
Program Search with Simulated Annealing

Mitsunori Miki
Department of Knowledge
Engineering and Computer

Sciences
Doshisha University

610-0394 Kyoto, Japan
mmiki@mail.doshisha.ac.jp

Masafumi Hashimoto
Department of Information

Systems Design
Doshisha University

610-0394 Kyoto, Japan
mhashimo@mail
.doshisha.ac.jp

Yoshihisa Fujita
Graduate School, Department
of Knowledge Engineering and

Computer Sciences
Doshisha University

610-0394 Kyoto, Japan
yoshihisa@mikilab

.doshisha.ac.jp

Categories and Subject Descriptors
G.4 [MATHEMATICAL SOFTWARE]: Algorithm de-
sign and analysis

General Terms
Algorithms

Keywords
program search, simulated annealing, genetic programming,
syntactic introns, bloat, fixed temperatures

1. INTRODUCTION
In many optimization problems, a search method suited

to the problem is used, and optimization is performed ef-
ficiently using this method.Thus, we believe that the same
is true for program search, and by applying different search
methods suitable to the problem, optimization can be achieved
more efficiently.

In this study, the possibility of the above was examined by
conducting a program search using SA, which is a represen-
tative meta-heuristic search method, similarly to GA, and
comparing it to standard GP. The program search method
using SA is named Simulated Annealing Programming (SAP).
Temperature schedule has a marked impact on the search in
SA, but in previous reseach, the temperature schedule was
not examined. In addition, there were a few studies on pro-
gram search using SA, and we believe the effectiveness of
SA in program search has yet to be demonstrated. In this
paper, SAP with the optimized temperature schedule was
compared to standard GP to examine the effectiveness of
SAP.

2. SIMULATED ANNEALING PROGRAM-
MING

Simulated Annealing Programming (SAP) is a program
search method that expands Simulated Annealing (SA).

SAP is a mutation-based program search method, and the
specific generation method first randomly selects the muta-
tion point on the current solution, deletes the subtree that
has the selected point as its root node, and then inserts

Copyright is held by the author/owner(s).
GECCO’07,July 7–11, 2007, London, England, United Kingdom.
ACM 978-1-59593-697-4/07/0007.

Mutation point

Current candidate solution New candidate solution 

Deletion of the subtree

Insertion of the subtree

Figure 1: Method for generation of new candidate
solution in SAP

a randomly generated subtree (Fig. 1). Its most remark-
able feature is having a mechanism that not only allows
the transition of improvement direction but also stochasti-
cally allows changes in the uphill direction according to a
control parameter called temperature. The Metropolis cri-
terion shown in (1) is used as the acceptance criterion. The
above feature means that this program search method can
be expected to yield optimal solutions even for problems
with local minima.

PAC =

¡
1 if ∆E ≤ 0

exp(−∆E
T

) otherwise
(1)

3. EXPERIMENTS AND RESULTS
A comparative experiment on SAP and standard GP was

performed to examine the effectiveness of SAP. The results
of a numerical experiment indicated that SAP using a tem-
perature schedule with a fixed temperature did not pro-
duce bloating even without the use of a special method for
preventing bloat, such as restricting the depth and size of
the program, including program size in the evaluation func-
tion, and devising operation methods, allowing it to generate
more compact programs as compared with the standard GP.

The above results indicate that, and in problems with the
possibility of syntactic introns, and with equal complexity to
the problems such as Santa Fe trail and Wall-following , the
performance of SAP is equal to or better than that of the
standard GP. Thus, by selecting search methods appropriate
for each problem, the possibility of conducting a search more
effectively than with GP has increased.

In future, we will explore the potential of SAP by investi-
gating its effectiveness in problems that require many nodes,
and by investigating operation methods - i.e., what types of
node should be inserted, or how to select mutation points.

1754


