
Evolutionary Algorithms for Reasoning in Fuzzy
Description Logics with Fuzzy Quantifiers

Mauro Dragoni
Università degli Studi di Milano

Dipartimento di Tecnologie dell’Informazione
Via Bramante 65, I-26013 Crema (CR), Italy

dragoni@dti.unimi.it

Andrea G. B. Tettamanzi
Università degli Studi di Milano

Dipartimento di Tecnologie dell’Informazione
Via Bramante 65, I-26013 Crema (CR), Italy

andrea.tettamanzi@unimi.it

ABSTRACT
The task of reasoning with fuzzy description logics with
fuzzy quantification is approached by means of an evolu-
tionary algorithm. An essential ingredient of the proposed
method is a heuristic, implemented as an intelligent muta-
tion operator, which observes the evolutionary process and
uses the information gathered to guess at the mutations
most likely to bring about an improvement of the solutions.
The viability of the method is demonstrated by applying it
to reasoning on a resource sheduling problem.

Categories and Subject Descriptors
I.2.3 [Deduction and Theorem Proving]: Uncertainty,
“fuzzy,” and probabilistic reasoning

General Terms
Algorithms

Keywords
Evolutionary Algorithms, Fuzzy Logic, Description Logics,
Fuzzy Quantification

1. INTRODUCTION
Representing knowledge about a domain and using that

representation to reason about and solve problems in that
domain is central to many disciplines of computer science.
Recently, a new family of knowledge representation formal-
isms which strike a delicate balance between expressive pow-
er and computational complexity has emerged, namely de-
scription logics (DLs) [1]. All reasoning tasks in DLs can be
reduced to checking whether a set of assertions is satifiable.

Even more recently, these formalisms have been extended
with fuzzy constructs and semantics [14]. The further exten-
sion of fuzzy DLs with fuzzy quantifiers [12] greatly increases
the expressive power of the language, but makes reasoning
particularly hard [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07 , July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

This paper proposes an alternative to exact, classical tab-
leau-like reasoning algorithms consisting of the use of evolu-
tionary algorithms for checking the satisfiability of a set of
fuzzy assertions.

Evolutionary algorithms for the satisfiability problem in
propositional logic (SAT), a well-known NP-complete prob-
lem [8], have quite a long history. Recent developments,
such as GASAT [10], have been shown to be competitive
with the best state-of-the-art algorithms for SAT. Of par-
ticular interest is the fuzzy approach by Pedrycz and col-
leagues [15], which provided a source of inspiration for this
work.

The paper is organized as follows: first we present the
basic concepts of DLs in Section 2, then we introduce fuzzy
quantifiers in Section 3. Section 4 describes the problem
of checking the satisfiability of a set of fuzzy DL assertions
with fuzzy quantifiers, Section 5 illustrates the evolutionary
algorithm used to approach the problem, followed in Sec-
tion 6 by a case study which demonstrates the viability of
the approach. Finally, Section 7 concludes.

2. DESCRIPTION LOGICS
Description Logics is the most recent name for a family

of knowledge representation (KR) formalisms that represent
the knowledge of an application domain (the “world”), by
first defining the relevant concepts of the domain (its ter-
minology), and then using these concepts to specify proper-
ties of objects and individuals occurring in the domain (the
world description).

As their name indicates, DLs are equipped with a formal,
logic-based semantics and support inference patterns named
classification of concepts and individuals.

Classification of concepts determines subconcept/super-
concept relationships between the concepts of a given ter-
minology, and thus allows one to structure the terminology
in the form of a subsumption hierarchy.

Classification of individuals determines whether a given
individual is always an instance of a certain concept.

Decidability and complexity of the inference problems de-
pend on the expressive power of the DL at hand. On the one
hand, very expressive DLs are likely to have inference prob-
lems of high complexity, or they may even be undecidable.
On the other hand, very weak DLs may not be sufficiently
expressive to represent the important concepts of a given
application. Investigating this trade-off between the expres-
sivity of DLs and the complexity of their reasoning problems
has been one of the most important issues in DL research.

1967

2.1 Basic Formalism
A KR system based on DLs provides facilities to set up

knowledge bases, to reason about their content, and to ma-
nipulate them.

A knowledge base (KB) comprises at least two compo-
nents, the TBox and the ABox. The TBox introduces the
terminology, while the ABox contains assertions about named
individuals in terms of the TBox. Statements in the TBox
and in the ABox are equivalent formulae in first-order logic
or, in some cases, a slight extension of it.

Important problems for an ABox are to find out whether
its set of assertions is consistent and whether the assertions
in the ABox entail that a particular individual is an instance
of a given concept description.

Satisfiability checks of descriptions and consistency checks
of sets of assertions are useful to determine whether a knowl-
edge base is meaningful at all.

