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ABSTRACT
EOSs (Earth Observing Satellites) circle the earth to take
shots which are requested by customers. To make replete use
of resources of EOSs, it is required to deal with the problem
of united imaging scheduling of EOSs in a given scheduling
horizon, which is a complicated multi-objective combinato-
rial optimization problem. In this paper, we construct a
mathematical model for the problem by abstracting imag-
ing constraints of different EOSs. Then we propose a novel
multi-objective EOSs imaging scheduling method, which is
based on the Strength Pareto Evolutionary Algorithm 2.
The special encoding technique and imaging constraint con-
trol are applied to guarantee feasibility of solutions. The
approach is tested upon four real application problems of
CBERS EOSs series. From the results, it is confirmed that
the proposed approach is effective in solving multi-objective
EOSs imaging scheduling problems.
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1. INTRODUCTION
Earth Observing Satellites (EOSs) circle the globe collect-

ing images through imaging sensors, which has become an
important means for earth reconnaissance and resources re-
searches. Today, countries all over the world are actively
developing EOSs and corresponding techniques. Although
the number of EOSs are continuously increasing, yet it is not
enough to satisfy the requirements for remote sensing data.
Therefore the limited resources of EOSs become extremely
valuable. To make replete use of the EOSs imaging resources
and get maximum benefit, it is expected to conduct and con-
trol the EOSs as a whole; here, EOSs denotes the satellites
which take on the same set of observation requests. As the
key process of EOSs conducting and controlling, imaging
scheduling is to decide which imaging requests to be shot,
when to shot and the data transmission state of EOSs.

EOSs imaging scheduling is a complicated problem with a
number of important constraints, such as imaging requests,
satellite solid state recorder (SSR), data transmission etc.
For further details, see [6], [12] [16]. And with the develop-
ment of satellite techniques, many mathematic models and
methods have been proposed to solve the actual problem.
Sherwood et al. use ASPEN, a general purpose scheduling
system, to automate NASA EO-1 satellite [14]. Potter and
Gasch describe a clever algorithm for scheduling the Land-
sat 7 satellite featuring greedy search forward in time with
fixup to free resources for high priority images [13]. Bensana
et al. view this problem as a value constraint-satisfaction
problem, and use exact methods like Depth First Branch
and Bound or Russian Dolls search and approximate meth-
ods like Greedy Search or Tabu search to solve the problem
in the framework of the SPOT5 satellite [1]. Michel and
Hao deal with the daily photograph-scheduling problem as
a knapsack problem which is solved by a Tabu search algo-
rithm [15]. Harrison et al. abstract the imaging model of
optical or radar based Earth observing satellite, and propose
a enumerate search to solve the imaging scheduling problem
of small scale [8]. Muraoka et al. adopt Greedy Search to de-
cide which requests to shot [11]. Wei-Cheng Lin et al. define
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problem formulation of ROCSAT-II, and adopte the math-
ematical programming method to generate a near-optimal
EOS schedule [10]. However, all these works only consider
one EOS and a single objective. As the number of EOSs
increases, we are expected to schedule more than one EOS
and find the most cost-effective solution.

There are few approaches considering the multiple satel-
lites, Frank et al. adopt constraint-based interval (CBI)
framework to represent the resources of EOSs and propose
a heuristic for guiding this search procedure based on a gen-
eral notion of contention for resources, but does not con-
sider the conflicting requests and considers resources are
independent [3]. Wolfe and Sorensen define and use the
window-constrained packing problem to model earth obser-
vation system domain scheduling problem. They propose
three algorithms: a dispatch algorithm, a look-ahead algo-
rithm, and a genetic algorithm . In the research, the genetic
algorithm generates the best solutions [17]. Lamaitre et al.
research the problem of scheduling the set of photographs
for Agile Earth Observing Satellites, find that constraint
programming is more flexible while local search performs
better [9]. Al.Globus et al. combine the optimal objectives
into a weighted sum, and use three methods, simulated an-
nealing, improved hill climbing, genetic algorithm on two
EOSs fleet [7]. Also few multi-objective method that have
been proposed, Gabrel and Vanderpooten propose digraph
without circuits to formulate imaging scheduling of SPOT5,
then generate the efficient paths and select one of a satis-
factory path by a multiple criteria interactive procedure [4].
Zhang et al. adopt the labeling correcting method to find
the multi-objective effective sequence of imaging request, as
an exact method, it can generate all the true optimal Pareto
solutions of small scale problem[18].

