequency density of the values across the
represented interval.

This mapping corresponds to the conventional β-ary positional rep-
resentation mentioned in the introduction, which interprets the string
as an integer in base β and maps it linearly to the interval I. The
mapping from the set of strings to the real values is one-to-one.

EXAMPLE 3. Redundant positional encoding: Everything re-
mains as in Example 2, except that the base of the exponential that
defines the masses can be smaller than the cardinality of the alpha-
bet, that is, we have w(i) = α−i with α ≤ β. A general genotype-
to-phenotype map that includes the previous cases is

x(s) =
∑l

i=1 ci α−i

(β−1) ∑l
i=1 α−i

, 1 ≤ α ≤ β (4)

For α < β the mapping defined by Equation (4) is redundant, as
illustrated in Figure 3. For α = 1 this mapping reduces to Equa-
tion (2) (totalistic encoding) and for α = β it reduces to Equa-
tion (3) (non-redundant positional encoding).

The redundant positional encoding considered in Example 3 is
particularly interesting because by using a value of α that is not too
small with respect to the cardinality β of the alphabet, its degree of
redundancy can distributed evenly across the represented domain.
Note, for example, how the frequency distribution of the values be-
comes more uniform across the interval when the value of the base
is increased from α = 1 (Figure 2), to α = 8 (Figure 3, left), to
α = 15 (Figure 3, right). Since the position of the “good” pheno-
types in the domain is not known a priori, a nonuniform distribution
of redundancy incurs the risk of under-representing them, which is
not the case for a reasonably even distribution of redundancy. For
this reason we take Equation (4) as defining the default CoME rep-
resentation. Of course, one can obtain other similarly well-behaved

1305

Figure 3: Using a base α that is not too small with respect to the cardinality of the alphabet the redundant positional encoding is
characterized by a redundancy that is fairly uniformly distributed across the represented interval. The plots in the top row show the
multiplicity of the real values obtained with Equation (4) by mapping all the strings of length l = 4 over an alphabet of cardinality
β = 26 using a base α = 8 (left) and α = 15 (right). Note that the insufficient resolution of the image makes sequences of close but
distinct points appear as continuous lines. The histograms in the bottom row show the frequency density of the values across the
represented interval.

redundant encoding based on the general CoME mapping of Equa-
tion (1), for example using the double-base representations dis-
cussed in [4]. On the other hand, if some information about the
most promising regions of the search space is available one might
consider the possibility of using a definition of the weights w(i) that
results in a nonuniform distribution of the redundancy, or the pos-
sibility of distributing the particles nonuniformly along the interval
I (Figure 1).

3. GENOME AND GENETIC OPERATORS

3.1 Mutation
Like the conventional binary and Gray-coded representations,

the genotype-to-phenotype map of CoME presented in the previ-
ous section can produce different granularities of the discretiza-
tion using different lengths of the strings encoding the parameters.
More characters in the string correspond to more particles in the
system of Figure 1 and give a finer control of the position of its
center of mass. Given an evolutionary problem we do not know in
general what is the resolution required to represent each parame-
ter optimally. Moreover, the optimal resolution can be different for
different parameters and can even change during the course of the
evolutionary run. It is therefore useful to let the evolutionary pro-
cess modify the length of the strings used to encode each param-
eter. To this end, in addition to the traditional genetic operator of
character substitution, CoME uses two further mutation operators:
one of character insertion and one of character deletion. As a con-
sequence, strings corresponding to different parameters may have
different lengths. If only numerical parameters need to be encoded,
the different parameters can be kept separated for mutation and de-

coding. Alternatively, we can insert some markers in the genome to
signal the position of the string encoding each parameter. In the fol-
lowing we will assume that only numerical parameters are encoded
in the genome and call the string of characters associated to one
parameter a chromosome. Therefore, the number of chromosomes
corresponds to the number of parameters encoded in the genome.
The presence of the deletion operator can reduce the length of a
chromosome to zero. An individual with such a chromosome must
be considered nonviable and removed from the population.

3.2 Crossover
In order to deal with chromosomes of variable length in CoME

the crossover points have to be selected taking into account the
length of the involved chromosomes. The easiest way to do this
is to choose a relative position in a random chromosome. After
choosing a random chromosome index d, we select the crossover
points inside the corresponding chromosomes c1

d and c2
d of the two

parents by drawing a random number φ ∈ [0,1]. For each of the
chromosomes we calculate the crossover point inside the chromo-
some as the integer nearest to φ li

c, where li
c is the length of the d-th

chromosome of the i-th parent (Figure 4). In the case where all the
chromosomes have the same length this procedure corresponds to
the classical crossover operator.

