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ABSTRACT
The protein folding problem consists of predicting the func-
tional (native) structure of the protein given its linear se-
quence of amino acids. Despite extensive progress made in
understanding the process of protein folding, this problem
still remains extremely challenging.

In this paper we introduce, implement and evaluate the
Extremal Optimization method – a biologically inspired ap-
proach which has been applied very successfully to other
optimization problems – for the protein folding problem us-
ing a widely studied Gō-model of folding.

Standard methods based on the variants of the Monte
Carlo method have difficulty exploring low-energy regions
efficiently due to the ruggedness of the search landscapes.
Most computational methods in the protein folding litera-
ture do not keep track of which interactions remain unsat-
isfied during the search. Instead, in this paper, we propose
an adaptive meta-search method which ensures that unex-
plored promising parts of the search landscape are visited.
This is achieved by implementing an adaptive Extremal Op-
timization meta-search that guides a standard Monte Carlo
sampling.

We demonstrate that our Extremal Optimization meta-
search compares favorably with currently best-performing
Replica Exchange Monte Carlo method in reaching the na-
tive state for long proteins under the Gō-model potential.
Additionally, we show that our novel approach samples larger
ensembles of near-native structures by plotting parts of the
energy landscape sampled during the search. Furthermore,
we find that it scales well with the increasing sequence length.
To our best knowledge this is the first application of Ex-
tremal Optimization to the protein folding problem.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search
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1. INTRODUCTION
The ab initio protein folding problem is the problem of

predicting the functional three dimensional protein structure
(the native state) from its amino acid sequence for a given
energy function. It represents an optimization problem (con-
tinuous or discrete, depending on the model assumed). Even
for simple lattice models that restrict conformations to a
grid, it is an NP-hard combinatorial problem [14, 24].

Solving the protein folding problem has enormous impli-
cations: computational drug design can be carried out; un-
derstanding a number of diseases that are directly caused
by protein misfolding can take place, prevention of aggrega-
tion and fibrillogenesis will be possible; proteins with desired
structure and function can be engineered. Ultimately, sim-
ulation of the complete living cell will become possible.

Computational methods for predicting protein structure
from sequence are very attractive, since experimental meth-
ods (X-ray crystallography and NMR) for protein structure
determination are highly labor intensive and require purifi-
cation and, in the case of X-ray crystallography, crystalliza-
tion of proteins.

A number of search methods were introduced in the lit-
erature for the protein folding problem. The most widely
used are Metropolis Monte Carlo (MC) methods and their
variants [17, 19, 20, 25].

In canonical Monte Carlo that samples the states of the
system according to the Boltzmann probability density func-
tion, very high and, more importantly, very low energy con-
figurations are rarely sampled. To overcome these problems,
a number of Generalized Ensemble Monte Carlo methods
have been developed [12]. These methods strive to per-
form a random walk in potential energy space by computing
the density of states, sampling expanded range of tempera-
tures, or computing other physical quantities affecting tran-
sitions between the states during search. Currently, best-
performing algorithms for ab initio folding are Generalized
Ensemble methods [10, 12, 21], particularly Replica Ex-
change Monte Carlo (REMC) [21], also known as the mul-
tiple Markov Chain method and Parallel Tempering [12],
which outperforms other search methods.
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In REMC, a number of non-interacting copies (replicas)
at different temperatures are simulated independently by
MC. Every few steps, pairs of replicas are exchanged with
a specified transition probability. The weight factor is a
product of Boltzmann weights (is essentially known).

The drawback of this method is that as the number of
degrees of freedom (f) of the system increases, the required
number of replicas also increases (

√
f). Improvements of

REMC introduced in the literature include hybrid approaches
between REMC (for the weight factor determination) and
single chain Generalized Monte Carlo methods such as Mul-
ticannonical Algorithm, or Simulated Tempering [12, 15,
21], but difficulty in sampling all relevant parts of the search
landscape or the search for the lowest energy conformation
still remains.

The performance of stochastic local search algorithms is
critically dependent on the properties of the search land-
scape encountered, such as the degree of landscape rugged-
ness, connectivity of the landscape, the number and distri-
bution of local minima. Therefore, reactive search strategies
that can identify unexplored promising parts of the search
landscape and adapt the search accordingly are among the
most effective tools for solving optimization problems with
complex search landscapes.