To find the most cost-effective solutions of EOSs imaging
scheduling, in this paper, EOSs imaging scheduling is firstly
formulated as a multi-objective integer-programming prob-
lem, then a multi-objective evolutional algorithm, based on
Strength Pareto Evolutionary Algorithm 2 (SPEA2)[19], is
proposed; we propose a new coding method in which the
ground stations are considered as special imaging requests
with the different transmission state(detail discussed in sec-
tion 2), and some special measures have been proposed to
handle imaging constraints. The approach is tested on real
data set and the result analysis is carried out.

2. PROBLEM FORMULATION
As EOS orbit in low earth space, the imaging belts are

regions on the ground with axis of the substar tracks (Fig-
ure. 1). EOS flies with a high speed when taking shots;
therefore there is a rigid time-limited imaging window for
each request. Because of the restriction of attitude control
and available power of EOS etc, it is impossible to shoot all
pending imaging requests in one scheduling period. So it is
required to decide which imaging requests to shot. All kinds
of impacts are expected to be considered synthetically: im-
portance of request, SSR cost, power consumption, weather
and sunshine condition of request. However, these factors
are usually conflictive. Thus it is very hard to maximize
the quality of the shots, and minimize the cost of the EOSs
resources at the same time.

When there is more than one EOS, the orbit design of
each EOS may be different, therefore the image belts of
them will be overlapped (Figure. 2). Usually the overlapped

Figure 1: The grey belts denote areas that the EOS
can shoot, the black blocks denote imaging requests.
And the mesh region denotes the period of data
transmission

Figure 2: Conflicting imaging requests

areas are hot regions where imaging requests gather. The
requests in the overlapped area, which are called the conflict-
ing requests, may be shot by different EOSs. If we consider
the imaging scheduling problem of these EOSs respectively,
one conflicting request in the this area may be assigned to
all the EOSs that can shoot it. To avoid the repetition of
the same data acquisition, which may brings large waste of
EOSs system resources(of low quality about 20%-30% [7]),
it is required to schedule the EOSs as a whole. Certainly,
sometimes it is required to shoot the requests repeatedly, as
refer to some other reason such as requests demand, plan
arranging, etc; here we do not take this condition into ac-
count.

As EOSs pass over the ground station (Figure. 1), there
are two states of data transmission: playback transmission
and real-time transmission. The playback transmission trans-
mits the data from SSR(solid state recorder) to ground sta-
tion, in this moment, the EOS can’t shoot; and in the real-
time transmission state, the payload of EOS takes image
and then transmits the image to ground station immedi-
ately. These two states can not coexist. Here we think the
ground stations have been assigned to corresponding EOS.
As the state of the data transmission impacts the SSR cost,
we should select the appropriate state of each ground sta-
tion in the scheduling process.

According to the viewpoint of [16], CBERS EOSs in the
paper are called non-agile optical EOSs. The imaging win-
dow of each request are relatively fixed. So the main work
of the scheduling process is to select the requests, determine
the imaging time for each selected request and select the
state of data transmission. In order to get optimal imaging
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plans and make replete use of the valuable EOSs resources,
we evaluate the solutions of imaging scheduling by multi-
objectives criteria .

