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Overview – Part 1
PART1: General Introduction

– Historical remarks
– LCSs: Framework and basic components

• Problem types 
• Michigan- and Pittsburgh-style LCSs
• Knowledge representations
• Learning in LCSs
• Questions to consider. 

Part 2: LCS Systems and Concepts
– The XCS classifier system
– Anticipatory learning classifier systems
– Other learning classifier systems
– Summary, conclusions, & further information
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Historical Remarks
• Proposed and introduced by John H. Holland

– In the 1970s
– Schema processing mechanism (Holland, 1975)
– Cognitive systems (CS1, Holland, & Reitman, 1978)

• First applications in the 1980s
– Poker decisions (Steve F. Smith, 1980)
– Animal-like automaton (Booker, 1982)
– Gas pipeline control task (Goldberg, 1983)
– Video-eye focusing (Wilson, 1983)
– Animat automation (Wilson, 1985, 1987)
– Others (cf. Goldberg, 1989)
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LCS Renaissance Since 1990s
• Introduction of two fundamental Michigan-style LCS 

systems: 
– The strength-based ZCS system (Wilson, 1994)
– The accuracy-based XCS system (Wilson, 1995)

• Since late 1990s:
– New LCS representations
– New RL-based and gradient-based prediction formation
– Advanced understanding of genetic algorithms
– Comparisons with other machine learning techniques
– Competitive LCS results in benchmark classification, function 

approximation, and reinforcement learning problems
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LCSs: 
Frameworks and 

Basic Components

1. Problem types
2. Michigan and Pittsburg-style LCSs
3. Knowledge representation
4. Learning in LCSs
5. How an LCS works
6. Questions to consider
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Problem Types

1. Classification problems

2. Reinforcement learning problems

3. Function approximation problems

4. General prediction problems
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Problem Types:
Classification Problems

• Task: 
Find a compact set of rules that classify all problem 
instances maximally accurately.

• Examples:
– Medical diagnosis
– Image classification
– Game analysis
– Mushroom classification
– Boolean functions

Rules for mushroom 
classification:

…
poisonousRed AND Has-spots

poisonousLarge AND green
poisonousSmall AND pink

edibleSmall AND green
ClassificationCondition
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Problem Types:
Reinforcement Learning Problems

(cf. Sutton, & Barto, 1998)

• Task: 
Find an optimal behavioral policy represented by a compact
set of rules.

• Examples:
– Maze tasks: 

Find the food, avoid predators
– Mountain car problem: 

Drive the car to the top of the hill
– Blocks world problems: 

Move the blocks to a goal 
constellation

– POMDPs pose additional challenges.

Solution for a simple 
maze task
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Problem Types:
Function Approximation Problems
• Task: 

Find an accurate function approximation represented by a 
partially overlapping set of approximation rules.

• Examples:
– Constant approximation of 

a step function
– Piece-wise linear 

approximation of a sine 
function

Piece-wise linear solution 
for a sine function
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Problem Types:
Solving Any Prediction Problem

• LCSs can generally solve any type of 
prediction problem.

– Conditions cluster the problem space.
– Predictions form inside the evolving clusters.

• Feedback can be either immediate or delayed.
– Given delayed feedback, feedback propagation is 

necessary.  

11
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Michigan- and 
Pittsburgh-style  

LCSs

1. Fundamental system differences

2. Targeted problem solutions
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Pittsburgh- vs. Michigan-style LCSs

Fundamental Differences
Pittsburgh-style LCS

• Each individual encodes an 
entire problem solution.

• Each individual encodes an 
entire set of rules.

• Whole rule sets are 
evaluated.

• Complete competing problem 
solutions evolve.

• An offline learning system 
that learns iteratively from 
sets of problem instances.

• Typically, small rule sets 
evolve.

Michigan-style LCS
• One complete problem solution is 

encoded.
• Each individual encodes one 

single rule.
• Rules are evaluated 

(competitively) individually.
• Rules evolve (competitively) 

individually.
• An online learning system that 

learns iteratively from single 
problem instances.

