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ABSTRACT
Biological organisms employ various mechanisms to cope
with the dynamic environments they live in. One recent
research reported that depending on the rates of environ-
mental variation, populations evolve toward genotypes in
different regions of the neutral networks to adapt to the
changes. Inspired by that work, we used a genetic program-
ming system to study the evolution of computer programs
under environmental variation. Similar to biological evo-
lution, the genetic programming populations exploit neu-
trality to cope with environmental fluctuations and evolve
evolvability. We hope this work sheds new light on the de-
sign of open-ended evolutionary systems which are able to
provide consistent evolvability under variable conditions.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.6 [Simulation and Modeling]:

General Terms
Algorithms, Performance, Experimentation, Measurement

Keywords
evolvability, environmental variations, neutrality, open-ended
evolution, dynamical environment, self-adaptation, redun-
dancy, genotype, phenotype, neutral networks, genetic drift.

1. INTRODUCTION
Biological organisms live in an ever-changing world. How-
ever, early population genetics theory assumed the environ-
ment to be constant while the mathematical ecology as-
sumed the genetic makeup of the species involved to be
constant. About 40 years ago, Richard Levins published
a seminal work which modeled the situation where evolu-
tion is taking place while the environment changes[7]. This
work has influenced the population genetic theory to con-
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sider environmental fluctuations in studying the theory of
evolution by natural selection.

While population genetic theory focuses on population-level
adaptation, other empirical studies investigate molecular ba-
sis of phenotypic changes to cope with environmental vari-
ation. For example, it is shown that bacteria turn on the
machinery for taking up iron from the environment, that is
they synthesize siderophores, only when a lack of iron trig-
gers the expression of over ten genes involved in the regula-
tion of this system [11][2]. Currently, there is a rich volume
of information revealing diverse strategies that organisms
have evolved to cope with environmental fluctuations. One
recent trend in ecology and evolution research is to inte-
grate the diverse forms of ‘adaptive variation‘ into a single
conceptual framework [10].

In the evolutionary computation community, there are also
interests in investigating the impact of environmental vari-
ation on the evolution of artificial life. The most noticeable
work is by Lipson and colleagues [8], who argued that mod-
ularity is an emerged property resulting from environmental
variation. In that work, they used computer simulation to
study modular structures induced under different environ-
mental changing rates. They reported that the amount of
modular separation is logarithmically proportional to the
changing rate.

Kashtan and Alon [4] went farther by devising the envi-
ronmental changes in a modular manner: the two objective
functions used to evolve two different Boolean functions con-
tained two identical modules. The only difference between
these two objective functions was that they used two differ-
ent logic operators to combine the two modules: one used
and and the other used or. By switching the two objec-
tive functions periodically throughout the evolution process,
they reported that the evolved Boolean functions not only
contained both modules but also had a structure that could
be easily switched into the other Boolean function with a
small number of mutations.

This research investigates program evolvability [1] under en-
vironmental variations and implicit neutrality (semantic re-
dundancy in genetic programming) [13]. We employed two
objective functions which have two opposite goals. The first
one is even-4-parity, whose genotypes contain an even num-
ber of all 4 input variables. The second one is always-on,
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whose genotypes contain an odd number of all 4 input vari-
ables [6]. We periodically switched these two objective func-
tions using various rates. The interplay between program
evolvability and neutrality under these changing rates are
then analyzed.

This work is motivated by our interest in building computer
systems for open-ended evolution, i.e. a system that pro-
vides consistent evolvability under environmental variation.
According to the experimental results, under environmen-
tal fluctuations, populations exploited implicit neutrality to
evolve evolvability. We hope this work sheds new light on
the design of open-ended evolutionary systems for Artificial
Life research.

The rest of the paper is organized as follows. Section 2 high-
lights the mechanisms biological organisms have developed
to cope with variable conditions. In Section 3, we explain
implicit neutrality in the genetic programming framework.
The two objective functions of even-4-parity and always-
on are then presented in Section 4. Section 5 details the
computer experimental setup while Section 6 reports the
experimental results and provides analysis. We discuss the
implications of these results in Section 7. Finally, Section 8
concludes the paper and outlines our future research.