The scheduling period considered here does not exceed
24 hours. According to the characteristics of each EOS, we
suppose:

1. All the pending imaging requests should be ordered be-
fore scheduling, during the scheduling period any new imag-
ing request will be ignored;

2. At any moment, for one EOS, only one imaging request
can be shot;

3. One EOS does not revisit the same imaging request in
one scheduling period;

4. Each imaging request corresponds to a point target. If
there is a large scale regional request exists, it will be di-
vided into several point requests before scheduling;

5. Action of one shot is atomic, Thus, in case a request
begins to be shot, it must be finished;

6. When EOSs pass over a ground station, there is only
one data transmission state.

As image scheduling must satisfy the complicated con-
straints of EOSs, basing on the hypotheses above, Several
notations are defined.
Notations :

S- set of all EOSs,

α, β- identifier of satellite; α, β ∈ {1, 2, . . . S} , S = |S|;
U - set of transmission requests, U = {−U, . . .− 2,−1},

U = |U |, though ground stations have been assigned
to corresponding EOS, we should choose the state
of each transmission request;

P - set of total pending imaging requests, P = {1, . . . P},
P = |P |, here we suppose the set has been sorted by
the beginning time of each request;

i, k- identifier of imaging request, here, the transmission
requests are considered as special imaging requests
with corresponding properties, and the values of these
special requests are negative. i, k ∈ U ∪ P ; two
dummy requests: 0 and P + 1 denote the beginning
and ending of the scheduling period;

Iα- set of pending imaging requests of EOS α, 0, P +1 ∈
Iα,

S
Iα ⊆ U ∪ P ;

tmlα- minimal action time of EOS α to take one shot;

bαi- the beginning time of imaging request i to EOS α
when it is shot separately, for transmission requests,
it is the entering time of EOS α;

eαi- the ending time of imaging request i to EOS α when
it is shot separately, for transmission requests, it is
the leaving time of EOS α

lαi- slewing angle of EOS α for imaging request i, the
angle of transmission request is zero;

Mα- SSR capacity of EOS α, which has been converted
to imaging time span

Eα- power of EOS α;

∆α- average skip speed of EOS α;

vα- power consumption of EOS α, caused by skipping
unit angle;

zα- power consumption of EOS α, caused by one shot
action;

ωi- importance level of imaging request i, ωi = 1, 2, 3,
the higher the level the more important the request
is, and the values of transmission request is zero

Aαi- sun altitude level of imaging request i at bαi, Here
we quantize the sun altitude as follows: 0◦ ∼ 25◦ is
level 1, 25◦ ∼ 60◦ is level 2, 60◦ ∼ 90◦ is level 3; the
higher the level the better the sunshine condition is,
the value is 90◦ to transmission request

Ri- required sun altitude level of imaging request i, the
value is zero to transmission request;

Cαi- cloudage level of imaging request i at the time of
shooting, which is provided by correlative meteo-
rology in weather situation; Here we quantize the
cloudage into 9 levels: 1∼9, the higher the level the
worse the cloudage condition is, the value is zero to
transmission request;

Wi- required cloudage level of imaging request i, the
value of transmission request is 9;

Decision Variables :

ταi- decision variable, i ∈ P , if ταi = 1, then the
pending request i will be shot by EOS α, ταi = 0
denotes the contrary; (in general, ifi ∈ U ταi = 1)

θαi- decision variable, i ∈ U , 1 denotes playback state,
0 denotes real-time state;

Spanαj- time span variable: real imaging time span of
imaging requests set j of EOS α, here j ⊆ P ∪U ,
for single imaging request j = {i}, Spanαj =
[bαi, eαi] shortened as Spanαi; and Spanαj∪Spanαm

denotes the merge of imaging time span of re-
quests set j and m. Considering the minimal
action time limit of take one photograph of EOS
α, Spanαj ∪ Spanαm may not equal the simple
sum of Spanαj and Spanαm;

TCSpanαj - step function: denotes the time length of time
span variable Spanαj , the unit is second;

σαik- step variable, 1 denotes the request k, will be
shot after the shooting of i finished, 0 denotes
the contrary. here i, k ∈ Iα;

