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What is Coevolution?

• An individual’s ranking in a population can 
change depending on other individuals

• Coevolutionary fitness is absolute or subjective

• Traditional EC fitness is relative or  objective

Form of evolutionary computation in 
which the fitness evaluation is based on 
interactions between multiple individuals

Background

Why use Coevolution?

• Large (infinite) search spaces 

• No objective measures exist

• Objective measure difficult to 
formalize or unknown

• Certain types of structure in 
search space

Background
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Historical Examples: Early Work

• Samuel 1959, 1967

- learning checkers through self-play

• Barricelli 1963; Reed, Toombs, & 
Barricelli 1967

- TacTix (game similar to Nim)

• Axelrod 1987

- iterated prisoner’s dilemma

Background

Historical Examples: Sorting Networks

• Learner-teacher paradigm

• Coevolves sorting 
networks against inputs

• Obtains 61-comparator 
network

(just one more than best 
known for 16-input problem)

Hillis 1990

Background

Historical Examples: Virtual Creatures

• Virtual creatures in simulated physics environment

• Pair-wise competitions to gain control over a cube in the 
middle of the arena

• Coevolution of agent morphology and control

• Variety of interesting body plans and behaviors obtained

Sims 1994

Background

Historical Examples: Intertwined Spirals

• Difficult classification 
problem 

• Motivated by study of 
neural networks

• 194 data points to 
classify

Juillé & Pollack 1996

• Coevolves genetic-program 
classifiers, where payoff to 
Player i is:
-G(i, j) = #points “covered” by Player i

that are not covered by Player j

• Finds modular solutions to 
problem:
-Divides space, solves each region 

independently

Background
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Historical Examples: Checkers

• Coevolves weights of neural network used 
to evaluate game boards

• Combined with four-ply lookahead

• Initial work achieved “Class-A” designation

• Subsequent work produced “Expert” level

• (Just below Master and Grand Master)

Chellapilla & Fogel 1999 & 2000

Background

Coevolutionary Algorithms (CEAs)
• Very similar to traditional EA methods

– Individuals encode aspect of potential solutions

– They are altered during search with genetic operators

– Search directed by selection based on fitness

• But differ in fundamental ways:
– Evaluation requires interaction between multiple individuals

– Interacting individuals may reside in same population or in 
different populations

– Evokes notions of cooperation and competition in new ways

– Some representation issues are unique to coevolution

– Methods of evaluation are particularly important

Coevolutionary Algorithms

Basic Structure of the CEA
• Single population:

– Employs a single EA, typically using traditional operators

– Individuals represent candidate solutions to a problem, as well 
as “tests” for other individuals

– Evaluate individual by interacting with 
other individuals in same population

– Individuals compete in game-theoretic 
sense, but also compete as resources 
for evolution

Coevolutionary Algorithms

Basic Structure of the CEA
• Multiple populations:

– Multiple EAs, one for each population

– Individuals may represent a variety of things

– Evaluate individual by interacting with individuals from 
other populations

– Typically individuals in different populations do not 
compete directly for the EA resources

Coevolutionary Algorithms

GECCO 2007 Tutorial / Introductory Tutorial on Coevolution

3135



4

Cooperation & Competition
• Three ways terms used in coevolution

– Different types of algorithms (e.g., Rosin vs. Potter)

* Cooperative algorithms are those in which interacting 
individuals succeed or fail together

* Competitive algorithms are those in which individuals 
succeed at the expense of other individuals.

– Qualitatively observed behaviors of potential solutions 
(e.g., “tit-for-tat”)

– Inherent properties of coevolutionary problems (e.g., 
sorting networks and data sets)

Coevolutionary Algorithms

Compositional & Test-based

• Alternatively, algorithms are distinguished based on 
how solutions are represented

– In compositional coevolution, solutions are composed of 
multiple individuals

– In test-based coevolution, individuals represent 
candidate solutions and/or their tests

Coevolutionary Algorithms

Examples of Algorithm Types
• Compositional/cooperative coevolution:

– Coevolving a multiagent team responsible for jointly 
defending a resource (solution:  Team behaviors)

• Test-based/competitive coevolution:
– Coevolving a classifier and challenging datasets (solution: 

general classifiers)

• Compositional/competitive coevolution:
– Coevolving an ecosystem of agents in a market simulation 

(solution: ecosystem for analysis)

• Test-based/cooperative coevolution:
– Coevolving an autonomous agent for a team with human 

agents, with other evolving agents simulating human 
behaviors (solution: single team member behavior)

Coevolutionary Algorithms

The compositional/test-based distinction is similar to the 
cooperative/competitive distinction, but not the same