• Typically, solutions with a larger 
number of (local) rules evolve.
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Michigan vs. Pittsburgh-style LCSs
Targeted Problem Solutions

Pittsburgh-style LCS

• Fundamental properties
– Evaluates and optimizes 

rule-sets globally (based on 
sets of problem instances).

• Major qualities
– Evolves one global 

problem solution.
– Mainly uses evolutionary 

rule structure optimization.
• Arguable actually a GA 

rather than an LCS.

Michigan-style LCS

• Fundamental properties
– Evaluates rules locally.
– Optimizes rules locally.

• Major qualities
– Distributed, locally optimal 

problem solution
– Combines local gradient-

based approximation with 
local evolutionary rule-
structure optimization. 

14

Martin V. Butz - Learning Classifier Systems07/07/2007

Knowledge 
Representation

1. Population-based knowledge 
representation

2. Condition structures
3. Prediction structures
4. Examples
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Population-Based
Knowledge Representation

• Population (set) of classifiers (rules)
– Usually unordered

• Classifiers with
– Condition part C
– (Action part A)
– Prediction part P
– Meaning: 

“If condition C is satisfied (and action A is executed), 
then P is expected to be true.”

• Given a problem instance
– Solution is determined by matching classifiers (those whose 

conditions are satisfied).
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Condition Structures I
(conditions also called “taxa”)

• For binary problems
– Ternary alphabet 0, 1, #
– Examples:

• (100#) matches 1000 and 1001
• (#1#) matches 010, 011, 110, 111

• For real-valued problems
– Interval encoding
– Hyperellipsoidal encoding
– Example (interval encoding):

• ([0,.5][.2,.7][0,1]) matches if att.1 has a value between 0 and .5, 
att.2 between .2 and .7, and att.3 between 0 and 1.
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Condition Structures II
• Nominal problems

– Set-based encoding
– Interval encoding
– Example (set-based encoding):

• ({a,b,d},{b}) matches if att.1 equals ‘a’, ‘b’, or ‘c’ and 
att.2 equals ‘b’

• Mixed-valued problems
– Mixed encodings

• Other condition representations
– Partial matching (Booker, 1985)
– Default hierarchies (Holland et al., 1986)
– Fuzzy conditions (Bonarini, 2000; Valenzuela-Rendón, 1991)
– Neural-network-based encodings (Bull, O’Hara, 2002)
– GP tree encodings with S-expressions (Lanzi, 1999)
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Prediction Structures

• Traditionally, a constant value prediction
– Given conditions are satisfied, value P is predicted. 

• For real-valued function approximation problems
– Linear predictions (weight vector with offset)
– Polynomial predictions

• Generally
– Predictions can be computed based on available problem 

input.
– Predictions are usually learned by means of gradient-based 

learning techniques (problem of “credit assignment”)

Martin V. Butz - Learning Classifier Systems07/07/2007

19

Solution Representation Examples:
Multiplexer Problem

……
0110000
0100101
1100010
0101101
0011011
0000111
1001000
0000000

ClassProblem instance

Class=0Problem
Instance 000 111

Class=1Problem
Instance 001 110

1000011###0
1000110##1#

1000111###1

1000010##0#
1000101#1##
1000001#0##
10001001###
10000000###

PAC

Optimal solution representation
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Solution Representation Examples:
Simple Maze Problem

…
11#####1
11####0#
##0####1
#0######
#10###0#
11#####1
0#######
1#0###0#
11#####1

C

A,E
D,E

A,B,C
B

C,D
A,E
C

B,D
A,E

Matches

810P

……

810J

900J

1000N

900N

810N

1000K

900K

810K

PA

EDEEEEEE11111101E
FCDDDEDD11011100D
CBCCCDCF01011101C
BABBBCFB10011101B
AAAAABAA11011111A
LPJNKSensationState

Optimal solution representation
(with reward propagation)