2. BACKGROUND
Variation is the fuel of evolution. Under different envi-
ronmental variation rates, different individual-level adap-
tation strategies may evolve [10]. When the environment
changes rapidly, mechanisms such as physiological plasticity
and learning may occur for individual organisms to respond
to these changes. As environmental changes slow down,
phenotypic variation may rise resulting from stochastic or
directed heterogeneity in the developmental pathway. For
even slower rates of changes, mutations may produce novel
phenotype. If environmental fluctuations are rare, popula-
tions may have a period of directional selection and thus
have sufficient time to achieve genetic robustness. These
phenotypic and genotypical changes in responding to envi-
ronmental variation have been observed in viruses/bacteria
and in experimental studies [9].

Genotypes and phenotype (or genes and traits ) have a
many-to-one relationship [3]. For any particular trait value,
there exists a large number of genotypes that give rise to
that value. Metaphorically, one can imagine the genotypes
that map to the same phenotype as a network connected
by mutations. Within the network, a mutation from one
genotype to another is neutral, having no impact on the
physiology, behavior or fitness of the organism. However,
depending on the location in the network where the muta-
tion takes place, there will be different outcomes. Near the
periphery of the network, mutations are likely to produce
different phenotype, whereas near the center of the neutral
networks, mutations have little impact on the phenotype.

Under environmental variations, populations evolve toward
genotypes in different regions of the neutral networks. In [9],
Meyers and colleagues used a simple mathematical model
and a single amino acid site to study evolution under two
alternate environments. They reported that when the vari-
ation is rare, the populations swing back and forth between

genetic robustness, which is located at the center of the neu-
tral networks, of the two phenotypes. At intermediate rates
of fluctuation, populations favor the edge of the neutral net-
works. Thus, mutation between the two phenotype occurs
frequently. Finally, for highly variable environments, popu-
lations settled in a phenotype that has an intermediate fit-
ness in both environments. This phenotype corresponds to
organismal flexibility - individuals tolerate both conditions,
but neither one exceptionally well.

Inspired by these biological phenomena and mathematical
modeling results, we used computer simulation to study pro-
grams evolution under environmental variation. Similar to
the biological evolution, there is a many-to-one mapping be-
tween genotypes and fitness. The computer evolutionary
system used is genetic programming, which is described in
the following section.

3. GENETIC PROGRAMMING AND
IMPLICIT NEUTRALITY

Genetic programming (GP) [5] models the process of natural
evolution for problem solving by generating a population of
possible solutions, which are selected and mutated to reach
a near-optimum. In a GP system, a genotype represents a
point in the search space and is operated on by genetic op-
erators. In contrast, a phenotype represents a point in the
solution space and is evaluated by the fitness function. In
other words, selection is based on phenotypes, while repro-
duction operates on the underlying genotypes [12].

A GP system may or may not distinguish genotypes from
phenotypes, depending on the implementation. In the first
case, there can be a many-to-one mapping between geno-
types and phenotypes while in the later case, there can be a
many-to-one mapping between genotypes and fitness. Under
either implementation, a mutation may transform genotypes
from one to another without affecting the fitness; they are
neutral mutations.

In that standard GP, the evolved genotypes are computer
programs, whose behaviors are interpreted to give the phe-
notype and the corresponding fitness. In other words, fit-
ness is evaluated directly on the genotypes. Since computer
programs are semantically rich, many syntactically different
programs may be interpreted to the same behavior, hence
have the same fitness. Consequently, there is a many-to-
one mapping between genotypes and fitness. We call this
implicit neutrality [13] as it is embedded in the genotype
representation without explicit encoding. In the tree-based
GP representation, there are two forms of implicit neutral-
ity: functional redundancy and introns.

Functional redundancy refers to the case when many differ-
ent programs (genotypes) represent exactly the same func-
tion (phenotype). For instance, the following three programs
give the same function xor:

g1: nor (and x1 x2) (nor x1 x2)
g2: nor (nor x1 x2) (and x1 x2)
g3: nor (and x1 x2) (nor (nor x1 x2) (nand x1 x2))

Genetic transformation from one genotype to another (e.g.,
g1 to g2) has a neutral effect on the program’s behavior.