2.2 Fuzzy Description Logics
Typically, DLs are limited to dealing with crisp concepts.

However, many useful concepts that are needed by an intel-
ligent system do not have well defined boundaries. That is,
more often than not, the concepts encountered in the real
world do not have precisely defined criteria of membership,
i.e. they are vague concepts rather than precise concepts.
Fuzzy extensions of DLs have been proposed for dealing with
vague concepts [14].

2.2.1 Fuzzy Sets
A fuzzy set is a class of objects with a continuum of grades

of membership. The key is to consider a membership of
an element in a set not as an all-or-nothing concept, but
as a gradual attribute of elements which can be anything
from “definitely not belonging” to “definitely belonging” to
a set. In formal terms, this is achieved by replacing the
characteristic function with a membership function.

The notions of inclusion, union, intersection, complement,
relation, etc., are extended to such sets, and various prop-
erties of these notions in the context of fuzzy sets are esta-
bilished.

Let U be a universe of objects and denote by x a generic
element of U . A fuzzy set A in U is defined by its mem-
bership function A : U → [0, 1]. The value A(x) is to be
understood as the degree to which x belongs to A. If A is a
crisp set, A reduces to the usual characterstic function.

A notational convention for fuzzy sets when the universe
of discourse U is discrete is, for fuzzy set A,

A =
A(x1)

x1
+

µA(x2)

x2
+ · · · =

∑
i

A(xi)

xi
. (1)

When U is continuous, the fuzzy set A is denoted by

A =

∫
x∈U

A(x)

x
. (2)

Both notations are nothing more than a formal device and
the fractions do not have to be interpreted as divisions but
just as ordered pairs, while the + does not stand fo algebraic
sum but rather for a function-theoretic union.

3. FUZZY QUANTIFIERS
The concept of fuzzy linguistic quantifier is due to L. A.

Zadeh [16]. Fuzzy quantifiers are linguistic labels represent-

ing imprecise quantities or percentages. This concept is im-
portant since quantification is one of the most employed
tools in human reasoning.

It is usual to distinguish two basic types of quantifiers:

• Absolute quantifiers, which express vague quantities
(e.g., “around 2”) or quantity intervals (e.g., “approx-
imately between 1 and 3”). They are represented as
fuzzy subsets of the non-negative integers.

• Relative quantifiers, which express fuzzy percentages
and are represented by fuzzy subsets of the real unit
interval, although in practice only rational values make
sense. This category includes the standard quantifiers
∃ and ∀ from predicate logic.

There are two ways to interpret the semantics of a relative
quantifier. We say a quantifier Q is interpreted in an exclu-
sive or in a wide way, depending on whether we interpret its
meaning as “exactly Q” or “at least Q”, respectively. How-
ever, the wide interpretation is the most employed, not only
because it is more common to interpret a quantifier this way
intuitively, but probably because many methods work only
with monotonically increasing quantifiers.

3.1 Cardinality and Fuzzy Quantification
Crisp quantification is strongly linked to crisp cardinality

since a crisp quantifier Q represents a crisp subset of abso-
lute (values in N) or relative (values in Q ∩ [0, 1]) cardinali-
ties, we call S(Q). By the same token, fuzzy quantification
is strongly linked to fuzzy cardinality.

We may consider two different kinds of cardinalities: ab-
solute cardinality measures the number of elements in a set,
while relative cardinality measures the percentage of ele-
ments of one set that also belong in another set (called ref-
erential).

The close relationship between fuzzy quantification and
fuzzy cardinality is discussed in depth in [13].

3.2 Absolute Cardinality
The most widely used definition of fuzzy set cardinality

introduced in [11] is the following: given a fuzzy set F ,

|F | =
∑
x∈∆

F (x), (3)

which is, in general, a real number, and not an integer as
it is the case with classical set cardinality. This definition
lends itself to many objections and leads to paradoxes. A
more satisfactory cardinality measure is ED [4]: the fuzzy
cardinality of a set G is the set ED(G) defined for each
0 ≤ k ≤ |supp(G)| as

ED(G)(k) =

{
αi − αi+1 αi ∈ Λ(G) and |Gαi | = k
0 otherwise

(4)
with Λ(G) = {α1, . . . , αp}∪{1} the level set of G, and αi >
αi+1 for every i ∈ {1, ..., p}, and αp+1 = 0.

3.3 Relative cardinality
An extension to the ED measure to cope with relative

cardinality is ER [4]: the fuzzy relative cardinality of a set
G with respect to a set F is the set ER(G/F) defined for
each 0 ≤ q ≤ 1 as

ER(G/F)(q) =
∑

αi | C(G/F,αi)=q

(αi − αi+1) (5)

1968

with Λ(F) ∪ Λ(G ∩ F) = {α1, . . . , αp} and αi > αi+1 for
every i ∈ {1, . . . , p}, and α0 = 1, αp+1 = 0.

3.4 Evaluation of Quantified Sentences
Quantified sentences are natural language sentences in-

volving fuzzy linguistic quantifiers, and therefore they ex-
press claims about the (fuzzy) quantity or percentage of ele-
ments of a (possibly fuzzy) set that verify a certain imprecise
property.