Problem instances sampled 
running through the maze

A B C D E
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Solution Representation Examples:

Function Approximation Problem

Problem instances sampled from 
f(x) = sin(2πx) with x in [0,1]

.72 , -5.2[.36 , .45]

.50 , -6.3[.42 , .58]
…

[.31 , .38]
[.28 , .32]
[.26 , .29]
[.24 , .26]
[.21 , .24]
[.18 , .22]
[.12 , .19]
[.05 , .14]
[.00 , .08]

C

.92 , -3.6

.97 , -1.9

.98 , -0.9
.98 , 0.0
.96 , 0.9
.90 , 1.9
.68 , 3.6
.33 , 5.2
.00 , 6.3

P

Good solution representation

22
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Learning in LCSs

1. Basic operation cycle

2. Prediction estimation

3. Rule quality evaluation

4. Rule structure evolution

5. Interplay of rule evaluation and rule 
learning
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Basic Operation Cycle In LCSs
• Repeat until done

– Get current problem instance (input) & form match set
– Decide on classification / action, execute action, form action set
– Receive feedback & update rule estimates
– Apply GA

E N V I R O N M E N T

LEARNING CLASSIFIER SYSTEM  LCS1

POPULATION
condition

##0#####
######0#
0#######
1#0####1
11######
01011101
##01110#
#101#11#
##1###0#
...

action
K
K
K
J

K
L
L
L

reward
903
900
1000
900
870
1000
900
900
900

Cl.Nr.
1
2
3
4
5
6
7
8
9

problem instance / 
state information 01011101

condition
##0#####
######0#
0#######
01011101
##01110#
...

action
K
K
K
K
L

reward
903
900
1000
1000
900

Match Set [M]
Cl.Nr.
1
2
3
6
7

Action Set [A]
condition

##0#####
######0#
0#######
01011101
...

action
K
K
K
K

reward
903
900
1000
1000

Cl.Nr.
1
2
3
6

action

Action Set [A’]
condition

##0#####
######0#
0#######
01011101
...

action
K
K
K
K

reward
922.4
920
1000
1000

Cl.Nr.
1
2
3
6

Rule Prediction
Update

Genetic Algorithm
(selection, reproduction,

mutation, recombination, &
deletion)

feedback=1000
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Prediction Estimation
(also called “credit assignment subsystem”)

• Gradient-based prediction updates

• For constant predictions: 
– Original method: Bucket Brigade algorithm (Holland, 1985)
– “Modern” techniques: 

• Q-learning derived updates
• Widrow-Hoff rule (Widrow, Hoff, 1960)

– Generally, an iterative prediction update based on prediction 
error

• For linear predictions:
– Delta rule
– Better: Recursive least squares or Kalman filtering

• For other prediction types:
– Use best local (gradient-based) approximation technique
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Example
Simple Prediction Update

E N V I R O N M E N T

LEARNING CLASSIFIER SYSTEM  LCS1

POPULATION
condition

##0#####
######0#
0#######
1#0####1
11######
01011101
##01110#
#101#11#
##1###0#
...

action
K
K
K
J

K
L
L
L

reward
903
900
1000
900
870
1000
900
900
900

Cl.Nr.
1
2
3
4
5
6
7
8
9

problem instance / 
state information 01011101

condition
##0#####
######0#
0#######
01011101
##01110#
...

action
K
K
K
K
L

reward
903
900
1000
1000
900

Match Set [M]
Cl.Nr.
1
2
3
6
7

Action Set [A]
condition

##0#####
######0#
0#######
01011101
...

action
K
K
K
K

reward
903
900
1000
1000

Cl.Nr.
1
2
3
6

action

Action Set [A’]
condition

##0#####
######0#
0#######
01011101
...

action
K
K
K
K

reward
922.4
920
1000
1000

Cl.Nr.
1
2
3
6

Rule Prediction
Update

feedback=1000

Martin V. Butz - Learning Classifier Systems07/07/2007

26

Rule Quality (Fitness) Estimation

• Rule quality is derived from rule prediction.
• Iterative rule quality update
• Originally: 

