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Learning Classifier Systems

Historical Remarks

« Proposed and introduced by John H. Holland
— Inthe 1970s
— Schema processing mechanism (Holland, 1975)
— Cognitive systems (CS1, Holland, & Reitman, 1978)

» First applications in the 1980s

— Poker decisions (Steve F. Smith, 1980)
Animal-like automaton (Booker, 1982)
Gas pipeline control task (Goldberg, 1983)
Video-eye focusing (Wilson, 1983)
— Animat automation (Wilson, 1985, 1987)
— Others (cf. Goldberg, 1989)
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ﬁei Overview — Part 1
N

PART1: General Introduction
— Historical remarks
— LCSs: Framework and basic components

Problem types
Michigan- and Pittsburgh-style LCSs
Knowledge representations
Learning in LCSs
Questions to consider.

Part 2: LCS Systems and Concepts

- The XCS classifier system

- Anticipatory learning classifier systems

- Other learning classifier systems

- Summary, conclusions, & further information
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LCS Renaissance Since 1990s

e Introduction of two fundamental Michigan-style LCS
systems:
— The strength-based ZCS system (Wilson, 1994)
— The accuracy-based XCS system (Wilson, 1995)

* Since late 1990s:

— New LCS representations

— New RL-based and gradient-based prediction formation
Advanced understanding of genetic algorithms
Comparisons with other machine learning techniques

— Competitive LCS results in benchmark classification, function
approximation, and reinforcement learning problems

)
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LCSs:
Frameworks and
Basic Components

Problem types

Michigan and Pittsburg-style LCSs
Knowledge representation
Learning in LCSs

How an LCS works
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Questions to consider
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Problem Types:
Classification Problems

* Task:

Find a compact set of rules that classify all problem
instances maximally accurately.

Rules for mushroom
classification:

* Examples:
— Medical diagnosis Condition Classification
— Image classification Small AND green edible
— Game analysis Small AND pink poisonous
— Mushroom classification Large AND green poisonous
— Boolean functions Red AND Has-spots poisonous
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Problem Types

Classification problems
Reinforcement learning problems

Function approximation problems

0 NP

General prediction problems
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Problem Types:

Reinforcement Learning Problems

(cf. Sutton, & Barto, 1998)

e Task:
Find an optimal behavioral policy represented by a compact
set of rules.
e Examples: Solution for a simple
— Maze tasks: maze task

Find the food, avoid predators

— Mountain car problem:
Drive the car to the top of the hill
— Blocks world problems:
Move the blocks to a goal
constellation

— POMDPs pose additional challenges.
N
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Problem Types: %

Problem Types: "
Function Approximation Problems

* Task:

Find an accurate function approximation represented by a
partially overlapping set of approximation rules.

Piece-wise linear solution
for a sine function
e Examples:
— Constant approximation of
a step function
— Piece-wise linear
approximation of a sine
function

AN
N

o
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- Michigan- and
Pittsburgh-style
LCSs

1. Fundamental system differences

2. Targeted problem solutions

S
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Solving Any Prediction Problem

LCSs can generally solve any type of
prediction problem.

— Conditions cluster the problem space.

— Predictions form inside the evolving clusters.

Feedback can be either immediate or delayed.

— Given delayed feedback, feedback propagation is
necessary.
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Pittsburgh- vs. Michigan-style LCSs
Fundamental Differences

Pittsburgh-style LCS
Each individual encodes an

Michigan-style LCS
One complete problem solution is

encoded. entire problem solution.
Each individual encodes one + Eachindividual encodes an
single rule. entire set of rules.

Rules are evaluated * Whole rule sets are
(competitively) individually. evaluated.

Rules evolve (competitively)
individually.

An online learning system that
learns iteratively from single
problem instances.

Typically, solutions with a larger
number of (local) rules evolve.

Complete competing problem
solutions evolve.

An offline learning system
that learns iteratively from
sets of problem instances.

Typically, small rule sets
evolve.

Martin V. Butz - Learning Classifier Systems
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Michigan-style LCS

Michigan vs. Pittsburgh-style LCSs
Targeted Problem Solutions

Pittsburgh-style LCS

Fundamental properties e Fundamental properties

Major qualities

AN
N
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Evaluates rules locally.
Optimizes rules locally.

— Evaluates and optimizes
rule-sets globally (based on
sets of problem instances).

Major qualities

— Evolves one global
problem solution.

Distributed, locally optimal
problem solution

Combines local gradient-

based approximation with — Mainly uses evolutionary
local evolutionary rule- rule structure optimization.

structure optimization. « Arguable actually a GA
rather than an LCS.