Only a few adaptive search strategies for protein folding
have been developed so far, these include Energy Landscape
Paving (ELP) [10] and Model-based Search (MBS) [7].

Energy Landscape Paving introduces temporary energy
surface deformation and the barrier height is decreased pro-
portionally to the time the system stays in the minima (con-
figurations are searched with time-dependent weights, simi-
larly to Tabu Search (TS) that uses a time-dependent adap-
tive memory in the search [9]).

Model-based Search (MBS) is a stochastic local search
that focuses on promising regions of the search space by
storing a certain number of conformations L (local minima)
in memory and expanding N conformations in every step of
the algorithm [7]. During each step of the search, new local
optima are stored and all conformations stored are ranked
and pruned based on the scoring function that considers
their energies and the radius of a local minimum they repre-
sent (the radius is estimated by the distance to the nearest
neighbors using root mean square deviation). MBS has been
shown to outperform in some cases simple MC used in the
ROSETTA algorithm [7, 19].

In this paper, we introduce a novel adaptive meta-search
method that alternates between two distinct modes of the
search process at different levels: the high level which en-
sures that unexplored promising parts of the search land-
scape are visited and the low-level search which provides
the thorough exploration of local neighborhoods. Generally,
meta-search methods perform a higher-level search over the
space of candidate solutions by combining multiple search
strategies. The idea is that by using multiple search pro-
cesses in the intelligent way, we are able to search more of
the energy landscape in less time.

In this work, we developed a meta-search which utilizes
an Extremal Optimization (EO) search [3] – a biologically
inspired approach which has been applied very successfully
to other optimization problems – at its higher level control-
ling the standard Markov Chain Monte Carlo search at its
lower level.

Most natural systems are self-organizing, self-reshaping
and dynamic. These systems often posses a large num-
ber of strongly coupled components with similar proper-
ties that self organize critically, a concept introduced to de-
scribe emergent complexity in physical systems. Recently,
Boettcher and Percus proposed a new biologically inspired
optimization method called Extremal Optimization [5], that
utilizes the self-organized critical state as an efficient search
strategy. Currently, EO ranks among the best algorithms
for a number of hard combinatorial optimization problems,
some of which include the Ising Spin Glasses Problem, the
Traveling Salesman Problem (TSP), the Graph Coloring
Problem (GCP), the Satisfiability problem (SAT), and many
others, e.g., [5, 6].

EO appears to be a very attractive computational method
for addressing the protein folding problem, since it combines
aspects of the self-organization process and the notion of
coupling between system components. These concepts and
ideas apply rather naturally to protein folding by: repre-
senting pairs of protein amino acids as solution components,
guided by energy contributions between pairs of residues as
fitness, the system can undergo self-organizing critically phe-
nomena and low-energy conformations are obtained. Deter-
mining how well EO performs for protein folding problems
motivated this work.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces an Extremal Optimization meta-search for
the Gō-model of protein folding, and describes major com-
ponents of the outlined method. In Section 3, we detail
the model adopted for the problem, describe design of the
experiments and provide implementation and environment
details. Section 4 compares performance of our EO meta-
search with that of best performing algorithms, details per-
formance differences and experimental findings. Finally, in
Section 5, we summarize our conclusions and outline some
suggested directions for future research.

2. APPROACH – EXTREMAL OPTIMIZA-
TION META-SEARCH

Extremal Optimization (EO) is an optimization heuris-
tic inspired by self-organized critically phenomena captured
by the Bak-Sneppen model of evolution [2] which relies on
the extremal processes. In this evolutionary model self-
organization towards adaptation emerges naturally, from the
dynamics of a selection against the extremely ”bad” fitness
components of the system (“species”). After a sufficient
number of steps, the system reaches a highly correlated state
known as self-organized criticality (SOC) when almost all
components of the system have reached fitness values above
a certain threshold [3].

From a computational point of view, EO successively re-
places extremely undesirable variables of a single sub-optimal
solution with new, random ones. Large fluctuations pro-
vided by the local search moves utilized in EO ensure, that
the search efficiently explores many local optima. Further-
more, recently it has been shown that EO can be applied
successfully to systems with highly connected variables (such
as Sherrington-Kirkpatrick Spin Glasses) when systems are
not determined by short-range interactions only [4].