– Rule quality = rule prediction
(strength-based update, problem of strong overgenerals, 
Kovacs, 2004)

• Now often:
– Rule quality = average (shared) payoff received (shared, 

strength-based) (see: ZCS system, Wilson, 1994)
– Rule quality = accuracy of prediction (accuracy-based)

(XCS system, Wilson, 1995)
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Rule Structure Evolution

• Rule structure evolves by means of a genetic algorithm 
(GA) (possibly plus heuristics).
– Usually constant population size
– Fitness = rule quality
– Steady state GA: selection of few highly fit classifiers

• Different selection methods possible
• Often niche-based selection

– Mutation, crossover applied to rule condition (and action)
– Insertion of offspring
– Deletion of low-fitness classifiers
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Example: 
Iterative Rule Structure Evolution

001###
1101#0
#1#1#1
###00#
1###11
##10##
1#####
…

Population
0
0
1
1
1
0
0

806
1000
980
423
98

516
509

1010##
0#1#1#

0
1

661
661

crossover

001#1#
1#10##

0
1

806
516

mutation 1010##
1101#0
#1#1#1
###00#
0#1#1#
##10##
1#####
…

New Population
0
0
1
1
1
0
0

661
1000

980
423
661
516
509

insertion
&

replacement

001###
##10##

0
0

806
516selection
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Rule Quality Estimation and 
Rule Structure Evolution

• Gradient-based rule quality estimation
– Goal: Fast identification of current best classifiers 

• Fast and maximally accurate parameter estimates
• Fast adaptation to population and environment dynamics

• Evolutionary rule structuring (possibly combined with 
heuristics)
– Goal: Effective search through promising solution structure 

subspaces
• Effective selection 
• Effective local neighborhood search
• Effective substructure propagation and recombination
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How Does an LCS Work?
Interplay of Estimation and Evolution

• Successful rule structure evolution depends on 
effective rule quality estimation (fitness).

• Thus, optimal problem solution structure can only 
evolve effectively if:
– Rule quality is determined as fast as possible.
– Thereby, mind the explore-exploit dilemma (need to 

evaluate all rules)!

31
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Questions to 
Consider

1. Which LCS should I use?
2. How can I optimize my LCS?
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Which LCS should I use?

• Consider the problem solution representation
– Can local approximations yield an effective global solution 

to the problem at hand?
Yes: Michigan-style LCSs will be effective.
No: Consider also using Pittsburgh-style LCSs, GP, or other 

related optimization techniques.

• Consider the problem type
– Do you want to learn iteratively online or offline?

• Online: Another reason to use Michigan-style LCSs. 
(also others possible, though)

• Offline: Both LCS systems can be applied.
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How can I optimize my LCS?
• Given a problem and a targeted solution 

representation: 
– How should I partition the problem space?

• What is the best condition representation? 
• How can I evolve condition structures maximally effectively? 

– What do I want to predict?
• What is the best prediction representation?
• How do I approximate predictions and derive fitness most 

effectively?

– How is feedback available?
• Is feedback available immediately (one-step problems)?
• Is feedback delayed but fully predictable (MDP)?
• Is feedback delayed and only partially predictable (POMDP)?

34
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… these questions 
will now be addressed 

in concrete LCS 
implementations.

Any other questions so far? 