4. EXPERIMENTS
In order to assess the performance of CoME we consider a set

of benchmark problems from function optimization. It can be ar-
gued that in the light of the no free lunch theorem [13] results
gained from such benchmarks have no general validity. Neverthe-
less, for the practical application the results from such a benchmark

1306

Figure 4: An illustration of the crossover operator used in the
experiments reported below. It is defined so as to be applicable
to two genomes composed by chromosomes of different lengths.

can be very useful if the test functions cover the typical properties
of real world optimization problems. A standard generational ge-
netic algorithm [1] with tournament selection and tournament size
of 2 is used to minimize each test function within 100′000 function
evaluations. The parameters of the algorithm used for the experi-
ments are listed in Table 1. We first compare the performance of
CoME to that of other standard encodings for genetic algorithms.
To enlarge the scope of the comparison we consider two further al-
gorithms. The first is the dynamic parameter encoding algorithm
(DPE) [9]. DPE is a genetic algorithm that refines the mapping of
the parameters by dividing the search interval into four quarters.
The algorithm keeps track of the convergence of the population. If
a given trigger threshold on an internal convergence measure is ex-
ceeded, the search interval is restricted by a zoom operator, which
remaps the target interval and hereby doubles the precision. In the
experiments described below we use a convergence threshold of
0.61, a DPE time constant of 2 and a sigma scaling factor of 2.0.
The second additional algorithm is a state-of-the-art evolution strat-
egy, the Covariance Matrix Adaptation (CMA-ES) [3]. As in [11],
CMA-ES is used here with rank-µ-updates and two different pop-
ulation sizes, λ = 200 and λ = 500, referred to as "CMA200" and
"CMA500".

4.1 Representation
For the experiments based on the genetic algorithm we consider

several different methods to decode the chromosomes into discrete
parameter values. As the parameter range is constrained for the test
functions considered here we scale the decoded parameter values
so that the obtainable values match the constraints on the parameter
range. That is, given the parameter range [xmin,xmax] a parameter x
represented by the string s is scaled by

x′(s) = xmin +(xmax − xmin)x(s)

4.1.1 Binary Representation
Binary encoding interprets the characters ci of a binary string as

digits of a binary number. This corresponds to Equation (3) with
β = 2. Each chromosome is a binary string of constant length l.
We consider the cases l = 10 and l = 20, referred to as "10Bit" and
"20Bit", respectively.

4.1.2 Gray Code
Gray code interprets a binary string of l bits as an integer in

such a way that the representation of two neighboring numbers only
differ by one bit [2, 7]. For the experiments we consider l = 10 and
l = 20, referred to as "10Gray" and "20Gray".

4.1.3 Center of Mass Encoding
We use the redundant positional encoding of CoME defined by

Equation (4). For the experiments we consider CoME encodings
with β = 26 and different exponential bases α = 10, α = 15, α = 20,

Parameter Value
Population Size 100
Mating Pool Size 99
Elite Size 1
Offspring per Parent 1
Recombination Probability 0.05
Substitution Probability 0.001
Insertion Probability (see Section 3) 0.001
Deletion Probability (see Section 3) 0.001

Table 1: The GA parameters used in the experiments; insertion
and deletion are only used for the variable length genome rep-
resentations. The values for substitution, insertion, and dele-
tion probability are probabilities per character.

and α = 26, referred to as "CoME10", "CoME15", "CoME20", and
"CoME26", respectively. Note that CoME26 has α = β and corre-
sponds to a variable length non-redundant positional encoding. The
choice of the value of cardinality of the alphabet is not critical, pro-
vided it is large enough to allow the choice of a base that results in a
reasonably uniform distribution of redundancy, as explained in Sec-
tion 2. In order to evaluate the effect of a nonuniform distribution
of redundancy we also consider the case of α = 1 (Equation (2)) re-
ferred to as "TOT26". Furthermore, we take into account the fixed
length version of non-redundant positional encoding (Equation (3))
with β = 26 and l = 10 or l = 20, referred to as "10B26", "20B26".

4.1.4 Dynamic Parameter Encoding
In the experiments described below we use a Gray code based

DPE. We consider l = 10 and l = 20, referred to as "10DPE" and
"20DPE".