Γαik- step variable, 1 denotes that the imaging process
of EOS α of request i and request k overlap, 0
denotes the contrary. here i, k ∈ Iα ∩ P ;

Nα- step variable, the number of shoot action, Nα =P
i∈Iα

(ταi −
S

k∈Iα

ταkταiΓαki), α ∈ {1, 2, . . . S};

Then the constraints of imaging scheduling are as fol-
lows;(here,with out special explain, α ∈ {1, 2, . . . S})

(1) Dummy requests 0 and P+1 are the beginning request
and ending request of imaging scheduling list of each EOS,
which should satisfy the following constraints:

σα0i = 1, i ∈ Iα ∩ P,
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σαiP+1 = 1, i ∈ Iα ∩ P,
Γα0i = ΓαiP+1 = 0, i ∈ Iα ∩ P,
lα0 = lαP+1 = 0, τα0 = ταP+1 = 1,
TCSpanα0 = TCSpanαP+1 = 0;
(2) The binary variable σαik should satisfy the following

constraints(bαi ≤ bαk):

• if bαk ≤ eαi, then σαik =


1, lαi = lαk;
0, others;

,

• if bαk > eαi, then σαik =


1, |lαi−lαk|

bαk−eαi
≤ ∆α;

0, others;
i, k ∈

Iα ∩ P,
and
• if i ∈ Iα ∩ U or k ∈ Iα ∩ U , then σαik = 0 ;
(3) The binary variable Γαik should satisfy the following

constraints:

Γαik =


1, Spanαi ∩ Spanαk 6= ∅ and lαi = lαk;
0, others;

i, k ∈ Iα ∩ P , and Γαik = 0,i ∈ Iα ∩ U or k ∈ Iα ∩ U ;
(4) As one EOS in the paper only can process one imag-

ing request at any time, the imaging request sequence should
satisfy the following constraints:

P
k∈Iα
k 6=i

ταiταkσαik −
P

k∈Iα
k 6=i

ταiταkσαki =

8
<
:

1, i = 0
−1,i = P + 1
0,others

,

i ∈ Iα, i, k 6= 0, P + 1;
(5) Sun altitude constraint and cloudage constraint for re-

quests:
ταiAαi ≥ Ri;
ταiCαi ≥ Wi;
(6) The capacity of SSR is limited, so the imaging list

ought to satisfy the constraint of memory capacity. It is an
important constraints of EOSs scheduling problem. As the
imaging process of different requests in the request sequence
might overlap, for convenience, we define an additional op-
eration to denote the merging of the imaging action of these
overlapped requests. (bαi < bαk),
• if i, k ∈ Iα ∩P , then Spanαi ∪Spanαk means the merge

of them; (because there are minimal action time limit, and
the TCSpanαi∪Spanαk may not equal the sum of TCSpanαi

and TCSpanαk );
• if i ∈ Iα ∩ U , θαi = 0 and bαi < bαk, eαk < eαi, then

Spanαi ∪ Spanαk = Spanαi and TCSpanαi = 0;
• if k ∈ Iα ∩ U , θαk = 1, then TCSpanαi∪Spanαk =

max(TCSpanαi − TCSpanαk , 0);
The constraint of SSR capacity can be described as:
TCSpanαi ≥ tmlα and ∀k ∈ Iα, 0 ≤ TCSpanαK′ ≤ Mα,

here, SpanαK′ =
kS

i=0,
i∈Iα

ταiSpanαi;

(7) Power is necessary for image shooting and skip. Ac-
cording to the characteristic of EOSs, these imaging actions
should satisfy power constraint of each EOS:P

i∈Iα

P
k∈Iα
k 6=i

ταiταkσαikvα |lαi − lαk|+
P

i∈Iα

Nαzα ≤ Eα;

Constraints (1), (2) and (5) are only referable to imaging
requests, therefore they can be processed before scheduling,
here we mainly consider the constraints (3), (4), (6) and (7).