35
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Overview – Part 2
PART1: General Introduction

– Historical remarks
– LCSs: Framework and basic components

Part 2: LCS Systems and Concepts
1. The XCS classifier system

• Framework & functionality
• XCS – Performance Suite

2. Anticipatory learning classifier systems
• Introduction
• ACS2
• XACS
• Potentials

3. Other classifier systems
4. Summary, conclusions, & further 

information
36
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The XCS 
Classifier System

• Introduced by Stewart W. Wilson (1995)

• Is a Michigan-style LCS

• Major novelties:
– Q-learning based reinforcement learning
– Relative accuracy-based fitness
– Action-set restricted selection (niche 

selection)
– Panmictic (population-wide) deletion
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XCS:
Framework & 
Functionality

1. Framework overview
2. Evolutionary pressures
3. Solution representation
4. Problem bounds
5. Condensation and Compaction
6. Summary
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Classifiers
• Condition Part C

→ When classifier is applicable

• Action Part A
→ Which action to execute

• Prediction P 
→ Expected average reward

• Prediction Error ε
→ Estimate of mean absolute 

deviation of P

• Fitness F
→ Estimate of average action-

set-relative accuracy of P

Additional parameters:
• Action set size estimate as
• Time stamp of last GA 

application ts
• Experience exp

→ How often parameters were 
updated.

• Numerosity num
→ How many identical classifiers 

are represented.
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Parameter Updates
situation S action A feedback R(S,A,S+1)
classifier cl condition part C reward pred. P
prediction error ε fitness F learn. rate β
discount factor γ min. error ε0 accuracy modifiers α, η

∑
∑

++

++

+

∈

∈
+

⋅
+=

)]A,[A(S 

)]A,[A(S  
1

11

11

1 .

..
max ),,(),(

cl

cl

A Fcl

PclFcl
SASRASP γ

Prediction array determination

).),((.. PclASPPclPcl −+← β
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑
∈ )],([

.
.

ASAc
Fc

Fcl
Prediction update

].|),(.[|.. εβεε clASPPclclcl −−+←
Error update

⎩
⎨
⎧ >

=
−

otherwise1
cl. if)/.(

. 00 εεεεακ
ηcl

cl

Current accuracy derivation

∑
∈

=

)],([
.

.'.

ASAc
c

clcl
κ

κκ
Set-relative accuracy derivation

].'.[.. FclclFclFcl −+← κβ
Fitness update
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Evolutionary Algorithm

• Fixed population size
• Steady-state genetic algorithm in action sets
• Two reproductions and deletions per iteration

– Reproduction in action set
– Selection (proportionate or tournament) based on fitness
– Deletion (proportionate selection) from whole population 

based on coverage

• Genetic operators: 
– Mutation
– Recombination
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Learning Interaction

E N V I R O N M E N T

X       C       S

match set
generation

action set
generation

Genetic Algorithm
selection, reproduction,

mutation, recombinationdeletion

reward = 1000problem instance / 
state information 01011101

Match Set [M]
##0#####
######0#
0#######
01011101
##01110#
...


K
K
K
L

840
900

1000
1000

900

73
85

1
1
5

.05

.06

.88

.12

.75

C A P ε FPOPULATION

##0#####
######0#
0#######
1#0####1
11######
01011101
##01110#
#101#11#
##1###0#
...


K
K
J

K
L
L
L

840
900

1000
900
870

1000
900
900
900

73
85

1
112
60

1
5

132
128

.05

.06

.88

.02

.10

.12

.75

.04

.06

C A P ε F

Action Set [A]
######0#
0#######
01011101
...

K
K
K

900
1000
1000

85
1
1

..06
.88
.12

Action Set [A’]
######0#
0#######
01011101
...

K
K
K

920
1000
1000

84
1
1

.05

.82

.18

actionK

predic-
tion

array
gene-
ration

action
selec-
tion

parameter   -   updates
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How Does It Learn? 
XCS Learning Pressures

• Parameter updates identify most accurate classifiers.

• Genetic algorithm causes evolutionary pressures on 
condition structures
– Set pressure (reproduction of more general classifiers)

– Fitness pressure (reproduction of more accurate classifiers)

– Mutation pressure (diversification – specificity/generality 
pressure)

– Subsumption pressure (elimination of accurate, over-specialized 
classifiers)

Martin V. Butz - Learning Classifier Systems07/07/2007

43

Evolutionary Pressures

ac
cu

ra
cy

specificity

0 1accurate, 
maximally general

0

1

fitn
ess

pressure

set pressure

mutation pressure

subsumption pressure
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What Does it Learn?
Solution Representation

• GA propagates most accurate classifiers.