According to Zadeh [16], there are two main types of quan-
tified sentences, whose general structure is the following:

Type I sentences: Q of X are G
Type II sentences: Q of F are G

where Q is a linguistic quantifier, X is a crisp finite set, and
F and G are two fuzzy subsets of X that represent imprecise
properties.

The evaluation of a quantified sentence is the process of
calculating its fuzzy accomplishment degree. There are sev-
eral methods available in the literature (some methods are
discussed in [5], recent developments are [9, 6]).

In order to extend fuzzy DLs with absolute and relative
quantifiers, we shall employ method GD [5]. This method
calculates the accomplishment degree of a quantified sen-
tence “Q of F are G” as the compatibility degree between
the fuzzy relative cardinality measure ER(G/F) [4] and Q (if
Q is relative) or between its absolute counterpart ED(G∩F)
[4] and Q (if Q is absolute). A convenient formulation of GD
is the following [5]:

The method GD obtains the evaluation of a quantified
sentence “Q of F are G” as

GDQ(G/F) =
∑

αi∈Λ(G/F)

(αi − αi+1) Q

(
|(G ∩ F)αi |
|Fαi |

)
(6)

for relative quantifiers, and

GDQ(G/F) =
∑

αi∈Λ(G/F)

(αi − αi+1) Q (|(F ∩G)αi |) (7)

for absolute ones, where F ∩G is computed using the min-
imum, and Λ(G/F) = Λ(G ∩ F) ∪ Λ(F). We label these
values as Λ(G/F) = {α1, . . . , αp} with αi > αi+1 for every
i ∈ {1, . . . , p} and αp+1 = 0.

4. THE PROBLEM
A KR system based on DLs is able to perform specific

kinds of reasoning. The purpose of a KR system goes be-
yond storing concept definitions and assertions. A knowl-
edge base, comprising a TBox and an ABox, has a seman-
tics that makes it equivalent to a set of axioms in first-order
predicate logic. Thus, like any set of axioms, it contains
implicit knowledge that can be made explicit through infer-
ences.

The different kinds of reasoning performed by a DL system
are defined as logical inferences.

When a knowledge engineer models a domain, she con-
structs a terminology, say T , by defining new concepts, pos-
sibily in terms of others that have been defined before. Dur-
ing this process, it is important to find out whether a newly
defined concept makes sense or whether it is contradictory.
From a logical point of view, a concept makes sense if there
is some interpretation that satisfies the axioms of T such

that the concept denotes a nonempty set in that interpreta-
tion. A concept with this property is said to be satisfiable
with respect to T and unsatisfiable otherwise.

While in crisp DLs it is true that all reasoning tasks can
be reduced to the consistency check for ABoxes, the same
is not always necessarily true for fuzzy DLs. Straccia [14]
examines three reasoning tasks, namely:

• the Fuzzy Entailment Problem;

• the Fuzzy Subsumption Problem;

• the Best Truth-Value Bound Problem,

and he reduces them to the Entailment Problem, for which
he provides a PSPACE-complete calculus based on constraint
propagation. An important observation about Straccia’s
definition of these reasoning tasks is that, because they deal
with TVBs, the first two decision tasks are binary, i.e., yes
or no, true-or-false, crisp.

Bonatti and Tettamanzi [2] consider a further reason-
ing task, namely concept consistency check, and they prove
some unusual complexity results, some of which are remi-
niscent of properties of disjunctive logic programs.

Reasoning algorithms for expressive crisp and fuzzy DLs
are characterized by exponential time complexity. To be
sure, optimized inference engines are available which are ca-
pable of carrying out reasoning tasks in most cases with ac-
ceptable performance. However, one could wonder to what
extent this is due to the fact that knowledge bases are care-
fully written to avoid known sources of intractability, like,
for example, disjunctions.

The injection of fuzzy quantification into fuzzy DLs makes
a good case for the observation that as we increase the ex-
pressivity of DLs, sooner or later we will get to a point
where the use we will be able to make of the knowledge
thus expressed will be throttled by the performance of exact
reasoning algorithms.

On the other hand, one of the revolutionary ideas of soft
computing, of which fuzzy logic is one ingredient, is that by
sacrificing some unnecessary precision or exactness, one can
still achieve useful results at a lower cost. A direct conse-
quence of this line of reasoning would be to give up the log-
ical completeness of a knowledge representation formalism,
which comes at an exponentially increasing computational
cost, for some sort of probabilistic decidability of the kind
guaranteed, e.g., by an evolutionary approach.

By using an evolutionary approach, the probem of check-
ing the consistency of an ABox can be relaxed into an op-
timization problem whose goal is to find an interpretation
that minimizes the number of violated constraints, where
the number of violated constraints is the number of asser-
tions that are not satisfied by a given interpretation.