A3

S
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Population-Based
Knowledge Representation

Population (set) of classifiers (rules)
— Usually unordered

Classifiers with

— Condition part C

— (Action part A)

— Prediction part P

— Meaning:
“If condition C is satisfied (and action A is executed),
then P is expected to be true.”

Given a problem instance
— Solution is determined by matching classifiers (those whose

conditions are satisfied).

b

%

lgec & Knowledgg
S Representation

Population-based knowledge
representation

Condition structures
Prediction structures
Examples
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Condition Structures |

(conditions also called “taxa”)

* For binary problems
— Ternary alphabet O, 1, #
— Examples:
* (100#) matches 1000 and 1001
» (#1#) matches 010, 011, 110, 111

» For real-valued problems
— Interval encoding
— Hyperellipsoidal encoding
— Example (interval encoding):

att.2 between .2 and .7, and att.3 between 0 and 1.

07/07/2007 Martin V. Butz - Learning Classifier Systems

e ([0,.5][.2,.7][0,1]) matches if att.1 has a value between 0 and .5,
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Condition Structures Il

« Nominal problems
— Set-based encoding
— Interval encoding
— Example (set-based encoding):
* ({a,b,d},{b}) matches if att.1 equals ‘a’, ‘b’, or ‘c’ and
att.2 equals ‘b’
* Mixed-valued problems
— Mixed encodings

¢ Other condition representations
— Partial matching (Booker, 1985)
— Default hierarchies (Holland et al., 1986)
— Fuzzy conditions (Bonarini, 2000; Valenzuela-Rendén, 1991)
— Neural-network-based encodings (Bull, O'Hara, 2002)
— GP tree encodings with S-expressions (Lanzi, 1999)

07/07/2007 Martin V. Butz - Learning Classifier Systems

N

Solution Representation Examples:
Multiplexer Problem

e R 1 N S

Problem A %ﬂﬁ Class=1 Optimal solution representation

Inslance_' g .

Problem instance | Class c A P

000000 o 000## | O | 1000
001000 1 001### | 1 | 1000
000111 o 01#0## | 0 | 1000
011011 o Ol#1## | 1 | 1000
101101 o 10##0# | O | 1000
100010 1 10##1# | 1 | 1000
100101 o 11###0 | 0 | 1000
110000 o 1##1 | 1 | 1000
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Prediction Structures

« Traditionally, a constant value prediction
— Given conditions are satisfied, value P is predicted.

« For real-valued function approximation problems
— Linear predictions (weight vector with offset)
— Polynomial predictions

* Generally
— Predictions can be computed based on available problem
input.
— Predictions are usually learned by means of gradient-based
learning techniques (problem of “credit assignment”)

AN
AN
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Solution Representation Examples:
Simple Maze Problem

Optimal solution representation
(with reward propagation)

WA B CDEL c

S

Matches |A | P
A0 0 0 0 0 1L | AE | 1 | 810
Problem instances sampled L#Om#HO# | BD | 1 | 900
running through the maze Ottt | C T_| 1000
, 1L | AE | 2 | 810
State | Sensation | 1 | 2 [= [N | |¢ | & | R
5 #os#0¢ | CD | ~ | 900
A | 1ot [A[AalB|lAa|lAalalAafaA o . > Taow
B | 10101 [B|F|c|B|B|B|A|B
oo < tote < #omEl | ABC | > | 900
1011101 | F P B 1404 | DE | - | 810
D | 10100 [D|[D|E|D|D|D|C|F
sl | AE | N [ 810
@ | munor |e|e[e|e|E|E|D]|E
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E Solution Representation Examples:

Function Approximation Problem

Good solution representation

C P

> (.00, .08] 00,63

\_/ 05, .14] 33,52

[12, .19] 68,36

Problem instances sampled from [18. 22 90,19
f(x) = sin(2nx) with x in [0,1] [2L..24 96,09
[24, 26] 98,00
.26, .29] 98, 0.9
28, 37] 97,19
(31, .38) 92,36

> .36, .45] 72,52
[42, 58] 50, 6
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Basic Operation Cycle In LCSs

* Repeat until done
— Get current problem instance (input) & form match set
— Decide on classification / action, execute action, form action set
— Receive feedback & update rule estimates
— Apply GA

LEARNING CLASSIFIER SYSTEM LCS1

Action Set [A]

CINr. condition action reward

Match Set [M]

CINr. condition action reward
s 1 903

POPULATION
ICINr.  condition action reward

w0

HEHHHOR

1
1 2 O 1T 900
2 900 3 ommmm### 1 1000
3 1000 6 01011101 t 1000
6 1000
7 #HOLL10# 900

14081
s
01011101
##01110#
#101#11#
HHLHHHOR

ceeoap oo

Genetic Algorithm
(selection, reproduction,
qutation, recombination, &
deletion)

s

o
0

Oussnitn 1
owomior 1 1000

problem instance /
state information

01011101 action feedback=1000
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Basic operation cycle