• Generalization pressures propagate accurate, maximally general 
classifiers.

• Niche reproduction with coverage-based deletion ensures 
occurrence-based coverage. 

• Thus, XCS strives to learn a complete, maximally accurate, and 
maximally general approximation model.
– In classification problems: Class-dependent subspace partitions.
– In reinforcement learning problems: Approximation of Q-value 

function.
– In function approximation problems: Piecewise linear function 

approximation.
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Can We Assure Learning Success?
Learning Bounds

• Proper population initialization: 
covering bound

• Ensure supply:
schema bound

• Ensure growth:
reproductive opportunity 
bound

• Ensure solution sustenance:
niche support bound

• Enough learning time is necessary:
learning time bound

ac
cu

ra
cy

specificity

0 1accurate, 
maximally general

0

1

fitn
ess

pressure

set pressure

mutation pressure

subsumption pressure
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Ensuring Learning Bounds

• Learning bounds can be assured by
– Setting initial specificity sufficiently low 

– Setting population size sufficiently high (problem difficulty)

– Setting mutation properly (controlling specificity and search 
time)

– Allowing enough learning iterations (time)

• PAC learning relation in k-DNF problems (Butz, 
Goldberg, & Lanzi, 2005)
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Condensation and Compaction
• Population sizes of final solution rather large 

– GA is running continuously.
– Many redundant and inaccurate classifiers

• Use condensation:
– Continue to run GA without mutation and crossover (Kovacs, 1996;

Wilson, 1995).

• Use closest classifier matching (CCM):
– Avoids holes in problem coverage.
– Matches fixed number of closest classifiers (Butz, Lanzi, & Wilson, in 

press).

• Greedily delete overlapping / irrelevant classifiers
– Can be hard to determine which ones to delete.
– Several methods are available (Butz, Lanzi, & Wilson, in press; Dixon, 

Corne, & Oates, 2003; Wilson, 2002).

Martin V. Butz - Learning Classifier Systems07/07/2007

48

Summary of XCS Properties 

• XCS represents its solution by a collection of sub-
solutions (that is, a population of classifiers).

• XCS evolves a problem space clustering in its 
conditions.

• Clusters (subspaces) evolve to enable maximally 
accurate predictions.
– Accuracy can be bounded (error threshold ε0 and population size 

relation).
– Basically any form of prediction is possible (e.g. reward, next 

sensory input, function value).
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XCS:
Performance 

Suite

1. Multiplexer problem
2. Datamining problems
3. Function approximation problems
4. Reinforcement learning problems
5. Summary
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XCS in 6-Multiplexer Problem

101000010##0#
……………

101000101#1##
100001#1##
100101#0##
101000001#0##
1010001001###
1000001###
1001000###
1010000000###
FεRAC

Optimal solution representation

……
0110000
0100101
1100010
0101101
0011011
0000111
1001000
0000000

ClassProblem instance

Class=0Problem
Instance 000 111

Class=1Problem
Instance 001 110
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Performance in MP 70
(Butz, 2006; Butz, Kovacs, Lanzi, & Wilson, 2004)

• Very hard problem 
• Perfect problem solution contains 28=256 classifiers.
• Problem space is huge: 270

• Rule condition space is even bigger: 2*370
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Performance in Datamining Problems
(Butz, 2006)

• Conditions are encoded with attributes dependent on type of 
attribute in dataset (mixed encoding).