All results of the imaging scheduling problem of EOSs are
subsets of the requests which will be taken by the EOSs dur-
ing the scheduling period T . As mentioned above, we hope
the results are of maximal importance level and minimal

resources costing at the same time. So in the condition of
multi satellites, we define the objective functions of imaging
scheduling as follows:

Objective function for importance of imaging requests:

f1 = min

PX
i=1

(

SY
α=1

(1− ταi))ωi (I)

Objective function for resources consumption:

f2 = min
SP

α=1

(
P

i∈Iα

P
k∈Iα,
k 6=i

ταiταkσαikvα |lαi − lαk|

+Nαzα + TCSpanαI′ ),
here, TCSpanαI′ =

S
i∈Iα

ταiSpanαi

(II)

subject to constraints (1)∼(7).

3. IMAGING SCHEDULING ALGORITHM
In practice, imaging requests are ordered by different cus-

toms, thus the problem scale of the imaging scheduling varies
a lot. Usually the process of imaging scheduling has very
rigid time restriction; to generate the solutions in the given
time, we propose a novel EOSs imaging scheduling algo-
rithm.

Generally speaking, an easy method to solve a multi-
objective problem is to convert it to a single-objective prob-
lem according to the preference information of the objec-
tives. However it is very difficult here to get the prefer-
ence information of the objectives with our problem [17],
[2]. Therefore we will generate the Pareto solutions of the
imaging scheduling problem, which help to bring the final
imaging plan.

According to our model, if we only consider imaging schedul-
ing of one EOS and objective Function f(I), the problem, in
some conditions, can be converted to a optimization prob-
lem of longest weight-constrained path, which is known to be
NP-hard problem in according to the complexity theory[5],
however our problem is more complex. To find the most
cost-effective solution, we propose a multi-objective EOSs
imaging scheduling algorithm , which is based on Strength
Pareto Evolutionary Algorithm 2(SPEA2)[19]. In the algo-
rithm, we design corresponding genetic operator to evolve
the population and handle constraints of EOSs.

3.1 The Concept of SPEA2
SPEA2 uses a regular population and an archive. It adopts

the mechanism of elitist archiving which is realized by fitness
assignment and selection strategy, and through truncation
operation it keeps the archive size and the diversity of the
Pareto solutions. The processes of SPEA2 are as follows
[19]:

Step 1: Initialization : Set t = 0, Generate an initial
population P0 and create the empty archive (external set)
A0 = ∅

Step 2: Fitness assignment : Calculate fitness values of
individuals in Pt and At.

Step 3: Environmental selection : Copy all non-dominated
individuals in Pt and At to At+1. If size of At+1 exceeds
N then reduce At+1 by means of the truncation operator,
otherwise if size of At+1 is less than N then fill At+1 with
dominated individuals in Pt and At.
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Step 4: Termination : If t ≥ T (T is the maximum number
of generations) or another stopping criterion is satisfied then
set A (non-dominated set) to the set of the non-dominated
individuals in At+1. Stop.

Step 5: Mating selection : Perform binary tournament
selection with replacement on At+1 to fill the mating pool.

Step 6: Variation : Apply recombination and mutation
operators to the mating pool and set Pt+1 to the resulting
population. t = t + 1 and go to Step 2.

The fitness assignment is a two-stage procedure. Firstly,
each individual i in the archive At and the population Pt

is assigned a strength value Q(i), representing the number
of solutions it dominates. Secondly, the raw fitness R(i)
of an individual i is determined by the strengths Q(i) of
its dominators in both archive and population. Additional
density information D(i) is used to discriminate the indi-
viduals which have identical raw fitness values. The density
information technique proposed in [19] is an adaptation of
the k− th nearest neighbor method. Thus, the fitness of an
individual i is defined by: F (i) = R(i) + D(i).