Prediction estimation
Rule quality evaluation

Rule structure evolution

o > wnh e

Interplay of rule evaluation and rule
learning

&
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R Prediction Estimation

(also called “credit assignment subsystem”)

» Gradient-based prediction updates

» For constant predictions:
— Original method: Bucket Brigade algorithm (Holland, 1985)
— “Modern” techniques:
* Q-learning derived updates
« Widrow-Hoff rule (Widrow, Hoff, 1960)
— Generally, an iterative prediction update based on prediction
error
» For linear predictions:
— Delta rule
— Better: Recursive least squares or Kalman filtering

» For other prediction types:
— Use best local (gradient-based) approximation technique

07/07/2007 Martin V. Butz - Learning Classifier Systems
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Example

Simple Prediction Update

3

Rule Quality (Fitness) Estimation

* Rule quality is derived from rule prediction.
Iterative rule quality update

 Originally:
— Rule quality = rule prediction
(strength-based update, problem of strong overgenerals,
Kovacs, 2004)
* Now often:
— Rule quality = average (shared) payoff received (shared,

#

— Action Set [A]
POPULATION Match Set [M] CINr. condition action reward
cIN diti i d CLNr.  condition action reward 1 #HOHHHH 903
LNr. condition action rewar 1 o y 2 sameOR 1 900
1 #HO#HE 1 903 2 HEHOR 1 900 3 Ottt 1
2 HHHHEHOH 1 900 3 Ot 1 1000 6 01011101 1t
3 O#uuH 1 1000 6 01011101 1 1000
4 1HOHEEHL > 900 7 #401110# | 900
5 1l < 870
6 01011101 © 1000
7 ##01110# 13 900 i v
Action Set [A
8  #101#11# H 900 ICLNI. canmmnammn[rewa]m
9 HHLHHOH 1 900 1 O 9224
2 920
3 1000
R 6 01011101 1000
problem instance /

state information | 1011101 action ii feedback=1000
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Rule Structure Evolution

* Rule structure evolves by means of a genetic algorithm
(GA) (possibly plus heuristics).

— Usually constant population size
Fitness = rule quality
Steady state GA: selection of few highly fit classifiers
« Different selection methods possible
» Often niche-based selection
Mutation, crossover applied to rule condition (and action)
Insertion of offspring
Deletion of low-fitness classifiers

strength-based) (see: ZCS system, Wilson, 1994)

— Rule quality = accuracy of prediction (accuracy-based)

(XCS system, Wilson, 1995)

07/07/2007
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Population _—~¥

Example:

001#### O 806
##10## O 516

New Population

lterative Rule Structure Evolution

Haj

001### O 806 mutation
1101#0 O 1000 1101#0 O 1000
#1#1#1 1 980 001#1# O 806 / #1#1#1 1 980
#H#OO# 1 423 1#10## 1 516 /‘ ##00# 1 423
1###11 1 98 ‘
#10## O 516 \ crossover / #10## O 516
1###H# 0 509 / 1##HH#H 0 509
1010## O 661
O#1#1# 1 661
\\‘\\;\ 07/07/2007 Martin V. Butz - Learning Classifier Systems :is%
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Rule Quality Estimation and
Rule Structure Evolution

« Gradient-based rule quality estimation

— Goal: Fast identification of current best classifiers

« Fast and maximally accurate parameter estimates
» Fast adaptation to population and environment dynamics

« Evolutionary rule structuring (possibly combined with
heuristics)

— Goal: Effective search through promising solution structure
subspaces
« Effective selection
« Effective local neighborhood search
» Effective substructure propagation and recombination

AN
N

o
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Questions to
Consider

GEC N
\ %

N

1. Which LCS should | use?
2. How can | optimize my LCS?
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How Does an LCS Work?
Interplay of Estimation and Evolution

» Successful rule structure evolution depends on
effective rule quality estimation (fitness).

» Thus, optimal problem solution structure can only
evolve effectively if:

— Rule quality is determined as fast as possible.

— Thereby, mind the explore-exploit dilemma (need to
evaluate all rules)!

07/07/2007 Martin V. Butz - Learning Classifier Systems
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Which LCS should | use?

« Consider the problem solution representation

— Can local approximations yield an effective global solution
to the problem at hand?
Yes: Michigan-style LCSs will be effective.
No: Consider also using Pittsburgh-style LCSs, GP, or other
related optimization techniques.

« Consider the problem type

— Do you want to learn iteratively online or offline?

« Online: Another reason to use Michigan-style LCSs.
(also others possible, though)

« Offline: Both LCS systems can be applied.