2974



Introns are code that is part of a program but is semantically
redundant. For example, the or operator with input false

is an intron in the following genotype because (or false

any-boolean-value)=any-boolean-value.

g4: or false (nor (and x1 x2) (nor x1 x2))

Genetic transformations that remove introns from a geno-
type (e.g., g4 to g1) have a neutral effect on the program’s
behavior.

Functional redundancy and introns can emerge within an
evolving genetic program and render implicit neutrality. This
work will study genetic programs evolution under environ-
mental variation. The two objective functions used to de-
fine the two alternating environments are even-4-parity and
always-on, which are explained in the following section. We
will use the term ‘program‘ to refer to genotype and ‘func-
tion‘ for phenotype.

4. EVEN-PARITY AND ALWAYS-ON
Boolean parity is well studied in the GP community. These
programs can take any n number of Boolean inputs. An
even-n-parity returns true if an even number of the inputs
are true while an odd-n-parity returns true if an odd num-
ber of the inputs are true.

An even-n-parity program can be constructed using only eq

logical operator if n is even [6]. Moreover, the eq-only even-
n-parity programs have an unique feature: they contain an
odd number of all n input variables. In other words, if any of
the n input variables is missing or if there is an even number
of any of the n input variables, the program is not an even-
n-parity. This is because eq is symmetrical, which allows
the input variables to be in any order in the program with-
out changing the semantics. Moreover, x1 eq x1 is true,
hence (x2 eq x1 eq x1) = x2. With these two premises, any
pair of repeated input variables can be removed from a pro-
gram or added to a program without changing the program
behavior. An even-n-parity program therefore always has
an odd number of all n input variables.

Among those eq-only programs that are not even-n-parity,
the subset that contains an even number of all n input vari-
ables are always-on. These programs effectively ignore all
input variables (since they all come in pair) and always re-
turn true. The remaining eq-only programs contain an
even number of some input variables and an odd number of
other input variables. We call these programs in-between as
they are in between the two extremes of even-n-parity and
always-on. With implicit neutrality, more than one pro-
gram can be interpreted as even-n-parity or as always-on or
as in-between. In [6], Langdon and Poli showed that for any
program length l, only a small fraction (less then 1%) of the
programs are interpreted as even-n-parity or as always-on.
The majority of the eq-only programs are in-between.

A program tree can have any length. However, because eq

is a binary operator, an eq-only program tree always has an
odd length: l = 2t−1, where t is the number of leaf nodes in
the program tree. These leaf nodes may contain any of the
n input variables. As mentioned, even-n-parity has an odd
number of all n input variables, t = n + 2i, i = 0, 1, 2, . . ..

Table 1: Some of the common structures for even-
4-parity & always-on programs.

even-4-parity always-on
i t l p p+i t l s

0 4 7 2 2 4 7 5
1 6 11 2 3 6 11 42
2 8 15 2 4 8 15 429
3 10 19 2 5 10 19 4862
4 12 23 2 6 12 23 58786
5 14 27 2 7 14 27 742900
6 16 31 2 8 16 31 9694845
7 18 35 2 9 18 35 129644790

EQ

EQ x_4

EQ x_3

x_1 x_2

EQ

EQ x_1

EQ x_1

x_2 x_2

EQ

EQ EQ

x_1 x_2 x_3 x_1

Figure 1: (a) even-4-parity (b) always-on (c) in-
between function.

The length of an even-n-parity program is therefore l = 2t−
1 = 2n + 4i− 1. In contrast, always-on has an even number
of all n input variables, t = 2p + 2i, p = 1, 2, 3, . . . , n, i =
0, 1, 2, . . .. The length of an always-on program is therefore
l = 2t − 1 = 4(p + i) − 1.

A program tree with length l can have many different shapes:

s =
(l − 1)!

((l + 1)/2)!((l − 1)/2)!
. Table 1 lists some of the pro-

gram lengths and structures that are common to even-4-
parity and always-on. The length ranges from the small-
est of 7 up to 35. Figure 1 shows three example program
trees with length 7 that are even-4-parity, always-on and
in-between functions.