This is also the case for the ab initio protein folding prob-
lem which is of interest here. The problem is formally de-
fined as follows: Given an amino acid sequence s = s1s2 . . . sn
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and an energy function E(c), find an energy-minimizing con-
formation of s, i. e., find c∗ ∈ C(s) such that E(c∗) =
min{E(c) | c ∈ C(s)}, where C(s) is the set of all valid
conformations for s.

The success of the EO algorithm for a combinatorial prob-
lem from any domain is primarily determined by (1) the
choice of variables to which fitness values are attributed to
and (2) the neighborhood used to modify fitness of low-fit
components during the search.

EO is currently one of the best-performing methods for
Ising Spin Glasses model of ferromagnetism [6], in which
couplings Ji,j attempt to align neighboring spins. Fitness
values in this problem are attributed to individual spins,
and the simplest neighborhood for an update consists of all
configurations that could be reached from the current state
through the flip of a single spin [3]. For the protein folding
problem attributing fitness value to a single amino acid re-
sults in a system that does not allow for the instantaneous
change of fitness which is required for a sub-sequent update
of a conformation c from a given neighborhood N(c). In-
stead, we propose to attribute fitness λij to the pairs of

residues (i, j), in a general case there are n·(n−1)
2

such pairs
for a protein of length n.

Ideally, in EO-type search, the objective function mini-
mized is represented by the sum of fitness values of all system
components, taken with a negative sign [3]. For the protein
folding problem this relationship is given by the following
equation:

E(c) = −
X
(i,j)

λij (1)

Therefore, we attribute fitness values λij with the non-
bonded pairwise interactions between amino acids i and j,
usually described by means of 10-12 Lennard-Jones potential
for van der Waals forces [8] (see Methods Section for details).

Using the above-described fitness assignment, a natural
neighborhood to employ is a neighborhood (move-set) which
modifies the distance between the selected pair of residues.
The distance modification in turn changes the pairwise non-
bonded energy between selected residues and therefore leads
to a change of the fitness value of the pair. This local move,
however, may result in a conformation with high energy.
The later situation may happen because in order to bring
together two residues that are currently located far apart,
the location of other residues may need to be changed sig-
nificantly, forcing large configurational changes.

To address this, we devised a meta-search algorithm that
iteratively conducts:

1. Extremal Optimization search at its higher level to en-
sure that all parts of the search space, that correspond
to different pairwise arrangements of amino acids, are
explored

2. Monte Carlo search at its lower level which further
minimizes the relaxed conformation in its local neigh-
borhood.

The switch between the two phases, higher-level EO and
low-level MC, is performed in the following way: when a se-
lected pair of residues chosen during EO stage is within re-
quired distance cut-off the search switches to the MC search
to improve the energy of the conformation further; when

subsidiary MC search has reached the local optimum and
therefore no improvement is observed on the lowest energy
for a specified number of steps, noImpr, the search switches
back to the higher-level EO phase, particular details of these
choices are detailed later in this section.

The search iterates through the two phases until the ter-
mination criterion is not met (either the specified energy
level or the specified time cut-off is reached).

To devise EO meta-search for the protein folding prob-
lem, we adopted the model referred as “Gō-model” of pro-
tein folding [23, 22], primarily due to the unavailability of
a single universal energy function for ab initio folding from
an extended (denatured) state. Additionally, Gō-model has
been widely studied in the protein folding literature [1, 8,
11, 13, 16, 18], and was shown to capture folding events of
a number of proteins rather well. For details of the model
and the energy potential used see Methods Section.

In the following sub-sections we provide details for each
of the two stages of the EO meta-search.

High-level Exploration Phase – Extremal Opti-
mization
Our EO meta-search performs a high-level exploration phase,
during which low-fitness components are identified, and the
search is steered in the direction which modifies their re-
spective fitness values.

Computationally this is achieved as follows: First, fitness
value λij of each solution component (i, j), where (i, j) is
a pair of residues, is calculated (or updated in subsequent
iterations). For Gō-model, adopted in this paper, only pairs
of native contacts are considered and fitness values λij are
based on non-bonded pairwise energy contribution between
amino acids i and j described by the Lennard-Jones 10-12
potential [8], see Methods Section for details.