Evaluation: Interaction Patterns

• All vs. all is “canonical” but expensive

• All vs. previous-best 

• Tournament 

• See Angeline & Pollack 1993, Sims 1994

• Shared sampling [Rosin & Belew 1997]

Coevolutionary Algorithms
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Evaluation: All vs. Best
• Individuals interact with “best” individual(s) 

from previous generation (need elitism)
• Feasible for one or more populations

Population

Coevolutionary Algorithms

Evaluation: All vs. Best
• Individuals interact with “best” individual(s) 

from previous generation (need elitism)
• Feasible for one or more populations

Population 1 Population 2

Coevolutionary Algorithms

Evaluation: Tournament Evaluation
• Pairwise interactions in single-elimination 

tournament (single-population)

• Each individual’s score determined by how 
far individual progresses in tournament

winner

first round

Coevolutionary Algorithms

Evaluation: Shared Sampling

• Purpose to enhance diversity in evaluation

• Based on their Competitive Fitness Sharing 
method (discussed below)

• Bias sampling of individuals with whom 
interaction (during evaluation) takes place 

• Sample “redundant” individuals less 
(relative to uniform); “rare” individuals more

• “Redundant” and “rare” determined by 
similarity in performance

Rosin 1997

Coevolutionary Algorithms
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Representation

• How are solutions encoded?
– Test-based coevolution: individuals represent candidate 

solutions as well as tests for those solutions

– Compositional coevolution: individuals represent candidate 
components for a composite or ensemble solution

• What is a population?

– Group of potential solutions, tests, or components

– Possibly a collection of pure strategy solutions composing a 
single mixed strategy candidate solution

Coevolutionary Algorithms

Representation

• How are solutions decomposed?
– Static, a priori decomposition (Potter & De Jong, 1994)

– Dynamic decomposition (Potter & De Jong, 2001)

– Decomposition partially determined by CEA (Moriarty & 
Miikkulainen, 1997)

• How can we take advantage of open-ended 

evolution?

– Gradually complexifying representational space during 
search (Stanley & Miikkulainen, 2004)

Coevolutionary Algorithms

Eval. & Rep.: Spatial Coevolution
• Individuals spatially arranged on a lattice

• Individuals interact only with neighbors

Hillis 1990
Pagie & Hogeweg 1997
Wiegand & Sarma 2004

Mitchell et al. 2006

Coevolutionary Algorithms

Eval. & Rep.: Spatial Coevolution
• Individuals spatially arranged on a lattice

• Individuals interact only with neighbors

• In two-population system, interact with 
individuals in corresponding neighborhood of 
other population

Hillis 1990
Pagie & Hogeweg 1997
Wiegand & Sarma 2004

Mitchell et al. 2006

Local neighborhood structure 
helps maintain population 
diversity, which may help 
against various pathologies

Coevolutionary Algorithms
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Pathologies
• Early results sparked interest in 

coevolution, but various pathologies 
quickly became evident

• Why coevolution fails to produce 
desired results is often unclear

• We discuss these pathologies then 
outline several attempts to remedy 
them

Pathologies

Two Key Concepts

• Gradient

• Underlying objectives

Pathologies

Concept: Gradient

Gradient
• Gradient refers to information provided by 

evaluation

• The evaluation of individuals depends on 
other, coevolving individuals 

• Ability to distinguish individuals on the basis 
of their interactions with coevolving 
individuals

• Roughly, gradient allows an algorithm to tell 
which individuals appear better

Pathologies
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Transitive Numbers Game
• Each player in game is a real number [0, 1]

• Winner is player with higher number

W L
Higher NumbersLower Numbers

Pathologies
Gradient Leading to “Arms Race”

• Transitive numbers game

• Two populations

• All-vs-all interaction:
– each in Pop.1 plays all in Pop.2, and vice versa

– players earns one point for each win

• Players reproduce in proportion to total points

• Gaussian mutation: mean = 0, std = 0.01

Pathologies

Disengagement

• The event that gradient is lost—individuals 
can no longer be distinguished

• Grade inflation:  All students receive an ‘A.’

– Grades no longer useful to distinguish the better 
students

– Students and curriculum are “disengaged”

Pathologies

Stalling/Drift
• When disengagement persists over 

evolutionary time, stalling or drift can occur

• Stalling:
– If algorithm only replaces individuals with strictly 

more fit ones (e.g., a hill-climber)...

– Then, population stops changing

• Drift:
– If algorithm replaces individuals with others of equal 

or greater fitness...