In the case of fuzzy DLs, a given interpretation may sat-
isfy an assertion to a certain degree. Therefore, the ABox
consistency check can be reformulated as an optimization
problem, where the fuzzy interpretation is sought for that
maximizes the degree of satisfaction of all the assertions in
the ABox.

A crucial issue is how one measures the satisfaction of a
set of fuzzy assertions. From a logical standpoint, given a
fuzzy interpretation I and an ABox A,

I |= A ≡
∧

φ∈A

I |= φ, (8)

1969

which, in fuzzy terms, if one uses min as the t-norm operator,
would yield

truth(I |= A) = min
φ∈A
{truth(I |= φ)}. (9)

Although logically thorough, this definition cannot be used
as the optimization criterion, because it does not allow us
to distinguish between interpretations that satisfy different
numbers of assertions, as long as the degrees of satisfaction
of the least satisfied assertions coincide.

5. THE EVOLUTIONARY ALGORITHM
EAs [7, 3] are a broad class of stochastic optimization

algorithms, inspired by biology. An EA maintains a popu-
lation of candidate solutions for the problem at hand, and
makes it evolve by iteratively applying a set of stochastic
operators, known as mutation, recombination, and selection.

Mutation randomly perturbs a candidate solution; recom-
bination decomposes two distinct solutions and then ran-
domly mixes their parts to form novel solutions; and se-
lection replicates the most successful solutions found in a
population at a rate proportional to their relative quality.
The resulting process tends to find, given enough time, glob-
ally optimal solutions to the problem much in the same way
as in nature populations of organisms tend to adapt to their
surrounding environment.

5.1 Fitness Function
The fitness function developed for this research takes into

account two criteria used to evaluate to which extent a so-
lution represents an acceptable fuzzy interpretation:

• ABox satisfiability — this is a value related to the
number of assertions that are satisfied by an interpre-
tation; this criterion has a fundamental importance,
since the goal is to obtain phenotypes that totally sat-
isfy the ABox, thus, selecting solutions that have high
satisfiability allows the algorithm to approach the op-
timal solution;

• size of the interpretation represented by a phenotype
— this gives a bias toward simpler fuzzy interpreta-
tions.

These two criteria do not have the same influence on the
fitness value, given that the ABox satisfiability is much more
important than the interpretation size.

The equation of the fitness function can be explained as:

F = τ + e−ks, (10)

where τ is the sum of the degrees of satisfaction of all the
assertions in the ABox, k ≥ 1 is a parameter used to tune
the impact of the interpretation-size criterion, and s is the
size of the interpretation, i.e., the total number of individual
names it uses. The term e−ks is always less than one, insur-
ing that, roughly speaking, the satisfaction-degree criterion
always has the upper hand over the interpretation-size cri-
terion; the latter becomes relevant only when two solutions
are indistinguishable with respect to the former.

5.2 Representation
An individual encodes a (partial) fuzzy interpretation I

for the ABox at hand.
A fuzzy interpretation consists of a finite set ∆ of indi-

viduals (the ones explicitly appearing in the ABox, plus any

Person(P1) = 0.56
Female(P1) = 0.36
Person(P2) = 0.72
Female(P2) = 0.16
Person(P3) = 0.87
Female(P3) = 0.73
Person(P4) = 0.22
Female(P4) = 0.66

hasChild(P1, P2) = 0.25
hasChild(P1, P3) = 0.28
hasChild(P1, P4) = 0.52
hasChild(P2, P1) = 0.32
hasChild(P2, P3) = 0.73
hasChild(P2, P4) = 0.11
hasChild(P3, P1) = 0.63
hasChild(P3, P2) = 0.72
hasChild(P3, P4) = 0.39
hasChild(P4, P1) = 0.06
hasChild(P4, P2) = 0.93
hasChild(P4, P3) = 0.88

Figure 1: An example of fuzzy interpretation, in-
volving four individuals, two concepts, and one role.

number of other “extra” individuals whose existence is pos-
tulated) and of assignments of degrees of truth to all possible
fuzzy assertions involving the individuals in ∆.

An example of fuzzy phenotype is shown in Figure 1.
The meaning of an assignment like Person(P3) = 0.87 is

that individual P3 is an instance of Person with a truth
degree of 0.87, while the meaning of an assignment like
hasChild(P3, P4) = 0.39 is that P4 is a filler of role hasChild
for P3 with a truth degree of 0.39.

An important thing is that all phenotypes have the same
number of assignments because in a fuzzy environment we
have to specify a truth assignment for all possible assertions.

The number of individuals used to complete the ABox is
given by the sum of the minimal number of individuals re-
quired to satisfy every fuzzy quantifier present in that ABox:

• for relative quantifiers: given qQ
0 , qQ

1 ∈ [0, 1] ∩ Q such

that Q(qQ
0) = 0 and Q(qQ

1) = 1, there exist nQ
0 , dQ

0 ,

nQ
1 , dQ

1 ∈ N such that qQ
0 =

n
Q
0

d
Q
0

and qQ
1 =

n
Q
1

d
Q
1

; the

minimal number of individuals is lcm(dQ
0 , dQ

1).