4.2 Test Functions
To compare the performance of the different representations and

algorithms we use the set of test functions for function optimization
presented in [11]. Whitley et al. motivate their choice of using test
functions with a limited domain by stating that the parameters in
real world optimization problems are typically constrained. Their
set contains a range of standard functions such as Rosenbrock’s F2
function, the multimodal symmetric and separable Schwefel func-
tion and the non-separable and highly multimodal Rana and F101
functions. Additionally the composite F8F2 function is considered
as well as two modifications of the well known Griewangk func-
tion, G1 and G2. See Table 2 for the formal definitions of the
functions.2 As in [11], the functions defined in two dimensions
F2D(x,y) are expanded to N = 20 dimensions using

f (x1, . . . ,xN) =
N−1

∑
i=1

F2D(xi,xi+1) (5)

We also consider rotated instances of the test functions obtained by
rotating the functions by 22.5◦, translating them by 5% and scaling
them by 5% in every dimension [11].3 For each of the test func-
tions we do 25 runs of 100’000 function evaluations with each of
the aforementioned genetic representations and the two additional
algorithms. The CoME chromosomes are initialized with l = 10.

2The G1 function as specified in [11] is not defined over the whole
search space Ω = [−511,512]20. See Table 2 for our definition.
3As the constraints on the parameters are applied after the rotation,
the optima change. This explains why CMA-ES does not perform
equally on the rotated versions even though the algorithm itself is
invariant to rotation, translation and scaling.

1307

Name Function

Rosenbrock (F2) f (x,y) = 100(x2 − y)2 +(1− x)2

F101 f (x,y) = −xsin(
√

|x− (y+47)|)− (y+47)sin(
√

(y+47)+ x/2)

F8F2 f (x,y) = 1+∑N
i=1(

F2(x,y)2

4000)−∏N
i=1 cos(F2(x,y))/

√
i

G1 f (x1, . . . ,xN) =

{
∑N

i=1
x2

i
4000N −−log

[[
∏N

i=1(cos(xi)+0.1)
]
+1

]
if ∏N

i=1(cos(xi)+0.1) > −1
∞ otherwise

G2 f (x1, . . . ,xN) = ∑N
i=1

x2
i

4000N −−1.5N/4
[
∏N

i=1
√

cos(xi/N + i)+1
]1/4

Rana f (x,y) = xsin(
√

A)cos(
√

B)+(y+1)cos(
√

A)sin(
√

B) ; A = |y+1− x| , B = |x+ y+1|
Schwefel f (x1, . . . ,xN) = ∑N

i=1

(
−xisin(

√
|xi|)

)
Table 2: The test functions used in the benchmark experiments. The functions F2, F101, F8F2 and Rana which were originally de-
fined for a two dimensional search space are expanded to N = 20 dimensions using the simple expansion method given in Equation (5).
The Rosenbrock functions F2 and F8F2 are used on a domain of [−2.048,2.047]N , all other functions use [−512,511]N .

4.2.1 Adaptivity
One of the main advantages of an adaptive encoding like CoME

is that it allows the algorithm to adapt the granularity of its param-
eters to the scaling of the problem. In order to evaluate this fea-
ture we consider two example problems with artificially scaled test
functions. For 5-dimensional instances of the rotated Rana function
and of the rotated F101 function we scale the first three dimensions
by a constant factor. This is done by multiplying the respective pa-
rameters by 100’000 after decoding. Outside the parameter range
of [−512,511]5 the functions are continuously extended for each
parameter by the quadratic penalty function

g(xi) =
{

10−5 (xi −511)2 xi > 511
10−5 (xi +512)2 xi < −512

This makes it reasonably easy for the GA to find the interesting part
of the search space inside of [−512,511]5. On 25 runs of 100’000
function evaluations each we compare the performance of DPE10
with CoME15. CoME15 is initialized with chromosomes of length
l = 1.

4.3 Results and Discussion
Figure 5 shows the results of the optimization runs on the dif-

ferent test functions. Since we can expect that different algorithms
and representations are differently suited to different functions, it
is not surprising that no algorithm outperforms all the others on all
the functions of the test set. Nonetheless, the comparison reveals
some interesting points.