– Then, algorithm will perform a random walk, biased 
by variation methods

Pathologies
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Disengagement, Stalling, and Drift
Pathologies

Cycling

• Cycling typically refers to an oscillation in 
some metric of algorithm behavior

• With an offline metric of behavior:
– May observe performance of coevolved individuals 

going up and down through evolutionary time

– May observe that current individuals beat some past 
individuals but lose to others

Pathologies

Intransitivity

• Intransitivity is a 
characteristic of a problem 
domain

• Rock-paper-scissors is a 
canonical example of an 
intransitive domain

• Coevolutionary algorithms 
have been observed to cycle 
on intransitive domains, but 
may cycle on any domain

Pathologies

Transitive Numbers Game
• Each player in game is a real number [0, 1]

• Winner is player with higher number

W L
Higher NumbersLower Numbers

Pathologies
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Cycling/Intransitivity
• Watson’s Locally Transitive Intransitive Game

( )W L WL
Higher NumbersLower Numbers

Pathologies

The Red-Queen Effect

• In biology:
– Despite constant genetic change, the 

extinction probability of a species does not 
change because of changes in the 
environment

• In evolutionary computation:
– Changes that improve the quality of an 

individual do not increase its selection 
probability because of changes to other 
coevolving individuals

Pathologies

van Valen 1973

The Red-Queen Effect
• Red-Queen Effect prevents us from distinguishing 

“arms-race” dynamic from:

– cycling dynamics due to intransitivity

– algorithm stalling/genetic drift due to 
disengagement

• New individuals appear as capable as previous 
ones relative to the present context

• (Unless we have an off-line metric of goodness)

Pathologies

van Valen 1973
Evolutionary Forgetting

Pop. t

trait x

Pop. t+k Pop. t+k+n

trait loss forgetting
x ® fitness gain

selected against
selection-neutral

selected for no elitism
drift/focusing
intransitivity

¬ trait x ¬ trait x

Pathologies
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Concept: Underlying Objectives

Underlying Objectives
• Multiobjective algorithms simultaneously optimize 

several different objective functions

• Consider “capabilities” as objectives

• Similarly, coevolutionary domains might have a 
set of underlying objectives that must be optimized 
to produce good individuals

y

x

Pathologies

Overspecialization/Focusing
• When individuals improve on some 

underlying objectives at the expense of 
others

• For instance, coevolving game players may 
focus on defeating certain (types of) 
opponents and not evolve to defeat others

Pathologies

Overspecialization/Focusing
Pathologies
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Relative Overgeneralization
• Phenomenon in cooperative coevolution

– Components/genotypes that perform well with a large 
number of other individuals...

– ... are favored over components that are part of an 
optimal solution

Sub-problem 1
Sub-problem 2

Q
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y 
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n

Pathologies

Relationships: Gradient

• Disengagement is a loss of gradient

• Stalling or drifting can result from a lack of 
gradient which persists through evolutionary 
time

• Drift may in turn lead to forgetting or 
overspecialization

Pathologies

Relationships: 
Underlying Objectives

• Overspecialization is focusing on a subset 
of the underlying objectives

• Cycling may result from oscillating between 
two underlying objectives

• Relative overgeneralization can be seen to 
result from the loss of an underlying 
objective in Cooperative Coevolution

Pathologies

Remedies
• Forgetting remedies are typically about 

distinguishing individuals

– If individuals cannot be distinguished, some might 
be lost to drift and forgetting may occur

• Disengagement remedies have traditionally 
kept suboptimal individuals in the population 

– Empirically, greedy algorithms which consolidate 
around present best tend to disengage

– Suboptimal individuals may provide gradient

Remedies
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Cycling

Ways to address cycling include:

• Fitness sharing

• Memory mechanisms

• Enrich the environment

• Multiple populations

Remedies

Cycling

• “True” coevolution is direct reciprocal 
evolution between two populations

• “Diffuse” coevolution entails evolutionary 
change in response to traits in several other 
populations

• Diffuse coevolution leads to more robust 
strategies

• Follow-up by Hornby & Mirtich 1999

Remedies

Bullock 1995

Cycling

• Zero-sum games (symmetric or asymmetric)

• Competitive fitness sharing

• Score you get against an opponent is 
divided by sum of all scores obtained 
against that opponent

Remedies

Rosin & Belew 1995
Cycling

1 +  1 + 1 + 0 = 3

1 +  1 + 0 + 0 = 2

1 +  0 + 0 + 0 = 1

0 +  0 + 1 + 1 = 2

Standard fitness 
calculation:

AA BB CC DD

WW 1 1 1 0

XX 1 1 0 0

YY 1 0 0 0

ZZ 0 0 1 1

Remedies

Rosin & Belew 1995
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Cycling

AA BB CC DD

WW 1 1 1 0

XX 1 1 0 0

YY 1 0 0 0

ZZ 0 0 1 1

1/3 + 1/2 + 1/2 + 0 = 4/3

1/3 + 1/2 +  0  + 0 = 5/6

1/3 +  0  +  0  + 0 = 1/3

0  +  0  + 1/2 + 1 = 3/2

Competitive fitness sharing:

3    2    2   1

Remedies

Rosin & Belew 1995
Cycling

• Fitness based on unique “covering”

• Individuals in Population 1 interact with 
opponents in Population 2

• Fitness of an individual determined by 
comparing performance with other 
individuals in same population

• Points for beating opponents that others do 
not beat

Remedies

Juillé & Pollack 1996

Cycling

1  +   1  +   1  + 0 = 3

1  +   1  +   0  + 0 = 2

1  +   0  +   0  + 0 = 1

0  +   0  +   1  + 1 = 2

Standard fitness calculation:

AA BB CC DD

WW 1 1 1 0

XX 1 1 0 0

YY 1 0 0 0

ZZ 0 0 1 1

Remedies

Juillé & Pollack 1996
Cycling

AA BB CC DD

WW 1 1 1 0

XX 1 1 0 0

YY 1 0 0 0

ZZ 0 0 1 1

Covering calculation:

WW XX YY ZZ

WW 0 1 2 2

XX 0 0 1 2

YY 0 0 0 1

ZZ 1 2 2 0

Remedies

Juillé & Pollack 1996
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Cycling

0  +   1  +   2  + 2 = 5

0  +   0  +   1  + 2 = 3

0  +   0  +   0  + 1 = 1

1  +   2  +   2  + 0 = 5

Covering calculation:

WW XX YY ZZ

WW 0 1 2 2

XX 0 0 1 2

YY 0 0 0 1

ZZ 1 2 2 0

Remedies

Juillé & Pollack 1996
Cycling: Equilibria & Dynamics

• Rosin & Belew 1997 prove that any fitness 
equilibrium without fitness sharing is also a 
fitness equilibrium with fitness sharing (in 
zero-sum game)

• Juillé & Pollack 1996 show that their 
“covering” method can lead to stable 
polymorphisms

Cycling

• Robotic pursuit and evasion

• Observe cyclic dynamics

• Hypothesize that a more complex 
environment may dampen cyclic dynamic

• Added obstacles and walls

• Found to provide significant performance 
boost in some runs

• On average, though, delays onset of cycling

Remedies

Nolfi & Floreano 1998
Cycling

• “True” coevolution is direct reciprocal 
evolution between two populations

• “Diffuse” coevolution entails evolutionary 
change in response to traits in several other 
populations

• Diffuse coevolution leads to more robust 
strategies

• Follow-up by Hornby & Mirtich 1999

Remedies

Bullock, 1995 (revisited)
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Cycling

• Virtual pursuit and evasion with simulated 
physics of wheeled car-like agents

• Round arena with large obstacle in center

Agents

Arena
Obstacle

Remedies

Hornby & Mirtich 1999
Cycling

• Use multiple populations for each role of 
the game (c.f. Bullock 1995)

• Pursuers and evaders obtained under 
“diffuse” coevolution were more effective 
than those obtained from “direct”
coevolution

Remedies

Hornby & Mirtich 1999

Cycling

Species 0Species 1Species 2Species 3

Species 0Species 1Species 2Species 3

Pursuers

Evaders

... ... ...

Remedies

Hornby & Mirtich 1999
Cycling

Species 0Species 1Species 2Species 3

Species 0Species 1Species 2Species 3

Pursuers

Evaders

... ... ...

Remedies

Hornby & Mirtich 1999
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Cycling

• Runs using direct coevolution exhibit cyclic 
behavior and disengagement

• Runs using diffuse coevolution stay close to 
50% wins for pursuers and evaders

Remedies

Hornby & Mirtich 1999
Disengagement

• “Phantom parasite” used with competitive 
fitness sharing to handle disengagement

X

Y

a
b
c

phantom

Remedies

Rosin & Belew 1997

Disengagement

• Density classification task in CA

• Purely competitive evaluation ⇒ cycling

• Competitive fitness sharing ⇒ disengage

• Penalize initial conditions with densities that 
cause rules to perform near random

• Should be applicable to other domains, 
e.g., sorting networks

Remedies

Juillé & Pollack 1998
Disengagement

Remedies

Rosin & Belew 1997
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Disengagement