During environmental selection, the first step is to copy
all non-dominated individuals to the archive of the next
generation: At+1 = {i |i ∈ Pt + At ∧ F (i) < 1}, If the non-
dominated front fits exactly into the archive (|At+1| = N)
the environmental selection step is completed. Otherwise, if
the archive is too small, This can be implemented by sort-
ing the dominated individuals of Pt + At according to the
fitness values and copy the first N − |At+1| individuals. if
the number of the non-dominated individuals of Pt + At ex-
ceeds N , an archive truncation procedure will be invoked,
the detailed process see [19].

3.2 Design of Genetic Operators
The genetic operators determine the state transfer, which

is important to the evolution of the population and con-
straints satisfaction. To present EOSs imaging scheduling
problem effectively and avoid generating overmany infeasi-
ble solutions, the components of our method: problem cod-
ing and crossover,mutation operators are described in the
following section.

3.2.1 Problem Coding
Each Iα is a permutation list of imaging requests, we use

|Iα|-length 0-1 coding to present imaging request lists of
EOS α, each binary sequence is called a chromosome seg-
ment. The |S| segments form the chromosome (Figure. 3).
Obviously the imaging constraints of each EOS Iα are re-
stricted in corresponding chromosome segments. And the

total length of the chromosome is
SP

α=1

|Iα|. Here the trans-

mission requests are considered as special imaging requests,
the difference is that the transmission requests would effect
the imaging requests in their transmission region, the details
see constraint (6).

3.2.2 Crossover and Mutation Operators
Considering (1)∼(7) constraints, if we adopt simple crossover

and variation operation , too many infeasible solution will
be generated; therefore we propose new crossover ,mutation
and constraint satisfaction operators considering the con-
straints of imaging scheduling, which do the crossover, mu-
tation and modifying constraints estimation simultaneously.
In this way, it guarantees each solution generated is feasible.

Figure 3: coding of problem, one bit denotes one
request.

Figure 4: The first two chromosomes denote the fa-
ther individuals. The crossover point is the gene i.
The grey panes denote the genes that are exchanged
in the crossover operation.

Select two individual from the mating pool. Because the
imaging constraints are related to one EOS, the crossover
and mutation operators will be finished upon the corre-
sponding chromosome segment. As an example, we only the
consider chromosome segment of EOS α. Suppose the chro-
mosome segments are father segment 1 and father segment 2,
for illustration, as follows:

1. Randomly select a crossover point Nc and a mutation
point Nm from integer interval (1, |Iα|), 1 ≤ Nc, Nm ≤ |Iα|;

2. Crossover operation:
Suppose crossover point Nc of father segment 1 repre-

sents request i;
• If i is a transmission request, then give up it and se-

lect another crossover point Nc, until the Nc an represents
imaging request;
• If ταi = 0, then find the first request before point Nc,

whose ταi = 1 and ;
And then, find out the first imaging request k which makes

ταkσαik = 1 in father segment 2 as the crossover point Lc,
(crossover point Lc of father segment 2 represents imaging
request k); replace the chromosome section after Lc of fa-
ther segment 1 with that of father segment 2 and set zero
to the chromosome section of father segment 1 between Nc
and Lc, but leave the genes that denote transmission re-
quests unchanged (Figure. 4).

3. Mutation operation:
According to a certain probability, reverse all the gene val-

ues after mutation point Nm to generate offspring segment
(if the gene denotes a transmission request, reverse its θ
value). Then if the offspring segment satisfies constraints
(4), save it for further operation, otherwise give up it.