In the experiments based on the genetic algorithm and a fixed-
length encoding, the adoption of a 26-letter alphabet (10B26 and
20B26) produces results that are either comparable or significantly
better than those obtained with a binary encoding (10Bit and 20Bit).
For some functions, however, the gap between binary and 26-letter
alphabet can be closed or reversed using a binary alphabet with
Gray coding (10Gray and 20Gray). As expected, the totalistic en-
coding (TOT26) performs very poorly on several functions, pre-
sumably due to the poor match of its highly nonuniform distribu-
tion of redundancy with the properties of the search spaces deter-
mined by those functions (and, correspondingly, TOT26 performs
very well on some functions, to which presumably its distribution
of redundancy is well suited). The non-redundant version of CoME
(CoME26), which corresponds to a variable length positional en-
coding, outperforms the fixed-length positional encodings that use
the same alphabet (10B26 and 20B26). The interesting point is

that in most cases there is a significant improvement in the transi-
tion from a fixed-length representation to the variable length rep-
resentation that characterizes CoME. The effect of the transition
from a non-redundant variable-length representation (CoME26) to
a corresponding redundant representation with a fairly even distri-
bution of the redundancy (CoME10, CoME15, CoME20) is less
clear-cut. Although in some cases the redundancy has a beneficial
effect, the reverse is true in other cases (although never with the
significant decrease of performance that is observed with TOT26).
Summing up, judging from the results obtained with the present
test set, there seems to be a definite advantage when using a simple
genetic algorithm in passing from a standard binary encoding to the
variable-length representation and higher-cardinality alphabet that
characterizes CoME.

The comparison of the results obtained with CoME using a sim-
ple genetic algorithm, with those obtained with the DPE algorithm
(10DPE and 20DPE) and the CMA-ES algorithm (CMAES200 and
CMAES500) shows that the improvement in performance due to
CoME puts the genetic algorithm on the same level with these
more sophisticated algorithms. As mentioned above, no combi-
nation of algorithm and representation outperforms all the others,
and combinations that produce excellent results on some function
(e.g., CMA-ES on Rosenbrock’s and G1 and G2 functions, or DPE
on the unrotated Rosenbrock’s function) perform poorly on other
functions (e.g., CMA-ES on the F101 and Rana function, or DPE
on the G1 function). From this point of view, the most interesting
observation stemming from the results illustrated in Figure 5 is that
CoME maintains a reasonable performance on all the functions of
the test set and never shows the dramatic decrease in performance
manifested by DPE and CMA-ES on some functions.

Figure 6 shows the results of the experiments on adaptivity de-
scribed in Section 4.2.1. In these experiments the first three coor-
dinate axes of the 5-dimensional domain are scaled so as to require
a finer resolution of the discretization for the correct location of the
minima. The plots in the left column of Figure 6 show that there is
no significant difference in the best function values obtained with
CoME and DPE. In both experiments the CoME chromosomes en-
coding the scaled coordinates show a significant increase in length
relatively to the chromosomes encoding the two unscaled coordi-
nates (Figure 6, right column). Using a base α = 15 for the expo-
nential in Equation (4), each additional character in the string mul-
tiplies the number of available parameter values by about 15. An in-
crease of a factor 100′000 in the resolution would suggest the need
for an additional five characters (log(100′000)/log(15) ≈ 4.25).

1308

1309

Figure 5: (previous page) Results from 25 minimization runs
of 100’000 function evaluations each. The results shown on a
white background were obtained with the genetic algorithm,
those shown on a gray background were obtained with the DPE
and CMA-ES algorithms. The midline in each box is the me-
dian, the borders of the box represent the upper and the lower
quartile. The whiskers outside the box represent the minimum
and maximum values obtained, except when there are outliers
which are shown as small circles. We define outliers as data
points which differ more than 1.5 times the interquartile range
from the border of the box. The notches permit the assessment
of the significance of the differences of the medians. When the
notches of two boxes do not overlap, the corresponding medi-
ans are significantly different at (approximately) the 95% con-
fidence level [6].

This matches well the results observed in our CoME15 runs, where
the average chromosome lengths at the end of the runs display a dif-
ference of 4.86 and 5.73 characters between the chromosomes that
encode the scaled and nonscaled axes of the domains of the two
test functions. This shows that CoME is capable of self-adapting
the granularity of the genetic representation independently for each
parameter according to the needs of the problem at hand.