07/07/2007 Martin V. Butz - Learning Classifier Systems
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How can | optimize my LCS?

e Given a problem and a targeted solution
representation:

— How should | partition the problem space?
* What is the best condition representation?
* How can | evolve condition structures maximally effectively?

— What do | want to predict?
* What is the best prediction representation?
* How do | approximate predictions and derive fitness most
effectively?
— How is feedback available?
* Is feedback available immediately (one-step problems)?
« Is feedback delayed but fully predictable (MDP)?
« Is feedback delayed and only partially predictable (POMDP)?

b 07/07/2007 Martin V. Butz - Learning Classifier Systems

GEC N i
_ Overview — Part 2
$
PARTL1: General Introduction
- Historical remarks
- LCSs: Framework and basic components
Part 2: LCS Systems and Concepts
1. The XCS classifier system
¢ Framework & functionality
¢  XCS - Performance Suite
2. Anticipatory learning classifier systems
Introduction
ACS2
XACS
Potentials
3. Other classifier systems

4. Summary, conclusions, & further
information

%‘}
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... these gquestions
will now be addressed
in concrete LCS
implementations.

Any other questions so far?

07/07/2007 Martin V. Butz - Learning Classifier Systems
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W The XCS
Classifier System

* Introduced by Stewart W. Wilson (1995)

* Is a Michigan-style LCS

e Major novelties:
—  Q-learning based reinforcement learning
— Relative accuracy-based fithess

—  Action-set restricted selection (niche
selection)

—  Panmictic (population-wide) deletion

— N
\5
e

07/07/2007 Martin V. Butz - Learning Classifier Systems
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XCS:

W Functionality

1. Framework overview

2. Evolutionary pressures

3. Solution representation

4. Problem bounds

5. Condensation and Compaction

6. Summary

‘;\\\} 07/07/2007 Martin V. Butz - Learning Classifier Systems
Parameter Updates g

situation S action A feedback R(S,A,S,;)
classifier cl condition part C reward pred. P
prediction error € fitness F learn. rate B
discount factor y min. error g, accuracy modifiers a, 1

Prediction array determination

ch.F-cl\
P(SA)=RSA31)+7n1WM Prediction update

2CF c|.P<—c|.P+/3(P(s,A)—c|.P)[ %‘“F}

cle[A(S1AW]
ce[A(S,A)

Error update

cl.e «cl.e+ f[|cl.P—P(S,A) |-cl.€] Current accuracy derivation

k= o(clele,)™ ifce>g,
' 1 otherwise

Set-relative accuracy derivation \
cl.x ;
cl.x'= Fitness update

K oL.F . F +f[d.x'~cl F] QA

S

07/07/2007 Martin V. Butz - Learning Classifier Systems
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Classifiers

Condition Part C

— When classifier is applicable

Action Part A

— Which action to execute

Prediction P
— Expected average reward

Additional parameters:
« Action set size estimate as

¢ Time stamp of last GA
application ts

« Experience exp

— How often parameters were

Prediction Error ¢
updated.

— Es}‘imate of mean absolute
deviation of P « Numerosity num
Fitness F — How many identical classifiers

: . are represented.
— Estimate of average action-
set-relative accuracy of P

A A
AN f
!
S f
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Evolutionary Algorithm

» Fixed population size
» Steady-state genetic algorithm in action sets

< Two reproductions and deletions per iteration
— Reproduction in action set
— Selection (proportionate or tournament) based on fithess

— Deletion (proportionate selection) from whole population
based on coverage

 Genetic operators:

— Mutation
— Recombination
Eéé O
‘:1\ 07/07/2007 Martin V. Butz - Learning Classifier Systems
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Learning Interaction

Match Set [M] action st Action Set [A]
POPULATION c AP & F generation O} I 1333 8? ..gg
€ Ll -
c AP F O ¢ 30 T8 OS] eic- 01011101 1 1000 1 .12
OIS 840 73 .05 T 900 85 .06 -on| action
HUHEHOR 1 900 85 06 Tl 188 a,“ron slec- "
Ot T 1000 1 88 [ ] s parameter | updates
1H0###HL > 900 112 .02 L 900 gal. [
Ly < 810 60 .10 ration
01011101 1 1000 1 .12 .
jon, !
#011104 L 900 5 .75 esion. € jauction. Action Set [A']
#101#11# | 900 132 .04 utation, 1K w0k 1 920 84 05
#L##HOR L 900 128 .06 Ot 1 1000 1 .82
< — ——
R —

problem instance /

tate inf at 010: Ct ii eward = 1000
state information 11101 action
A
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Evolutionary Pressures

set pressure

-
mutation pressure
subsumption pressure
= e
1,
>
o
@
S
>
(&)
Q
]
0 T 1
0 accurate, 1
maximally general —
specificity

Martin V. Butz - Learning Classifier Systems

How Does It Learn? g

XCS Learning Pressures

» Parameter updates identify most accurate classifiers.