Next, components are ordered according to their fitness
value, with the worst fitness component ranking as 1 and the
best ranking as NC, where NC is number of native contacts
in our model. As in [6], lower fitness components are cho-
sen probabilistically according to the scale-free power-law
distribution Pk ∝ k−τEO , where k is a rank (1 ≤ k ≤ m)
and τEO is a parameter specifying weighing of fitness values
during the selection process (asymptotic choice of τEO−1 ∝
[ln(NC)]−1 is often used). Ordering of fitness values is usu-
ally approximated by a binary tree of depth O(log2NC) with
the least-fit components ranking near the root [3] to reduce
the complexity of component retrieval and fitness update.

In our implementation the fitness λij of a chosen low-
fitness component is changed by means of a move-set that
uses subsidiary Monte Carlo search with a biasing potential
attempting to change fitness λij by bringing the selected
pair of residues closer to each other. The biasing potential
is a simple harmonic potential Kbias(rij − σij)

2 added to
the main energy potential function that is minimized, see
Methods Section for details. Distance rij denotes current
distance between residues i and j; for the Gō-model consid-
ered here, σij is taken to be the distance between residues i
and j in the native state. Thus, the minimum of a biasing
potential is attained when the fitness of the component is
maximized.

The move completes when either the distance between
the selected residues rij ≤ σij or the number of attempts
exceeds a specified number, see Methods Section for details.
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The later condition is imposed to bound computational time
spent on a single move.

Low-level Exploitation Phase – Monte Carlo
Search
The second phase is a low-level exploitation phase, when
low-temperature Monte Carlo search optimizes the relaxed
protein conformation obtained during the exploration phase.

The simplest way to recognize when the search becomes
unsatisfactory, i.e. it has reached the local (or in some cases
a global) optimum, is to record the number of steps during
which no improvement on the lowest energy have been ob-
served. Thus, if no improvement on the lowest energy has
been seen for a certain number of steps (noImpr, which is a
parameter of the algorithm, the value is specified in Meth-
ods Section) low-level Monte Carlo phase is terminated and
the high-level Extremal Optimization phase is initiated.

3. METHODS
In this section, we provide a detailed description of the

Gō-model and Gō-energy potential used in this work, give
fitness value definition for EO search phase, specify details
of the move-set utilized during subsidiary MC, and provide
details for experimental analysis performed.

The Gō-model of Protein Folding
In the Gō-model a protein is represented as a linear chain
of idealized spheres located at the Cα position (one node
per residue). Contacts between residues are classified as
either native (present in the three-dimensional native state)
or non-native (absent from the native state). Two residues
are in contact in the native state if any of the heavy atoms
of the side-chain or the Cα of one residue occur within the
cut-off radius of 4.55 Å to heavy atoms of the side chain or
the Cα of the second residue [8, 11]. As in [8] native contacts
between pairs of residues (i, j) with j ≤ i + 3 are discarded
as they interact due to chain connectivity.

Energy potential for the Gō-model has the form of stan-
dard energy force-fields employed in a number of molecu-
lar dynamics packages, such as AMBER, GROMACS, and
CHARMM, with notable difference that the non-bonded in-
teractions (van der Waals and electrostatic terms) are re-
placed by attractive energy contribution for native contacts,
and a non-native repulsion term is usually present [8, 18].
Thus, this potential assigns negative energy contributions
only to native interactions, each of these interactions is weighted
the same.The energy of a configuration c of a protein with
the native state c0 is given by the expression [8]:

E(c, c0) =
X

angles

Kθ(θ − θ0)
2

+
X

dihedral

K(n)
τ [1 + cos(n(τ − τ0))]

+
X

i<j−3

ε(i, j)

"
5

„
σij

rij

«12

− 6

„
σij

rij

«10
#

+
X

i<j−3

ε2(i, j)

„
σij

rij

«12

where θ (θ0) and τ (τ0) are the bond and dihedral angles
correspondingly. The bond angles are formed between three

consecutive residues of the chain, while the dihedral angles
are the angles between the normals of the two planes formed
by four consecutive residues. The dihedral potential consists
of a sum of two terms for every adjacent Cα atoms, with pe-
riods n = 1 and n = 3 as in [8]. The last term represents
the non-local native interactions and a short-range repulsive
term for non-native pairs. Parameters ε(i, j) = 1 kT for na-
tive interactions and zero otherwise, ε2(i, j) = 1 kT for non-
native interactions and zero otherwise, σij for native inter-
actions in the distance between Cα atoms of residues i and j
if the two residues are in contact in the native state and 4 Å
for non-native interactions. Weights are set in the following

way: Kθ = 20ε, K
(1)
τ = ε and K

(3)
τ = 0.5ε. Clementi et al.