• for absolute quantifiers: given mQ
0 , . . . , mQ

n ∈ N such

that Q(mQ
0) = 1, . . . , Q(mQ

n) = 1, the minimal number

of individuals is mini{mQ
i }.

In assertions with nested quantifiers, i.e., where fuzzy quan-
tifiers occur and the filler of a quantified role contains in turn
a quantified role, the number of individiduals is obtained by
multiplying the number of individuals of every nested fuzzy
quantifier.

Given a fuzzy interpretation I, with the number of indi-
viduals calculated above, for an ABox with c concepts, and
r roles,

• for each individual, there must be one assignment for
every concept, thus nc concept assignments;

• for each couple of individuals, there must be one degree

of membership in every role relation, thus r n(n−1)
2

.

1970

P1 : Person u Female u ∃hasChild.Person
P2 : Person
P3 : Person t Female

Figure 2: A sample ABox.

In total,

‖I‖ = nc + r
n(n− 1)

2
= cO(n) + rO(n2). (11)

5.3 Satisfiability of Fuzzy Interpretations
Once all phenotypes are created, their fitness is calculated

according to Equation 10, on the basis of the fuzzy semantics
of the basic constructs of the fuzzy DL language:

⊥I(a) = 0; (12)

>I(a) = 1; (13)

(C uD)
I
(a) = min{CI(a), D

I
(a)}; (14)

(C tD)
I
(a) = max{CI(a), D

I
(a)}; (15)

(¬C)
I
(a) = 1− C

I
(a); (16)

(QabsR.C)
I
(a) =

∫ 1

0
Qabs (|Ga|) dτ ; (17)

(QrelR.C)
I
(a) =

∫ 1

0
Qrel

(
lim

n→∞

|Ga|
|Fa|

)
dτ, (18)

where

Ga = {b : RI(a, b) ≥ τ ∧ CI(b) ≥ τ} (19)

Fa = {b : RIn(a, b) ≥ τ} (20)

and {RIn}n=1,2,... is a sequence of fuzzy relations such that

1. for all n ≥ 1, RIn ⊆ RIn+1;

2. limn→∞RIn = RI ;

3. for all n ≥ 1, supp(RIn) is a finite set.

To understand with an example how this works, we con-
sider the fuzzy interpretation of Figure 1 and we use it to
evaluate the assertions contained in the ABox of Figure 2.

As for individual P2, the evaluation of its assertion will be
the truth degree of Person(P2), in this case 0.72. To evaluate
the assertion involving P3, we apply Equation 15, yielding
a truth degree of 0.87.

To evaluate the assertion involving P1, before applying
Equation 14, one has to evaluate ∃hasChild.Person(P1). Now,
∃ can be regarded as a relative quantifier such that ∃(0) = 0
and ∃(x) = 1 for x > 0; therefore, we have to apply Equa-
tion 18, which in this special case reduces to

(∃R.C)I(a) = sup
b∈∆I

min{RIa (b), CI(b)}. (21)

In practice, for every couple (P1, b), b ∈ ∆I , we take the
minimum of the truth degrees of hasChild(P1, b) and Person(b);
of all such degrees, we take the greatest, in this case 0.28.

5.4 Selection
Two different selection strategies have been tested:

1. truncation selection with a dynamic threshold, whereby
all individuals whose fitness is below the best fitness so
far are discarded; this strategy pushes selection pres-
sure to a maximum;

2. the standard fitness-proportionate selection, whereby
at all individuals has been assigned a probability of
selection proportionate with its fitness value.

5.5 Recombination
It is important to note that all individuals (i.e., fuzzy

interpretations) have the same number of “genes” (i.e., truth
assignments); furthermore, genes at the same position in
different individuals correspond to truth assignments to the
same assertion (membership of an individual in a concept
or of a pair of individuals in a role).

Three different recombination operators have been tried:

1. fitness-proportionate uniform crossover, whereby a new
individual is created by selecting for each position the
corresponding gene from either parent with a proba-
bility proportional to its fitness;

2. single-point crossover;

3. fitness-weighted intermediate recombination, whereby
every gene of the offspring is a weighted average of the
corresponding gene in both parents, the weights being
proportional to their fitness.

5.6 Mutation
Two different mutation operators have been implemented:

1. one gene is picked at random and is assigned a new
truth degree; an interesting point about this mutation
strategy is that, by modifying a single truth assign-
ment, useful information about the impact of individ-
ual genes on fitness can be gleaned; identifying assign-
ments that have a high impact on fitness drives the
application of the intelligent mutation, as explained in
Section 5.7;

2. all truth assignments are perturbed by applying small
random variations.

5.7 Intelligent Mutation
Preliminary tests showed symptoms of stagnation: after a

number of generations, the average fitness of the population
started to oscillate without improving. To help evolution es-
cape from these traps, we designed an improvement operator
whose intent is to look at what happened in the last n gen-
erations, to try to determine those assertions in the ABox
whose satisfaction is critical, and to concentrate search on
truth assignments that involve those critical assertions.