• Experiments in 42 datasets (from UCI and other sources)

• Comparisons with ten other ML systems (pairwise t-test)

• XCS learns competitively, but it is a much more general learning
system.
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Piecewise Linear Function 
Approximation

• Conditions may be encoded as
– Hyperrectangles
– (Rotating) Hyperellipsoids

• Initialization, mutation, and crossover need to be 
adjusted

• Predictions as a linear function of the inputs
– Gradient descent on weight vector or
– Recursive least squares approximation

• Evolves a partially overlapping piece-wise linear 
approximation
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Performance in 
3D Sinusoidal Function

(Butz, Lanzi, & Wilson, in press)
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3D Function vs. Neural GAS, 
7D Function with Compaction and CCM

(Butz, Lanzi, & Wilson, in press)
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Performance in RL Problems
Example: Maze6

• Reinforcement learning problems
– Approximation of Q-value function
– Reward propagation necessary

• MDP problems

• POMDP pose additional challenges 
(Lanzi, 2000; Lanzi, & Wilson, 2000)

• RL comparison in mountain-car 
problem (Lanzi, Loiacono, Wilson, & 
Goldberg, 2006)
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Performance in Maze6 plus 
Irrelevant Bits

(Butz, Goldberg, & Lanzi, 2005; Butz, 2006)
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Summary of XCS

• XCS is a highly flexible LCS.
• XCS can be applied to a variety of problem 

domains.
• XCS shows competitive or even superior 

performance.
• XCS generalizes well.
• XCS is noise robust.
• Further applications are imminent.

59
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Anticipatory 
Learning Classifier 

Systems

1. Introduction
2. ACS2
3. XACS
4. Potentials
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Anticipatory Learning 
Classifier Systems

• Learning classifier systems (Michigan-style) that learn latently 
predictive world models (Riolo, 1991; Stolzmann, 1998).

• Each rule comprises a 
– Condition C,
– Action A,
– Effect part E,
– Rule quality estimate F.

• Each rule explicitly predicts something like:
Given condition C is satisfied and action A is executed, effect E is 

expected.

• Population represents a predictive environmental model.
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ACS2: Rule Structure Learning
(Butz, 2002; Butz, Goldberg, & Stolzmann, 2002; Stolzmann, 1998)

• Anticipatory learning process
– Primary learning of action-effect (R-E) relations
– Secondary differentiation of conditions
– A directed, or informed, specialization mechanism 

• Genetic generalization mechanism
– Fitness based on accuracy of effect-predictions
– Selection of accurate classifiers
– Deletion of inaccurate and/or highly specialized classifiers
– An undirected, genetic generalization mechanism

• ALP and GGM together evolve complete, accurate, 
and maximally general predictive models.
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ACS2 – Problem Interaction

Martin V. Butz - Learning Classifier Systems07/07/2007

63

ACS2 – Match Set Formation
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ACS2 – Action Set Formation
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ACS2 – Action Execution
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ACS2 – Learning
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ACS2 – Performance Examples
(Butz, 2002)

Multiplexer performance: Class prediction Maze 6 – Optimal behavior
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Independent RL in ACS2 = XACS

• ACS2 represents reward prediction inside rules
– RL directly in state-predictive rules.
– But rule structure learning depends only on state prediction.
– Can lead to model aliasing (model too general for accurate 

reward predictions)

• In XACS, behavior is realized in behavioral module
– Learns generalized state values via XCS mechanism.
– Model-based RL = online generalizing DYNA-PI mechanism 

(Sutton, 1990; Sutton, & Barto, 1998).
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XCS as the State Value Learner

• XCS now approximates state values.

• Thus:
– Population of classifiers with conditions only
– Evaluation of classifiers by the means of ACS2
– GA and fitness evaluation stay the same

• Updates of reward prediction in XCS via ACS2 
predictions:
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Current situation:
000 000 BB0 B

Predictions:
R1 J B00 000 BB0 0 J .656
R2 J 000 B00 BB0 0 J .531
R3 J 000 000 BBB 0 J .531

Resulting behavior: 
Execute action R1

Example: Blocks World Problem

BB B

Goal

BBB

Current 
Situation

.96= .5314

.92 *.94 *.96=.6658

.94= .6561
Q-value (ACS only)