have found that with this choice of parameters the stabiliz-
ing energy residing in the non-bonded contacts is approxi-
mately twice the stabilizing energy residing in the torsional
degrees of freedom [8]. Bond bending is disregarded, and all
pseudo-bonds between consecutive Cα atoms are considered
to have ideal geometry with length of 3.814 Å. The Gō-type
potential ensures that the native state is at the global min-
imum of the potential, which is a very desirable property of
any energy function used.

During the high-level Extremal Optimization phase, the
fitness is attributed to each pair of native contacts (i, j).
There are NC such pairs. This fitness is defined as the ab-
solute value of 10-12 Lennard-Jones non-bonded potential:

λij =

8><>:
˛̨̨̨
ε(i, j)

»
5

“
σij

rij

”12

− 6
“

σij

rij

”10
–˛̨̨̨

, if rij > σij

1, if rij ≤ σij

(2)
where 0 ≤ λij ≤ 1, with low fitness of 0 being bad, and

high fitness of 1 being good.

Search Neighborhood
Initially, we consider an extended polymer where no non-
covalent contacts are present; all bond angles are set to 120◦

and all of the dihedral angles are set to 180◦. Local search
modifications are performed in the continuous space of the
bond and dihedral angle space. There are n−2 bond angles
(θ) and n−3 dihedral angles (τ), which yields 2n−5 degrees
of freedom in total. During the search a uniformly random
scan through these degrees of freedom is performed. A move
corresponds to a single attempt to modify one of these an-
gles by a displacement drawn from the Gaussian distribution
with standard deviation specified (30◦ is used).

A move-set (search neighborhood) utilized in subsidiary
Monte Carlo search during the high-level EO phase is simi-
lar to the standard local search moves described above, ex-
cept that a biasing potential is applied to a specified pair
of residues (k, l). Thus, the energy potential used is the
Gō-model potential plus Kbias(rkl − σkl)

2, where rkl is the
current distance between the pair, and σkl is the distance
between k and l in the native state. Parameter Kbias was
set to ε.

The move is finished when either the distance between
the selected residues rij ≤ σij or the number of attempts
exceeds a specified number (20 is used).
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Table 1: Set of proteins used in this study. Assignment of class was performed by CATH [17].

Protein PDB ID length class
1 Ribonuclease T1 (Fungus) 1bu4 104 αβ
2 Acidic fibroblast growth factor-1 (Human) 2afgA 129 mainly β
3 Nuclease (S. aureus) 1stn 136 mainly β
4 Oxy-myoglobin (Sperm whale) 1a6m 151 mainly α
5 Ribonuclease H (E. coli) 2rn2 155 αβ
6 Lysozyme (Coliphage T4) 3lzm 164 mainly α
7 Thermitase (T. vulgaris) 1thm 279 αβ
8 Xylanase (Fungus) 1bg4 302 αβ
9 Lignin peroxidase (Fungus) 1llp 343 mainly α

Empirical Analysis and Implementation Details
For our empirical analysis we used representative protein
sequences provided in Table 1.

MC was run at a constant room temperature of T = 298
K, REMC was run with 5 replicas with linearly spaced tem-
peratures (ranging from 300 to 700 K), exchanges were at-
tempted every 1000 scans through the chain, similar pa-
rameter settings are used in the literature for Gō-models [8,
11]. Low-level MC search in EO meta-search was run at a
constant room temperature of T = 298 K until number of
noImpr steps did not exceed 1000 scans through the chain.
These parameters were determined from short preliminary
runs (not provided here).

EO meta-search has been implemented in C++ and com-
piled using g++ (version 3.3.6) for the Linux operating sys-
tem. The same holds for our implementations of simple
Monte Carlo (MC) and Replica Exchange Monte Carlo (REMC).

All experiments were performed on PCs with 2.4 GHz
Pentium IV CPUs, 256Kb cache, and 1Mb RAM, running
Redhat Linux (our reference machine).

4. RESULTS AND DISCUSSION
In the following work, we address the following questions:

How does EO meta-search compare with standard MC and
REMC methods in finding close-to-native conformations and
in exploring the energy landscape of a given protein sequence
under the Gō-model? How does its performance scale with
sequence length?