« Genetic algorithm causes evolutionary pressures on
condition structures

Set pressure (reproduction of more general classifiers)

Fitness pressure (reproduction of more accurate classifiers)

Mutation pressure (diversification — specificity/generality

pressure)
— Subsumption pressure (elimination of accurate, over-specialized
classifiers)
# L)
)
N T
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Solution Representation

* GA propagates most accurate classifiers.

+ Generalization pressures propagate accurate, maximally general
classifiers.

» Niche reproduction with coverage-based deletion ensures
occurrence-based coverage.

» Thus, XCS strives to learn a complete, maximally accurate, and
maximally general approximation model.
— Inclassification problems: Class-dependent subspace partitions.

— Inreinforcement learning problems: Approximation of Q-value
function.

— Infunction approximation problems: Piecewise linear function
approximation.

N
\ 07/07/2007 Martin V. Butz - Learning Classifier Systems
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% Can We Assure Learning Success? ﬁ
Learning Bounds

+ Proper population initialization:
covering bound

set pressure

mutation pressure

« Ensure supply:
schema bound

subsumption pressure

-

>
15
« Ensure growth: s
reproductive opportunity &
bound
. 0t
» Ensure solution sustenance: ° masimaly genera !
niche support bound specificity

» Enough learning time is necessary:
learning time bound

AN o)
(= 2y I
p: 07/07/2007 Martin V. Butz - Learning Classifier Systems o
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Condensation and Compaction

« Population sizes of final solution rather large
— GAis running continuously.
— Many redundant and inaccurate classifiers

¢ Use condensation:

— Continue to run GA without mutation and crossover (Kovacs, 1996;
Wilson, 1995).

« Use closest classifier matching (CCM):
— Avoids holes in problem coverage.

- Matck;es fixed number of closest classifiers (Butz, Lanzi, & Wilson, in
press).

« Greedily delete overlapping / irrelevant classifiers

— Can be hard to determine which ones to delete.

— Several methods are available (Butz, Lanzi, & Wilson, in press; Dixon,
Corne, & Oates, 2003; Wilson, 2002).

&)
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Ensuring Learning Bounds

» Learning bounds can be assured by

— Setting initial specificity sufficiently low

Setting population size sufficiently high (problem difficulty)

Setting mutation properly (controlling specificity and search
time)

Allowing enough learning iterations (time)

* PAC learning relation in k-DNF problems (Butz,
Goldberg, & Lanzi, 2005)

Ah
a0,

07/07/2007 Martin V. Butz - Learning Classifier Systems
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Summary of XCS Properties

XCS represents its solution by a collection of sub-
solutions (that is, a population of classifiers).

XCS evolves a problem space clustering in its
conditions.

Clusters (subspaces) evolve to enable maximally

accurate predictions.

— Accuracy can be bounded (error threshold g, and population size
relation).

— Basically any form of prediction is possible (e.g. reward, next
sensory input, function value).

07/07/2007 Martin V. Butz - Learning Classifier Systems
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W Suite

1. Multiplexer problem

2. Datamining problems

3. Function approximation problems
4. Reinforcement learning problems
5. Summary

N

Performance in MP 70

(Butz, 2006; Butz, Kovacs, Lanzi, & Wilson, 2004)

Very hard problem
Perfect problem solution contains 28=256 classifiers.
Problem space is huge: 270

Rule condition space is even bigger: 2*31720

XCS IN THE 70 MULTIPLEXER PROBLEM

XCSTS in 70 Multiplexer Problem

ostf 10000 REARD _PERFORMANCE ——

performance, pop.size
PERFORMANCE AND POPULATION SIZE/100000

0 P PR
0 500 1000 1500 2000 2500 3000 3500 4000 4500

explore problems (1000s)

07/07/2007 Martin V. Butz - Learning Classifier Systems

XCS in 6-Multiplexer Problem
Multi ation —» Class=0 Optimal solution representation
roven_, ‘gt ey P i
Problem . gtion —> Class=1 c A R € F
Instance 000##4# | 0 | 1000 | 0 | 1
Problem instance | Class 000### | 1 0 01
000000 0 0u### | 0| 0 |01
001000 1 001### | 1 | 2000 | 0 | 1
000111 0 ow0## | 0 | 2000 |0 |1
011011 0 0w0s# 1| 0 |01
101101 0
100010 1 o114t |0 0 |01
100101 o 01#1## | 1 1000 | 0 | 1
110000 o 10##0# | 0 | 1000 | 0 | 1
Sb 07/07/2007 Martin V. Butz - Learning Classifier Systems .“"’A.I 4

Performance in Datamining Problems

(Butz, 2006)

e Conditions are encoded with attributes dependent on type of
attribute in dataset (mixed encoding).