When such a critical set is identified, the operator carries
out a systematic search to determine an assignment that
satisfies the critical assertions.

The pseudocode of this operator is shown in Figure 3.
During execution, this algorithm maintains in an array

the list of all concepts and, for every concept, the amount of
mutation that has been applied on all assertions containing
that concept (i.e., if, on concept C, the algorithm applied
a mutation of 0.1 in the first generation and of 0.05 in the
second generation, the amount will be 0.15).

If the increase of the chosen concept is not positive, the
algorithm calls function FreezeCurrentConcept, which
marks that concept as “frozen” and uses the remaining con-
cepts. Function SearchConceptToMutate gets the non-
frozen concepts that have the greatest mutation amount; the

1971

IntelligentMutation(currentGeneration, ∆)
currentGeneration contains all genotypes

∆ is the difference between the current and the previous fitness

Check if current fitness is less of the last fitness value, i.e., the ana-
lyzed concept has changed

if(∆ < 0)
C is the concept to analyze:

C ← SearchConceptToMutate()

Get all assertions that contain the analyzed concept:

A← SelectAssertions(C, currentGeneration)

Apply mutation on all assertions:

ApplyMutation(A)

Replace the old assertions with the mutated assertions:

InsertMutatedIndividuals(A, currentGeneration)

Save the mutation parameters for the next check:

SaveMutationHistory()
else

If the previous mutation did not increase the generation fitness,
the algorithm changes the concept to analyze:

FreezeCurrentConcept()
end if

end

Figure 3: Pseudocode of the intelligent mutation.

rationale is to exploit all the potential of a concept before
freezing it.

Function SelectAssertions retrieves all assertions that
involve the selected concept; subsequently, function Apply-
Mutation applies a small perturbation to all assertions for-
merly selected.

Function InsertMutatedIndividuals inserts the indi-
viduals that have been mutated into the current generation;
finally, the algorithm saves, by function SaveMutationHis-
tory, information about the changes made.

6. A CASE STUDY
The case study used for testing our approach considers

a resource allocation problem where a company needs to
create n teams, where every team consists of a given number
of people that have some characteristics; the goal is to find
the minimal set of people with the required characteristics
for each team.

This kin dof example has been choosen to show in which
type of problem, i.e. multi-objects, this approach can be
used.

The assumptions made are the following:

• a person may have multiple skills

• a person can be a member of more than one team;

• distinct teams may have the same structure.

The KB used for the case study is shown in Figure 4. The no-
tation used to describe fuzzy quantifiers is the one proposed
in [12]: their membership function is expressed by means of
one or more “points” of the form α / β . γ/x, where x is the
cardinality, β the truth degree of x, while α and γ are the
truth degrees of values that tend to x respectively from the
left and from the right.

TBox

= 2 ≡ 0 / 1 . 0/2

≥ 3 ≡ 0 / 1/3

≥ 4 ≡ 0 / 1/4

≤ 3 ≡ 1 . 0/3

≤ 4 ≡ 1 . 0/4

most ≡ 0/u + 0/0 + 1/1

half ≡ 0/u + 1/0.5 + 0/1

moreThanHalf ≡ 0/u + 1/0.5

exclusive ≡ 0/u + 0/0.25 + 1/0.75 + 0.5/1

T1 ≡ (most)hasCompetence.C1 u
(= 2)hasCompetence.C2 u
(≥ 3)hasMember.Person

T2 ≡ (half)hasCompetence.C8 u
(= 2)hasCompetence.C4 u
(≤ 4)hasMember.Person

T3 ≡ (most)hasCompetence.C1 u
(= 2)hasCompetence.C5 u
(≥ 3)hasMember.Person

T4 ≡ (half)hasCompetence.C8 u
(= 2)hasCompetence.C5 u
(≤ 4)hasMember.Person

T5 ≡ (moreThanHalf)hasCompetence.C7 u
(≤ 3)hasCompetence.C2 u
(≥ 4)hasMember.Person

T6 ≡ (exclusive)hasCompetence.C4 u
(= 2)hasCompetence.C8 u
(≤ 3)hasMember.Person

ABox

T1(TEAM1)

T2(TEAM2)

T3(TEAM3)

T4(TEAM4)

T5(TEAM5)

T6(TEAM6)

T2(TEAMA)

T5(TEAMB)

Figure 4: The knowledge base of the case study.