4. Constraints satisfaction adjustment:
Apparently, both crossover and variation can assure that

the results satisfy constraint (4). However, if the results of
above operations may not satisfy constraint (6) and (7), we
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INPUT:  

set of imaging requests P ,

set of EOSs S ,

planning period T and other relevant parameters, 

scale of population 1P  and the 2
nd

 population 2P : 1V  and 2V ,

generation number of evolution N ,

crossover probability 
c

G , variation probability 
m

G ;

OUTPUT: 

imaging scheduling sequence
*

P ;

begin

0n , create the initial population 
0

1P  by greedy thought, and 

0 * 0

2 , ,
m

P P P ;

assign fitness for individuals in 1 2,n n
P P ;

refresh the 2
nd

 population 
1

2

n
P  according to the fitness of individuals in

1 2,n n
P P ;

if the scale of the 2
nd

 population 
1

2

n
P  is larger than 2V , then call the 

truncation function;

else select dominant solutions with high fitness to fill the 2
nd

 population;

if n N or other stopping criterion is satisfied, then 
* 1

2

n
P P ;

else
1

2 ( )n n

mP matingSelect P ;

genetic operation based on imaging constraint: 

crossover operation of chromosome segment: ( )n n

m m
P cross P ;

variation operation of chromosome segment: ( )n n

m m
P mutate P ;

if the result of genetic operation can’t satisfy the other imaging constraints,

then do the constraints adjustment: ( )n n

m m
P cs P ;

else
1

1

n n

m
P P ;

1n n ;

go to ;

end

Figure 5: Main steps of the Multi-Objective EOSs
Imaging Scheduling Algorithm

design a simple adjustment operation without impacting the
satisfaction of constraint (4): According to the value of ωi

, randomly select an imaging request i by roulette method,
and then delete it. Repeat the operation until the results
can satisfy all the imaging constraints. From this operation,
it guarantees that the results are all feasible individuals.

4. EXPERIMENTS
To test the effectiveness and efficiency of multi-objective

EOSs imaging scheduling algorithm, considering most imag-
ing constraints of CBERS series EOSs , we carried out some
experiments upon real imaging requests data. Here were
four typical imaging scenarios, the numbers of their imag-
ing requests were 39, 102, 389 and 1338. And there were
4 transmission requests at most. Shown as Table. 1, The
first column (PH) is ID of the imaging scenario. The second
(NR) is the number of imaging requests. The third column
(NS) is the number of satellites. The forth (CNR) is the
number of conflicting requests in the imaging scenario. The
fifth (GS) is the number of ground station requests in the
imaging scenario. . The seventh column is the sum impor-
tant values of all pending requests in the imaging scenario.
The last three columns are numbers of requests with differ-
ent importance.

The plan period was 8:00 to 20:00 of a certain day. The
bαi, eαi, lαi, Aαi of imaging requests were calculated by other

Figure 6: The approximate Pareto optimal solutions
of PH75 on different generations and the true opti-
mal Pareto set generated by exact method.

pre-scheduling programs. In real application, Cαi informa-
tion is provided by correlative meteorology institution; while
in the experiments, the values of Cαi were generated ran-
domly. The parameters of the algorithm were: population
size of 100; external archive size of 50; the crossover proba-
bility is 0.8; the mutation probability is 0.06; The tests were
carried out on a compatible PC with 2.9 GHz Core2, 2 Gb of
RAM, Windows XP and a Visual C++ compiler. The time
restriction of our experiments was 5400 seconds. To all the
four problem scales, our algorithm can satisfy the restriction
of running time.

Here, to improve the efficiency of the algorithm, the ini-
tialization population was produced by selecting the first
imaging request randomly and expanding the imaging se-
quence according to the importance of imaging requests.

Each experiment of these problems found a set of Pareto-
optimal(or approximate Pareto-optimal) solutions consider-
ing two objectives, object I: importance of imaging requests,
object II: resources consumption(see section 2). The solu-
tions shown in figures produced conflicting scenarios of the
objective functions(the middle results are also shown in the
figures.). In general, there is no solution which is optimal
with respect to both objectives. Nevertheless, the results
can help the planner to analyze and evaluate the solutions
by other criteria. At last, the planner will select one of these
solutions as the final plan of EOSs imaging scheduling, then
generate the action statements according to the plan to con-
trol the EOSs.