« Experiments in 42 datasets (from UCI and other sources)
» Comparisons with ten other ML systems (pairwise t-test)

* XCS learns competitively, but it is a much more general learning
system.

XCS Maj. 1R C45 Naive | PART | IB1 B3 SMO | SMO
Bayes (poly) | (pol.3)

99% 38/0 29/1 5/8 19/12 | 5/6 1317 9/11 9/17 8/13
95% 38/0 30/1 5/9 19/12 | 716 1477 9/15 9/18 9/14

i

S
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Piecewise Linear Function Performance in
Approximation 3D Sinusoidal Function

. (Butz, Lanzi, & Wilson, in press)
« Conditions may be encoded as

— Hyperrectangles

XCSF, HyperEllipsoid in f5(xy,2): sin(4 m (x+y+2)) XCSF, Rot. HyperEllipsoid in f5(x,y,2): sin(4 & (x+y+2))
1 1 H 1 T T 1 T
— (Rotating) Hyperellipsoids T NoRLS pedero —5- - No RLS: pred.erior —&-
- acro cl. —=-— £ macro cl. ——=-—
u‘% With RLS: pred.err With RLS: pred.error
|- macro cl. —--e- macro cl. ~--e-

« Initialization, mutation, and crossover need to be

adjusted g ugh T—— g
g g by & |
« Predictions as a linear function of the inputs : : P i el %
— Gradient descent on weight vector or i " i " "’i»;b;_‘;r )
— Recursive least squares approximation ° = el iabsibsssosscossstssats
« Evolves a partially overlapping piece-wise linear O T e e o o s O T e e o o s
ap p r0X| m at| on number of learning steps (1000s) number of learning steps (1000s)
o dx -
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3D Function vs. Neural GAS, | ‘ Performance in RL Problems
7D Function with Compaction and CCM Example: Maze6

(Butz, Lanzi, & Wilson, in press)

« Reinforcement learning problems
XCSF, Rot. HyperEllipsoid with RLS in sin(4 1 (x;+...+X7)), MinS=.5, ry=.1 — Approximation Of Q-value function

XCSF vs. NeuralGAS (N=10K) in sin(4 & (x+y+2))

AR R -
1 T T T T T 1 T T .
& Neyvz%ﬂgffdg";%%% 5:35'3:3" o Pt a e — Reward propagation necessary - ... [s1
» » »
« MDP problems .. .
" o Bl | >
» POMDP pose additional challenges - ... . -
H - (Lanzi, 2000; Lanzi, & Wilson, 2000)
0.01 5 o001 RL i . i i " . - . B
o H . comparison in mountain-car
R problem (Lanzi, Loiacono, Wilson, & - ... . -
L L . o001 . . . fam— Goldberg, 2006)
00 e 100 150 200 250 300 30 400 0 500 1000 1500 2000 B B B - x
number of learning steps (1000s) number of leaming steps (1000s)

o ."ﬁ_ A\ N\ o %
A AN
‘i‘x N, A
07/07/2007 Martin V. Butz - Learning Classifier Systems e i X 07/07/2007 Martin V. Butz - Learning Classifier Systems o i

S




GECCO 2007 Tutorial / Learning Classifier Systems

Performance in Maze6 plus
Irrelevant Bits

(Butz, Goldberg, & Lanzi, 2005; Butz, 2006)

Summary of XCS

» XCS is a highly flexible LCS.

XCSTS with gradient in Maze6 with additional bits XCSTS with gradient in Maze6 with additional bits . .
% — e : : » XCS can be applied to a variety of problem
o e 30 368 b (Vg -~ domains.
60 add. bits (N/7.5k) -~ 0.8 60 add. bits (N/7.5k) -~~~
920 ad% k:\l:rs\u(r,;l\/éofg - v - ) 90 add. bits (N/10k) - -~ . .
g w0 ’ I ] » XCS shows competitive or even superior
5 o £ performance.
€ 20 5 04p”
sy T » XCS generalizes well.
10 0.2 |
: T , . ‘ - « XCS is noise robust.
0 2000 4000 6000 8000 10000 0 5000 10000 15000 20000
xplore problems explre prabiems  Further applications are imminent.
N [ o
% % &
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Anticipatory Learning

\ Anticipator ”
Py Classifier Systems

N
GE.C_% Learning Classifier

%
N SyStem S » Learning classifier systems (Michigan-style) that learn latently
predictive world models (Riolo, 1991; Stolzmann, 1998).