1972

Phenotype

T1(TEAM1) = 1

T2(TEAM2) = 0.731464

T3(TEAM3) = 1

T4(TEAM4) = 0.842050

T5(TEAM5) = 0.902186

T6(TEAM6) = 0.866550

T2(TEAMA) = 0.822846

T5(TEAMB) = 1

F = 7.165096

Figure 5: The assignements for the best interpreta-
tion found. This result has been obtained with the
operators S1 M1 C2 and with the use of the intel-
ligent mutation. The number of extra individuals
used to complete the ABox is 47

6.1 Results
The parameters of the evolutionary algorithm that gave

us the best results are:

• Population size: 100

• Number of generations: 1000

• Mutation probability: 20% for all mutation operators

• Absolute mutation variance: 0.2

Table 1 reports a comparison of the results obtained by
applying all combinations of the operators to problem of the
case study; for every combination 10 runs were executed.
Figure 5 shows the fuzzy truth value assigned to each as-
sertion in the ABox by the best interpretation found by the
cobination using truncation selection, fitness-proportionate
uniform crossover, mutation of type 2, and the intelligent
mutation operator.

By observing the results, one can easily notice that, for
every combination of operators, the use of the intelligent
mutation operator increases the quality of the results. More-
over, it is possible to determine which are the operators that
hinder convergence of the algorithm: as a matter of fact, use
of type-1 mutation always leades to significantly worse re-
sults than use of type-2 mutation; the same occurs as well
with fitness-weighted intermediate recombination, which in
addition corresponds to the smallest standard deviation of
results.

By considering the standard deviation of results it is possi-
ble to conclude that type-2 mutation operator is responsible
for a greater variability of results than using type-1 muta-
tion.

The best interpretation found, shown in Figure 5, indi-
cates that the ABox is most likely satisfiable, even if not all
assertions have truth degree of 1. However, it is well-known
evolutionary algorithms are very good at locating the op-
timum but quite poor at reaching it exactly; even if the
evolutionary algorithm is not capable of giving a categorical
positive answer, it would be relatively easy to work out an
interpretation that completely satisfies the ABox starting
from the near-optimal solution it provides.

Ops. Par. Max Avg. St.Dev.

S1C1M1 Best Fit. 2,857160 2,733131 0,071974
Avg. Fit. 2,095875 2,008061 0,043817

S1C1M1I Best Fit. 3,143334 2,985866 0,067993
Avg. Fit. 2,466893 2,435623 0,024624

S1C1M2 Best Fit. 5,920843 5,584489 0,225852
Avg. Fit. 4,983412 4,724199 0,191450

S1C1M2I Best Fit. 7,165096 6,430284 0,394379
Avg. Fit. 6,361265 5,707091 0,353380

S1C2M1 Best Fit. 2,742702 2,669760 0,047594
Avg. Fit. 2,202552 2,042425 0,065414

S1C2M1I Best Fit. 3,038692 2,935052 0,061584
Avg. Fit. 2,504489 2,438439 0,043745

S1C2M2 Best Fit. 5,239907 4,675295 0,330141
Avg. Fit. 4,578072 4,084134 0,315970

S1C2M2I Best Fit. 6,039121 5,591465 0,290325
Avg. Fit. 5,371177 4,972441 0,244340

S1C3M1 Best Fit. 3,232268 3,186808 0,022853
Avg. Fit. 2,718579 2,688568 0,012567

S1C3M1I Best Fit. 3,525225 3,441470 0,045593
Avg. Fit. 3,018134 2,987624 0,022938

S1C3M2 Best Fit. 3,374401 3,257314 0,068882
Avg. Fit. 3,069478 2,981942 0,045513

S1C3M2I Best Fit. 4,333799 3,700037 0,333557
Avg. Fit. 4,015075 3,386439 0,301728

S2C1M1 Best Fit. 2,433477 2,375808 0,049278
Avg. Fit. 1,699291 1,655869 0,021764

S2C1M1I Best Fit. 2,978694 2,801559 0,093780
Avg. Fit. 2,323473 2,264725 0,049713

S2C1M2 Best Fit. 5,771483 5,184973 0,351993
Avg. Fit. 4,837855 4,412332 0,260642

S2C1M2I Best Fit. 6,333782 5,903895 0,352390
Avg. Fit. 5,394255 5,017405 0,280357

S2C2M1 Best Fit. 2,448946 2,355289 0,049234
Avg. Fit. 1,645381 1,628530 0,010597

S2C2M1I Best Fit. 2,862535 2,780701 0,053279
Avg. Fit. 2,346400 2,284865 0,043611

S2C2M2 Best Fit. 4,442869 3,855138 0,331556
Avg. Fit. 3,803897 3,312906 0,296881

S2C2M2I Best Fit. 5,904936 5,477814 0,324424
Avg. Fit. 4,871351 4,560966 0,304289

S2C3M1 Best Fit. 3,230038 3,162692 0,038278
Avg. Fit. 2,662676 2,642710 0,012890

S2C3M1I Best Fit. 3,633676 3,455184 0,105414
Avg. Fit. 2,983431 2,962759 0,016261

S2C3M2 Best Fit. 3,333886 3,198483 0,066056
Avg. Fit. 3,167546 3,002575 0,080804

S2C3M2I Best Fit. 4,116326 3,460513 0,414641
Avg. Fit. 3,857482 3,241055 0,384085

Table 1: Result obtained from the execution of all
tests. Where Sx is the selection operator used, Cx
is the crossover operation used, Mx is the mutation
operator used and [I] if the Intelligent mutation is
used or not. For every combination we execute 10
runs.