5. EXPERIMENTAL SETUP
We allowed the program trees to have a length between 7 and
35. Since the internal nodes of a program tree are constant
(eq), only the leaf nodes were considered for evolution. Ad-
ditionally, program trees with the same length might have
different shapes. We therefore used a vector of length t + 1
to encode all possible variations: the first t cells contain the
4 possible input variables (x1, x2, x3, x4) while the last cell
gives the shape of the program tree, with a value between 1
and s. During the initialization of the first population, uni-
form distributions were used to allocate genotypes to each
of the 8 possible vector lengths.

The evolutionary system is steady-state with population size
10. At each generation, 5 offspring were generated by mutat-
ing 5 selected parent individuals. Among the 15 parent and
offspring individuals, the top 10 were kept as the new gen-
eration. The selection method is fitness-proportional with-
out scaling. Each selected individual was mutated on each
cell of the vector with 10% probability. We let a run last
for 1,000 generations, which is equivalent to 5,000 muta-
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Figure 2: Program distributions when λ is 10.
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Figure 3: Program distributions when λ is 20.

tions and fitness evaluations. Three sets of experimental
runs were made, one for each of the 3 environmental epoch
lengths (λ=10, 20 and 50 generations). Each set consists of
100 runs.

Initially, the objective function was always-on. After λ gen-
erations, the objective function was switched to even-4-parity.
The switching between these two objective functions took
place every λ generations until the end of the run.

Fitness of an evolved program was calculated based on the
number of test cases it solved. With 4 Boolean inputs, each
can be true or false, the number of test cases is 24 =
16. When the objective function is even-4-parity, the eq-
only programs have a needle-in-haystack fitness landscape:
a program either solves 16 or 8 test cases. This property also
applies to the always-on objective function program fitness
landscape [6]. An evolved program, therefore, has fitness
value either 16 or 8 under both objective functions.

6. RESULTS AND ANALYSIS
Under different environmental variation rates, populations
exhibit different program distributions. We show the results
averaging over 100 runs in Figures 2, 3 and 4. Note that we
only plot the first 100/200 generations as the rest of the
generations have a similar pattern.
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Figure 4: Program distributions when λ is 50.

For all variation rates, populations were able to adapt to the
new environment and evolved phenotype to meet the new
objective function. However, the populations never com-
pletely converged to the target phenotype. Under rapid en-
vironmental fluctuation (λ = 10), populations did not have
enough time to reach a stable condition. Nevertheless, the
in-between programs are consistently present in the popu-
lations with a noticeable proportion (30-40%). These geno-
types have half of the features required for both objective
functions. They correspond to organismal flexibility - indi-
viduals tolerate both conditions, but neither one exception-
ally well.

At an intermediate rate of fluctuation (λ = 20), populations
were able to settle in a stable condition for a short period of
time, during which the target genotypes occupied about 70%
of the populations. Meanwhile, the number of in-between
programs in the populations (around 25%) was lower than
that under the fast variation rate. With an even slower
environmental variation rate (λ = 50), the populations had
a longer period of stable condition, where the number of
in-between programs decreased to 20% while the number
of the target genotypes increased to 75%. This indicates
that populations start to evolve programs which are more
resilient to changes, hence a less number of new phenotypes
(in-between) were produced.

Although both intermediate and slow variation rates pro-
duced populations that evolved a similar combined num-
ber of in-between and the target genotypes, these genotypes
have different characteristics. We collected individuals from
the populations prior to switching to the new objective func-
tion from these two sets of runs. These genotypes were then
evaluated with their terminal size (t). Figure 5 gives the
results when the objective function was even-4-parity and
Figure 6 gives the results when the objective function was
always-on.