5. CONCLUSION
We have introduced the Center of Mass Encoding (CoME), a

new class of genetic representations of real-valued parameters that
allows self-adaptation of the resolution of the representation and
permits the choice of the degree of redundancy of the representa-
tion. Using an extensive set of test functions as a benchmark we
have compared the performance of a genetic algorithm using the
CoME representation with that of other widely used representa-
tions such as binary encoding and Gray code encoding, and with
two more sophisticated adaptive evolutionary algorithms, namely,
Dynamic Parameter Encoding (DPE) and Covariance Matrix Adap-
tation (CMA-ES). Not only did a genetic algorithm using CoME
perform very well compared to the same algorithm using the con-
ventional discrete representations, but it outperformed the more ad-
vanced evolutionary algorithms on some of the test functions, while
displaying a consistently good behavior on the whole test set. Fur-
thermore, we have presented the results of two experiments that il-
lustrate how CoME is able to self-adapt the resolution of the repre-
sentation to the requirements of the evolutionary problem. In sum-
mary, we have shown that CoME is a very powerful new class of
encodings for the representation of real-valued parameters in evo-
lutionary algorithms.

Acknowledgments
The implementation of CMA-ES used here was adapted from orig-
inal code by Nikolaus Hansen. The implementation of DPE was
adapted from original code by Nicol Schraudolph. The implemen-
tation of the test functions was taken from the webpage of the GEN-
ITOR group at Colorado State University. Many thanks to Daniel
Marbach and Andrea Soltoggio for discussions and comments on
the manuscript. This work was supported by the Swiss National
Science Foundation grant no. 200021-112060.

Figure 6: The two graphs on the left show the minimal func-
tion values obtained by CoME15 and DPE10 in 25 runs after
100’000 evaluations on the scaled versions of the 5-dimensional
rotated Rana function (top row) and rotated F101 function
(bottom row) described in Section 4.2.1. The two graphs on
the right show the distribution of the chromosome lengths of
the solutions found by CoME15 (DPE uses fixed length chro-
mosomes of length 10). For the details of the boxplot format
see the caption of Figure 5

6. REFERENCES
[1] T. Bäck, D. Fogel, and Z. Michalewicz. Evolutionary

Computation 1: Basic Algorithms and Operators. Institute of
Physics, Bristol, 2000.

[2] D. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA,
1989.

[3] N. Hansen and A. Ostermeier. Adapting arbitrary normal
mutation distributions in evolution strategies: the covariance
matrix adaptation. In Proceedings of 1996 IEEE
International Conference on Evolutionary Computation,
pages 312–317, 1996.

[4] Y.-D. Kwon, S.-B. Kwon, S.-B. Jin, and J.-Y. Kim.
Convergence enhanced genetic algorithm with successive
zooming method for solving continuous optimization
problems. Computers & Structures, 81(17):1715–1725, Aug.
2003.

[5] C. Mattiussi. Evolutionary synthesis of analog networks.
PhD thesis, EPFL, Lausanne, 2005.

[6] R. McGill, J. W. Tukey, and W. A. Larsen. Variations of box
plots. The American Statistician, 32(1):12–16, Feb. 1978.

[7] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.
Numerical Recipes in C. Cambridge University Press,
Cambridge, 2nd edition, 1992.

[8] F. Rothlauf. Representations for Genetic and Evolutionary
Algorithms. Springer, Berlin, 2006.

[9] N. Schraudolph and R. Belew. Dynamic Parameter Encoding
for genetic algorithms. Machine Learning, 9(1):9–21, 1992.

[10] R. Streifel, I. Marks, R.J., R. Reed, J. Choi, and M. Healy.
Dynamic fuzzy control of genetic algorithm parameter
coding. IEEE Transactions on Systems, Man and
Cybernetics, Part B, 29(3):426–433, 1999.

1310

[11] D. Whitley, M. Lunacek, and A. Sokolov. Comparing the
niches of CMA-ES, CHC and Pattern Search using diverse
benchmarks. In T. R. et al., editor, Proceedings of PPSN IX,
volume 4193 of LNCS, pages 988–997, Berliin, 2006.
Springer.

[12] D. Whitley, K. Mathias, and P. Fitzhorn. Delta Coding: An
iterative search strategy for genetic algorithms,. In R. Belew
and L. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages
77–84, San Mateo, CA, 1991. Morgan Kaufman.

[13] D. Wolpert and W. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, April 2001.

[14] A. Wu and I. Garibay. The proportional genetic algorithm:
Gene expression in a genetic algorithm. Genetic
Programming and Evolvable Machines, 3(2):157–192, 2002.

1311