1973

Run Max Run Max
1 2,066617 6 2,237126
2 2,299563 7 2.174939
3 2,107354 8 1.955346
4 2,057115 9 1.999077
5 2,011992 10 1.964541

Table 2: Results obtained from the execution of 10
runs of the Monte Carlo method. Every run uses
100,000 individuals, i.e., the number of individuals
that are evaluated overall by the evolutionary algo-
rithm in every case study run.

It is impossible to carry out a significant comparison of
the above-described approach with other methods, because
no alternative exact or approximated algorithm for check-
ing the consistency of an ABox in fuzzy DLs with fuzzy
quantification has been proposed so far. In order to assess
the effectiveness of the approach, however, an option is to
compare it with a pure Monte Carlo method which gener-
ates, for every run, the same number of individuals that are
evaluated in one run of the evolutionary algorithm.

The results of such Monte Carlo method are shown in Ta-
ble 2. What those results tell is, at least, that our approach
performs significantly better than a purely random search,
given a fixed amount of computational resources.

7. CONCLUSIONS
The ABox consistency check problem for fuzzy DLs with

fuzzy quantification has been approached by means of evo-
lutionary algorithms, and the viability of the method has
been demonstrated. An essential ingredient of the proposed
method is a heuristics, implemented as an intelligent (i.e.,
problem-aware) mutation operator, which observes the evo-
lutionary process and uses the information gathered to guess
at the mutations most likely to bring about an improvement
of the solutions.

The approach has been validated, with promising results,
on a test case abstracted from a real-world resource schedul-
ing problem arising in a software development setting. The
next step will be to apply this approach to non-trivial real-
world problems, in order to obtain further insights leading
to an improvement of the heuristics.

8. REFERENCES
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,

and P. Patel-Schneider, editors. The Description Logic
Handbook: Theory, implementation and applications.
Cambridge, 2003.

[2] P. A. Bonatti and A. G. B. Tettamanzi. Some
complexity results on fuzzy description logics. In A. P.
V. Di Gesù, F. Masulli, editor, WILF 2003
International Workshop on Fuzzy Logic and
Applications, LNCS 2955, Berlin, 2004. Springer
Verlag.

[3] K. A. DeJong. Evolutionary Computation: A unified
approach. MIT Press, Cambridge, MA, 2002.

[4] M. Delgado, M. Mart́ın-Bautista, D. Sánchez, and
M. Vila. A probabilistic definition of a nonconvex
fuzzy cardinality. Fuzzy Sets and Systems,
126(2):41–54, 2002.

[5] M. Delgado, D. Sánchez, and M. Vila. Fuzzy
cardinality based evaluation of quantified sentences.
International Journal of Approximate Reasoning,
23:23–66, 2000.

[6] F. Dı́az-Hermida, A. Bugaŕın, P. Cariñena, and
S. Barro. Voting-model based evaluation of fuzzy
quantified sentences: a general framework. Fuzzy Sets
and Systems, 146(1):97–120, 2004.

[7] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing. Springer, Berlin, 2003.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability: A guide to the Theory of
NP-Completeness. Freeman, New York, 1979.

[9] I. Glöckner. Fundamentals of fuzzy quantification:
Plausible models, constructive principles, and efficient
implementation. Technical Report TR2002-07,
Technical Faculty, University Bielefeld, 33501
Bielefeld, Germany, 2002.

[10] F. Lardeux, F. Saubion, and J.-K. Hao. GASAT: A
genetic local search algorithm for the satisfiability
problem. Evolutionary Computation, 14(2):223–253,
2006.

[11] A. D. Luca and S. Termini. A definition of a
nonprobabilistic entropy in the setting of fuzzy sets
theory. Information and Control, 20:301–312, 1972.

[12] D. Sánchez and A. G. B. Tettamanzi. Generalizing
quantification in fuzzy description logics. In
Proceedings 8th Dortmund Fuzzy Days, Dortmund,
Germany, 2004.

[13] D. Sánchez and A. G. B. Tettamanzi. Fuzzy
quantification in fuzzy description logics. In
E. Sanchez, editor, Fuzzy Logic and the Semantic Web,
Capturing Intelligence. Elsevier, Amsterdam, 2006.

[14] U. Straccia. Reasoning within fuzzy description logics.
Journal of Artificial Intelligence Research, 14:137–166,
2001.

[15] G. S. Witold Pedrycz and O. Shai. Genetic-fuzzy
approach to the boolean satisfiability problem. IEEE
Transactions on evolutionary computation, 6(5), 2002.

[16] L. A. Zadeh. A computational approach to fuzzy
quantifiers in natural languages. Computing and
Mathematics with Applications, 9(1):149–184, 1983.

1974

Rose