We compare our new Extremal Optimization meta-search
to Monte Carlo and Replica Exchange Monte Carlo meth-
ods. To evaluate algorithms we used a set of 9 proteins of
length ranging from 104 to 343 residues representing vari-
ous CATH structural classes, see Methods Section for de-
tails. We conducted 20 independent runs on each protein
sequence starting from the completely extended state. Each
run was terminated after a fixed CPU time limit had been
reached (2 hours CPU time cut-off was used). Only isolated
studies of proteins longer than 100 residues exist in the lit-
erature [8, 16, 18], most concentrate on unfolding process of
the native structure under the Gō-model, therefore results
obtained in this work could not be directly compared with
the literature.

From the distribution of energy levels over 20 independent
runs, we determined the average energy, the average Cα

coordinate root mean square deviation (RMSD), the average
fraction of native contacts Q, standard deviation of these

values, as well as the lowest energy and RMSD, and the
highest fraction of native contacts Q reached.

The fraction of native contacts Q was counted as the frac-
tion of contacts between residues (i, j) that were present in
the native state. In this context, the contact is regarded to
be made if distance between the Cα atoms is shorter than
γ = 1.2 times their native distance σij as in [8, 16].

As seen from our results presented in Table 2, EO meta-
search outperforms or comes very close to the performance
of REMC on all sequences considered. Particularly, perfor-
mance differences (as captured by the average and lowest en-
ergy, average and lowest RMSD, and average and highest Q
observed over 20 runs) become more noticeable as the length
of the protein sequence increases. Both EO meta-search and
REMC outperform MC on longer sequences significantly.

For example, Figures 1 and 2 provide comparison of align-
ments between lowest-energy structures found within the
given CPU cut-off time by EO meta-search, REMC and MC
for sequences of Ribonuclease H (pdb id 2rn2, 155 amino
acids) and Xylanase (pdb id 1bg4, 302 amino acids in length).
For for Ribonuclease H, all methods find low energy struc-
tures that have close alignment with the native state, while
on a longer sequence of Xylanase both EO meta-search and
REMC outperform MC.

It should be noted, however, that we did not substan-
tially optimized parameters for any of the algorithms in
the presented experiments, and instead we used commonly
adopted parameters for MC and REMC adjusted for longer
lengths [11, 16]. Additionally, performance of algorithms
can also be affected by the cut-off time used. Therefore, to
further evaluate performance of our EO meta-search and the
methods known from the literature, we followed the method-
ology presented in [16] and analyzed energy landscapes sam-
pled by each method. We performed a single long run (5
CPU hours) of each algorithm periodically recording states
sampled. We then compared how well search processes ex-
plore low-energy regions of the landscape for a given protein
by plotting the free energy landscape as a function of the
fraction of native contacts Q present and RMSD from the
native state. The free energy in this analysis is viewed as a
negative logarithm of frequency of sampling a conformation
with given Q and RMSD [16]. As seen from the results for a
representative Ribonuclease H protein in Figure 3, MC sam-
ples a very local part of the landscape, while both REMC
and EO sample larger parts. EO meta-search samples more
low-RMSD and high-Q states than either REMC or MC.
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Table 2: Comparison of the energy levels reached, root mean square deviation, and fraction of the native
contacts on a data set of 9 proteins by Monte Carlo (MC), the Replica Exchange Monte Carlo (REMC)
algorithm and the Extremal Optimization (EO) meta-search algorithm. All results are based on 20 runs per
algorithm per protein sequence.

pdb id Length NC Method Energyavg ± sd Energymin RMSDavg ± sd RMSDmin Qavg ± sd Qmax

1bu4 104 244 MC −107.19 (±25.11) −144.65 4.10 (±2.61) 1.34 0.79 (±0.11) 0.97
REMC −115.12 (±32.75) −148.38 2.75 (±1.51) 1.34 0.85 (±0.20) 0.95
EO -119.62 (±20.79) -164.86 3.31 (±1.48) 1.15 0.85 (±0.06) 0.98

2afg 129 363 MC −98.39 (±27.72) −166.70 9.61 (±4.90) 2.39 0.59 (±0.09) 0.82
REMC −117.99 (±43.02) −191.99 4.89 (±3.50) 1.45 0.71 (±0.19) 0.86
EO -128.35 (±47.42) -207.32 4.75 (±3.34) 1.13 0.72 (±0.13) 0.94