» Each rule comprises a
— Condition C,
— Action A,
— Effect part E,
— Rule quality estimate F.

Introduction
ACS?2
XACS

« Each rule explicitly predicts something like:

rwDpPRE

Given condition C is satisfied and action A is executed, effect E is
H expected.
Potentials : . :
» Population represents a predictive environmental model.
aeé‘ A . #
. g
W N, NS
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% ACS2: Rule Structure Learning ﬁ

(Butz, 2002; Butz, Goldberg, & Stolzmann, 2002; Stolzmann, 1998)

« Anticipatory learning process
— Primary learning of action-effect (R-E) relations
— Secondary differentiation of conditions
— A directed, or informed, specialization mechanism

« Genetic generalization mechanism
— Fitness based on accuracy of effect-predictions
— Selection of accurate classifiers
— Deletion of inaccurate and/or highly specialized classifiers
— An undirected, genetic generalization mechanism

e ALP and GGM together evolve complete, accurate,
and maximally general predictive models.

& %
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%

% ACS2 — Match Set Formation %

[ Population |
- A-E,
C,- A- E,
- A,- E,
C,- A,- E,
- A,- Eg
- A,- E,
C7' A4' E7
- A-E,
C,- A,- E,
V:S? 07/07/2007 Martin V. Butz - Learning Classifier Systems Q‘ﬂ

& ACS2 — Problem Interaction ﬁ

—
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& ACS2 — Action Set Formation

[ERECPURToRN o (f)
C,- A- E,
Cz' A,- E, _
G- As- E, C,- A-E,
G- A,- E, J G- As- E;
G- As- Es 1 G- As- Es
G- A~ Eg Gs- Ay- E
C7' A4' E7 Cs' - Es
G- A- E;
G- A- E,
Gﬁé D d
Y %07/07/2007 Martin V. Butz - Leaning Classifier Systems ‘-ﬁ
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% ACS2 — Action Execution ﬁ

o(f)

N

N

3
w

N
S

N
)

HHPOHO 0000
>33 >>>>>>
mMmmmmmmmm
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Iy
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®

©
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N ke
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%ACSZ — Performance Examples®#

(Butz, 2002)

Multiplexer performance: Class prediction

Maze 6 — Optimal behavior

ACS2 with GAin the 37-Multplexer, coding 1

N

08 i u_max=15, theta_ga=100, theta_as=25: knowledge —-+— w©
i Dop ide — v
bl size i

size (/100,000), model size (/1000)

steps 10 food

o Ko
N Ty,
R NG e § SN sy e e

Knowledge, population

o
1000 1500 2000 o 500 1000 1500 2000

explore problems (10005) explore tials

)

o
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[RECPUEEAN  o(f)

C,- A,- E,

C,- A,- E, [ Match Set |

C,- A,- E, C,- A,- E,

C,- A,- E, C,- A;- E,

C,- A,- E, G- A,- E,

C,- A,- E, G- A,- E,

G- A E; G- A- E,

C,- A- E,

-A,- ' Anticipatory Learning Process

[CQ A B Genetlioc Ge%eralizatign _
GEé. A .*’“}
;\\‘: 07/07/2007 Martin V. Butz - Learning Classifier Systems “”:'J }1

=~
'S‘

M

Independent RL in ACS2 = XACS

e ACS2 represents reward prediction inside rules
— RL directly in state-predictive rules.
— But rule structure learning depends only on state prediction.

— Can lead to model aliasing (model too general for accurate
reward predictions)

¢ In XACS, behavior is realized in behavioral module
— Learns generalized state values via XCS mechanism.

— Model-based RL = online generalizing DYNA-PI mechanism
(Sutton, 1990; Sutton, & Barto, 1998).

L2
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3 é%

XCS as the State Value Learnerﬂ

&
S

=

Goal XACS predictive model population
« XCS now approximates state values. |J"| g#f;g:;;#i - ACtF';Jln A E;f;‘;t#i Py (110 %;\ia'gses(lf*cs only)
e Thus: Hit O## ##H# B R2 it Bt ### 0 [ 1.0 |.92*.94*.96=.6658
. i . " it #it #B# B R3 it B 0 [ 1.0 | .95= 5314
— Population of classifiers with conditions only )
— Evaluation of classifiers by the means of ACS2 = B880000000
— GA and fitness evaluation stay the same c t State value XACS Current situation:
o , ureen population 000 000 BBO B
« Updates of reward prediction in XCS via ACS2 Situation Conditon G v
predictions: prrT—— 1 Predictions:
#Bi# ### i B 0.9 R1 - B0O 000 BBO 0 - .656
— R2 - 000 BOO BBO 0 = .531
cV =(1-p)clV + S[P(o)] S dV d.x-cl.num BO# #### #4## 0_| .9'= 6561 R3 - 000 000 BBB 0 - .531
o metch o ba (0.t Ot #H# i 0 | .95= 5314
P(o) = p(t) + y max YZCIVK' P Resulting behavior:
@ x-cl. B, i
cl match Pred(o,a,bg (0,a)) | Qﬁ Geg% N Execute action R1
"._(v_‘.x
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% Blocks World Performance