1.0
1.0
1.0
q

### ### ##B 0R3### ### #B# B

B## ### ### 0R10## ### ### B
### B## ### 0R2### 0## ### B

Effect EAction ACondition C

…

…

.96= .53140## ### ### 0
…

B0# ### ### 0

#B# ### ### B
##B ### ### #
Condition C

0.9
1

.94= .6561

V

…

State value XACS 
population

XACS predictive model population
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Blocks World Performance
(Butz, & Goldberg, 2003)
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ACS2/XACS Potentials

• Learn generalized predictive model.
– Fast and directed.
– Currently restricted to mainly deterministic environments 

(irrelevant attributes may fluctuate).
– May be enhanced with statistics-based specialization.

• Can be used to simulate cognitive phenomena
– Anticipatory behavior in rats (Butz, & Hoffmann, 2002)
– Motivational module available
– Interactions of emerging motivations and emotions 

possible
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ALCSs - Summary

• ALCSs are LCSs that learn generalized predictive world models 
online (latent learning).

• Behavioral policy is learned with state value learning 
mechanisms.

• Model-based reinforcement learning is possible.

• ACS2 – efficient predictive model learning 
• XACS – online generalizing model and state value learning.

• Other ALCSs
– YACS (Gérard, & Sigaud, 2001)
– MACS (Gérard, Meyer, & Sigaud, 2005)

74
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Other recent 
LCSs 

1. Endogenous fitness approaches
– Economy- or energy-derived resource models for fitness 

estimations (Baum, 1999; Booker, 2000, 2001)
2. Genetic and artificial life environment (GALE)

– A parallel, distributed Pitt-style GA (Llorà, Garrell, 2001; 
Bernadó, Llorà, Garrell, 2002).

3. Genetic classifier system (GAssist)
– Strongly generalizing Pitt-style datamining LCS (Bacardit, 

2004).

4. Multiobjective LCS (MOLCS)
– Multiobjective Pitt-style LCS (Llorà et al., 2003)

5. sUpervised Classifier System (UCS)
– An XCS derivative for datamining problems (Bernadó-

Mansilla, & Garrell-Guiu, 2003).

…and many others (see references).
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Summary

• Learning Classifier Systems
– Learn and generalize online (iteratively),
– Extract useful problem sub-structures,
– Combine gradient-based (rule evaluation) and evolutionary-based 

(rule structuring) learning techniques.

• LCSs represent their problem solutions by…
… a set of (partially overlapping) sub-solutions (population of classifiers).

• LCSs can solve…
– Classification problems (separation of problem classes)
– Function approximation problems (piecewise approximation of function 

value)
– Reinforcement learning problems (generalized Q-value function)
– Other prediction problems (e.g. predictive environmental models)
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Conclusions
• LCS is a very general and flexible learning paradigm.

– Many condition and prediction representations are possible.
– Many gradient-based learning mechanisms are possible.
– Many rule discovery mechanisms are possible.
– Other combinations and integrations of machine learning 

algorithms are possible.

• Thus:
– Use the LCS most suitable for the problem at hand.

– If necessary, optimize 
• Conditions (representation and evolution)
• Predictions (representation and gradient-based approximation)
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Further LCS 
Information

1. The LCS Web (Barry, 2007)
2. The LCS Bibliography (Kovacs, 2004)

3. Algorithmic descriptions of XCS and ACS2 (Butz, & 
Wilson, 2002; Butz, & Stolzmann, 2002).

4. LCS books and surveys: Butz (2002), Butz (2006), Bull 
(2004), Bull, & Kovacs (2005), Kovacs (2004), Sigaud, & 
Wilson (in press).

5. lcs-and-gbml Yahoo group (moderators: Xavier Llorà and 
John Holmes)

6. IWLCS proceedings (Lanzi, Stolzmann, & Wilson, 2000, 
2001, 2002, 2003; Kovacs, Llorà, & Takadama, in press)

7. IWLCS 2007 workshop tomorrow 
(http://www.psychologie.uni-wuerzburg.de/i3pages/butz/IWLCS2007/)
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