1stn 136 353 MC −111.64 (±24.19) −151.19 7.10 (±3.35) 2.99 0.66 (±0.07) 0.80
REMC −102.11 (±34.88) −145.26 6.06 (±2.80) 1.78 0.68 (±0.19) 0.80
EO -114.51 (±39.07) -162.54 6.30 (±3.06) 2.39 0.69 (±0.10) 0.82

1a6m 151 333 MC −106.50 (±31.89) −153.02 6.63 (±4.57) 1.66 0.71 (±0.09) 0.86
REMC −100.94 (±34.26) -169.50 5.15 (±2.82) 2.02 0.71 (±0.18) 0.88
EO -122.66 (±23.59) −157.20 4.82 (±2.65) 2.28 0.73 (±0.06) 0.81

2rn2 155 387 MC −88.39 (±27.77) −135.13 9.43 (±4.85) 3.41 0.58 (±0.08) 0.73
REMC −79.00 (±26.85) −120.23 6.51 (±3.73) 2.80 0.61 (±0.16) 0.73
EO -101.73 (±38.14) -186.19 6.72 (±4.11) 2.55 0.66 (±0.08) 0.85

3lzm 164 388 MC −168.90 (±22.73) −214.86 3.17 (±1.42) 1.69 0.79 (±0.05) 0.88
REMC −161.48 (±43.67) −213.94 3.74 (±1.78) 1.97 0.79 (±0.18) 0.85
EO -172.48 (±32.75) -231.43 3.99 (±2.50) 1.46 0.81 (±0.07) 0.91

1thm 279 868 MC −75.46 (±32.25) −131.13 19.09 (±4.54) 8.29 0.37 (±0.03) 0.43
REMC −109.84 (±50.98) -197.38 15.56 (±6.15) 4.64 0.44 (±0.12) 0.55
EO -150.66 (±21.79) −183.47 11.95 (±4.01) 5.70 0.49 (±0.03) 0.54

1bg4 302 909 MC −73.17 (±40.31) −144.35 18.23 (±4.52) 13.03 0.40 (±0.04) 0.46
REMC −92.62 (±54.83) −190.91 13.07 (±4.86) 6.24 0.45 (±0.12) 0.52
EO -142.58 (±77.07) -272.09 11.99 (±3.91) 4.03 0.51 (±0.07) 0.67

1llp 343 953 MC −15.54 (±45.99) −82.94 22.44 (±4.53) 12.52 0.35 (±0.03) 0.41
REMC −29.97 (±51.01) −136.23 21.79 (±8.19) 8.13 0.39 (±0.12) 0.54
EO -60.34 (±66.57) -190.48 21.68 (±6.15) 7.37 0.43 (±0.06) 0.54

Although it can be argued that this system (Gō-model) is
simplistic, the results of our Extremal Optimization meta-
search as compared to the results obtained by the Replica
Exchange Monte Carlo method are encouraging.

5. CONCLUSION
We have shown that our Extremal Optimization meta-

search is successful in finding low-energy states for the Gō-
model of protein folding. It compares favorably with the
currently best-performing Replica Exchange Monte Carlo
method in finding low-energy states of a given protein se-
quence under the Gō-model potential.

This system, similarly to other more complex protein mod-
els, displays highly connected components, where each com-
ponent is coupled to many others by means of long-range
interactions. Despite coupling of the system, EO is highly
competitive for this problem when utilized with the sub-
sidiary low-temperature Monte Carlo method. Future work
will include the study of EO meta-search for other more
complex protein models.
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Figure 2: Alignment of the lowest energy structures, (a) −272.09 kT, (b) −190.91 kT and (c) −144.35 kT, found
by EO meta-search, REMC and MC respectively for Xylanase protein sequence (pdb id 1bg4) with the native
state; RMSD is 4.03 Å, 6.24 Å, and 13.03 Å respectively.

(a) (b) (c)

Figure 3: Contour plots of free energy as a function of fraction of the native contacts and RMSD from the
native state for Ribonuclease H protein (pdb id 2rn2) for (a) EO, (b) REMC and (c) MC, cut-off time used
was 5 CPU hours.
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