(Butz, & Goldberg, 2003)

ACS2/XACS Potentials %

. ACS-SVLVs. ACISthlocks w?vld S=7.b=7y=4 " ACS-SVLus. XA‘CS in blocks world s=8,b=8,y=4 ° Learn generallzed predlct|ve model

1 }x — Fast and directed.
=r foo acsswseppce —— | | Aes oL s cod —— | — Currently restricted to mainly deterministic environments
A 5 Copsreoncs e | 1 el (irrelevant attributes may fluctuate).

— May be enhanced with statistics-based specialization.

« Can be used to simulate cognitive phenomena
— Anticipatory behavior in rats (Butz, & Hoffmann, 2002)
— Motivational module available
— Interactions of emerging motivations and emotions

. : 0 ‘ possible
o 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Fraction correct, pop.size (/100)

Explore Problems Explore Problems

o

SN
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ALCSs - Summary

¢ ALCSs are LCSs that learn generalized predictive world models
online (latent learning).

+ Behavioral policy is learned with state value learning
mechanisms.

* Model-based reinforcement learning is possible.

« ACS2 - efficient predictive model learning
¢ XACS - online generalizing model and state value learning.

e Other ALCSs

— YACS (Gérard, & Sigaud, 2001)
— MACS (Gérard, Meyer, & Sigaud, 2005)

«¢
07/07/2007 Martin V. Butz - Learning Classifier Systems o -

N

Summary

Learning Classifier Systems
— Learn and generalize online (iteratively),
— Extract useful problem sub-structures,

— Combine gradient-based (rule evaluation) and evolutionary-based
(rule structuring) learning techniques.

LCSs represent their problem solutions by...
... a set of (partially overlapping) sub-solutions (population of classifiers).

LCSs can solve...
— Classification problems (separation of problem classes)

— Function approximation problems (piecewise approximation of function
value)

— Reinforcement learning problems (generalized Q-value function)
— Other prediction problems (e.g. predictive environmental models)

07/07/2007 Martin V. Butz - Learning Classifier Systems

Other recent
LCSs

ARy .
N 1. Endogenous fitness approaches
—  Economy- or energy-derived resource models for fithess
estimations (Baum, 1999; Booker, 2000, 2001)
2. Genetic and artificial life environment (GALE)
- A parallel, distributed Pitt-style GA (Llora, Garrell, 2001;
Bernadd, Llora, Garrell, 2002).
3. Genetic classifier system (GAssist)
—  Strongly generalizing Pitt-style datamining LCS (Bacardit,
2004).
4.  Multiobjective LCS (MOLCS)
—  Multiobjective Pitt-style LCS (Llora et al., 2003)

5. sUpervised Classifier System (UCS)

—  An XCS derivative for datamining problems (Bernado-
[ Mansilla, & Garrell-Guiu, 2003).

X
IGECED

N

G,Eé_ x»...and many others (see references).

N

S0
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Conclusions

Many condition and prediction representations are possible.
Many gradient-based learning mechanisms are possible.
— Many rule discovery mechanisms are possible.

— Other combinations and integrations of machine learning
algorithms are possible.

e Thus:
— Use the LCS most suitable for the problem at hand.

— If necessary, optimize
» Conditions (representation and evolution)
» Predictions (representation and gradient-based approximation)

@\
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e LCS s a very general and flexible learning paradigm.
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Further LCS

.‘Q\l'

GECEO » )
i Information

The LCS Web (Barry, 2007)

The LCS Bibliography (Kovacs, 2004)

Algorithmic descriptions of XCS and ACS2 (Butz, &
Wilson, 2002; Butz, & Stolzmann, 2002).

4, LCS books and surveys: Butz (2002), Butz (2006), Bull
(2004), Bull, & Kovacs (2005), Kovacs (2004), Sigaud, &
Wilson (in press).

5. Ics-and-gbml Yahoo group (moderators: Xavier Llora and
John Holmes)

6. IWLCS proceedings (Lanzi, Stolzmann, & Wilson, 2000,
2001, 2002, 2003; Kovacs, Llora, & Takadama, in press)

7. IWLCS 2007 workshop tomorrow

(Mlp Ilwww. psychologie.uni-wuerzburg de/\SpagPs/hul//\WLCSZDOW)
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