In general, populations evolved programs with a larger ter-
minal size (t) under λ = 20 (one exception is t = 16, which
might be caused by data distribution). These genotypes
are more sensitive to mutations under the experimental se-
tups we used. As mentioned in Section 5, each cell of a se-
lected vector was mutated with 10% probability. Hence, the
individual-level mutation rate is

P

t+1

i=0
0.1. In other words,
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Figure 5: Program terminal size(t) distribution un-
der even-4-parity environment.
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Figure 6: Program terminal size(t) distribution un-
der always-on environment.

the larger the terminal size, the higher the individual mu-
tation rate. These genotypes are located near the edge of
the neutral networks, where mutations are more likely to
produce different phenotypes to adapt to new environments
when the change takes place.

Did the populations that evolved genotypes with a heighten
mutation sensitivity produce more beneficial offspring? Fig-
ure 2 gives the information of all mutations that produced
better offspring.

As shown, the populations which evolved genotypes with
larger terminal sizes (under λ = 20) produced more bene-
ficial offspring than those evolved genotypes of shorter ter-
minal sizes (under λ = 50). Moreover, the majority of the

Table 2: Information of mutations that produced
better offspring.

λ=10 λ=20 λ=50
parent qty % qty % qty %

opposite 2129 28.29 1200 26.99 457 24.75
in-between 5396 71.71 3245 73.01 1389 75.25
Total 7525 100% 4445 100% 1846 100%

Figure 7: Populations evolve toward boundaries of
the 3 neutral networks.

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100
nu

m
be

r o
f m

ua
tio

ns
generation

worse
equal
better

Figure 8: Program evolvability when λ is 10.

genotypes the produced better offspring are in-between. We
also examined all these parent genotypes and found that
they all have terminal size 18, hence are all located at the
very end of the neutral networks. This indicates that pop-
ulations evolved genotypes around the boundaries of the
three phenotype neutral networks (see Figure 7). As shown
in Figures 8, 9 and 10, all beneficial mutations took place
right after the environmental switches. These provide strong
evidences that under environmental variations, populations
exploit neutrality to increase the like-hood of beneficial mu-
tations.

7. DISCUSSIONS
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Figure 9: Program evolvability when λ is 20.
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Figure 10: Program evolvability when λ is 50.

Using a simple GP system that switches between two op-
posite environments periodically, we have observed the pop-
ulations favor genotypes with heighten mutations sensitiv-
ity, hence increase the rate of phenotypically consequential
mutations, even though the genotypic mutation rate is the
same. This adaptation of mutation rates has produced more
beneficial offspring. In other words, the populations evolved
evolvability under environmental variations.

This emergence of self-adaption of mutation rates to improve
evolvability has also been observed in a different GP system
with a many-to-one genotype-phenotype mapping [13]. In
that study, the objective function was constant throughout
the evolution process. However, the populations exhibited
an incremental progress that evolved from genotypes with
lower fitness to higher ones step by step until the target
phenotype was reached. This pattern is similar to that of
this study in that the populations focus on one phenotype
at a time. We speculate that this emergent property is likely
to hold for a larger class of systems if the neutral networks
contain genotypes with different mutation sensitivities.

In this work, the prior and future environments are identical.
If, instead, the environment continually shifts to completely
novel states, the evolutionary history of a population might
not prepare it for future adaptation. We speculate that pop-
ulations will still evolve a certain number of genotypes with
heighten mutations sensitivity, as long as they exist in the
phenotype neutral networks. When considering open-ended
evolution, populations which are capable of adapting mu-
tation rates according to the environment they live in are
more likely to continuously evolve evolvability.

8. CONCLUSIONS
Simulating biological evolution process for problem solving
has been the backbone of evolutionary computing. While
many aspects of the process have been integrated in com-
puter systems to study the evolution of artificial life forms,
not much attention is given to environmental variations.
With the recent research developed in the evolutionary biol-
ogy that clarifies the relationships between molecular, func-
tional and ecological variations, we are now well equipped
to explore the implications of artificial life evolution under
heterogeneous environments.

This paper is our initial effort in researching the interplay
between program evolvability and neutral networks under
environmental variations. Using a simple GP system under
2 alternating objective functions, we have observed popula-
tions exploit neutrality to cope with environmental fluctua-
tions and evolve evolvability. We will continue this work by
investigating more complex environment variation patterns
and other forms of neutrality.
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