To analyze the validity of our algorithm, we compared
the results of our algorithm with the true optimal Pareto
sets of PH75, PH193, PH198. These true optimal Pareto
sets were generated by the dynamic programming method
[18] (In the scheduling restriction time, this method can only
solves small scale problems). However, as a large scale prob-
lem, the true optimal Pareto set of PH227 was still unknown.

The results of PH75, PH198 in a single simulation run are
shown as the Figure. 6, Figure. 7. From the Figures, we can
see, in these two problems, the algorithm can find the true
optimal Pareto front quickly. As the cardinality of the true
optimal Pareto set of PH75 is 29, the algorithm can generate
most solutions of the true optimal Pareto set within only 200
generations. To PH198, the cardinality of the true optimal
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Table 1: Data of four scenarios
PH NR NS CNR GS Total VofR Unimportant General Important
75 39 1 0 0 67 18 14 7
193 102 2 5 1 208 34 29 39
198 389 1 0 1 658 171 167 51

227* 1338 3 149 4 2265 579 591 168

∗ the true optimal Pareto set is still unknown

Figure 7: The approximate Pareto optimal solutions
of PH198 on different generations and the true op-
timal Pareto set generated by exact method.

Pareto set is 124. The solutions of our algorithm are almost
in the optimal Pareto set after 2000 generations Figure. 7.

As the problem of PH193 contains two-EOS, to generate
the optimal Pareto set, it need to consider all possibilities of
the selection of the conflicting imaging requests, which cost
much more time than generating the approximate Pareto
optimal by our algorithm.

The problem of PH227 is the only one in our experiments
whose true optimal Pareto set is unknown. We give the so-
lutions of 10000 generations. From Figure. 9, our algorithm
can generate the the approximate Pareto optimal solutions
with well diversified. And we find that the gradients of the
Pareto front increases. When the value of object 1 is less
than 1950, the object 2 increases rapidly. That is to say, a
little improvement of the imaging requests importance will
cause an excessive increase of EOSs resources cost.

From the figures, we can see that these feasible solutions
are distributing well-proportioned, but non-linear. In prac-
tice, a plan which the EOSs shoot few imaging request or
cost much EOSs resources is neither we expect. So, in gen-
eral, the middle of the Pareto set, where the front are con-
vex, denotes the better efficiency. From the Figure. 6, Fig-
ure. 7, Figure. 8, we can see that our algorithm can fleetly
find these solutions which are in the middle of the optimal
Pareto front.

5. CONCLUSIONS
The multi-objective EOSs imaging scheduling is a com-

plex problem. It must satisfy the constrains of EOSs imag-
ing payload. Considering these constraints, it is difficult to
converge to the true optimal Pareto set and to diversify the
solutions. And the conflicting requests and the data trans-
missions also increase the complexity of imaging scheduling.

Figure 8: The approximate Pareto optimal solutions
of PH193 on different generations and the true op-
timal Pareto set generated by exact algorithm.

Figure 9: The approximate Pareto optimal solutions
of PH227 on different generations .
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Moreover, in some condition, we should generate the results
of imaging scheduling in stated time. So it is intensively
necessary to use an efficient algorithm to tackling these dif-
ficulties. In this paper we proposed a novel approach to
resolve the problem of EOSs imaging scheduling.

We formulate the imaging scheduling of EOSs as an multi-
objective integer-programming problem. As evolutionary al-
gorithms are ideal candidates to solving problems with more
than one objective, on the basis of the model, we propose the
imaging scheduling algorithm basing on SPEA2. The ap-
proach has been tested on problems of different sizes. From
the results, comparing with the true optimal Pareto set, we
can see that the proposed algorithm is able to find the opti-
mal Pareto set on small scale problems; and it can find the
approximate Pareto optimal solutions of large scale problem
in the stated time, despite the complexity of these problems.

In practice, the solutions, in term of multi-objective, will
provide more information available to help the planner to
compare and select the final imaging plan. In this view,
it can be said that the proposed approach is successful in
tackling the imaging scheduling problem of EOSs.
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