• Asymmetric zero-sum games

• Evolve only one population, leaving the 
other population fixed

• Evolve Pop. 1 until individual found that 
beats all individuals in Pop. 2

• Then evolve Pop. 2 until individual found 
that beats all individuals in Pop. 1

Remedies

Olsson 1998
Disengagement

• Asymmetric zero-sum games

• Steady-state algorithm

• “X-method” to decide which population gets 
a new individual

Proportion of Evaluations Won by Pop. 1 Individuals

0 1

1

Pr(Pop. 2 creates new individual) Pr(Pop. 1 creates new individual)

Remedies

Paredis 1999

Disengagement

• Moderating “parasite virulence”

• Non-monotonic function of performance

λ = 0.75

f’ indicates 
peak fitness at 

λ

Remedies

Cartlidge & Bullock 2002
Forgetting

• Studies IPD where players can make 
mistakes

• Tit-For-Tat enters mutual retaliation

• Contrite Tit-For-Tat is resistant to invasion

• All-Cooperate cannot invade via drift

• Noise distinguishes CTFT from All-C

Remedies

Boyd 1989
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Forgetting

• Backgammon naturally resists forgetting

• All aspects of skill are continuously needed

• A simple hill-climber is thus able to achieve 
fairly impressive performance

• Estimated to achieve skill comparable to 
TD-Gammon rev. 1992

Remedies

Pollack & Blair 1998
Forgetting: Memory Mechanisms

• Augment evaluation by interacting with 
individuals stored in the memory

PopulationMemory

Remedies

Forgetting: Memory Mechanisms

• Best-of-Generation (BOG) methods

• Most-fit individual from the m most recent 
generations retained in memory

• Sample n of the m individuals with 
replacement to augment evaluation of 
population

Remedies

Forgetting: Memory Mechanisms

• Sims 1994, Cliff & Miller 1995: m = 1, n = 1

• Potter & De Jong 1994: m = 1, n = 1

• Rosin & Belew 1997: m = ∞, n = 25 & 50

• Nolfi & Floreano 1998a: m = 10, n = 10

Remedies
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Forgetting: Memory Mechanisms

• BOG memory is shown to help

• Broadens selection pressure

• Stabilize algorithm behavior

• Alleviate forgetting

Remedies

Monitoring

• The relative / subjective nature of internal 
fitness evaluation makes diagnosis difficult

• There are many potential pathologies

• So: A variety of methods for monitoring 
progress in coevolutionary systems have 
been developed

Monitoring

Best Elite Opponent

• An early idea in monitoring
– Both a competition patterns and a monitoring technique

– individuals of population 1 all compete against most-fit of 
previous generation from population 2 (best elite)

• To monitor progress: track the outcome of each 
generation's competitions.

• Can indicate whether the competition is continuing

Monitoring

Sims 1994
Hall of Fame

• “To ensure progress, we may want to save 
individuals for an arbitrarily long time and continue 
testing against them.”

• Hall of Fame
– stores best of each generation

– new individuals tested against sample of Hall of Fame 
members

• While used as a memory mechanism, it can also 
function as a monitor: Track performance of new 
individuals by testing against the members of the 
hall of fame.

Monitoring

Rosin & Belew 1997
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CIAO Plots

• Current Individual vs. Ancestral Opponents (CIAO) 

• Pursuers chase evaders in a 2-D world

• Two-population coevolutionary algorithm

• “We use the term fitness ambiguities to refer to 
such cases where qualitative trends in time-series 
of instantaneous fitness measures could feasibly 
be interpreted as either continuing progress or as 
a breakdown of the co-evolutionary process.”

Monitoring

Cliff & Miller 1995
CIAO Plots

• Display outcomes in a bitmap image 
– e.g. darker for pursuers winning

• Used as a monitor of progress: if 
progress has occurred, present elites 
should be able to defeat elite 
opponents from previous generations

Doing well against
the previous generations

Monitoring

• Current elites play elite opponents from all previous 
generations

Cliff & Miller 1995

Master Tournament

• Originally demonstrated in predator/prey domain

• Adds more information to CIAO:

– All best predators compete against all best prey.

– Shows at which generation the overall best of each 
population occurred

– Shows at which generation the most ‘interesting’
tournaments occur

Monitoring

Floreano & Nolfi 1997
Master Tournament Expense

• Comparing  all elite requires n2 evaluations
– An accurate evaluation may involve many games

• Defeating more champions does not establish 
unequivocal superiority

Monitoring
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Faster: Dominance Tournament 
Monitoring

Stanley & Miikkulainen 2002

• Compares all of population for each generation

– Significantly more expensive computation

– Significantly more information in output

– However, can be constrained to a subset of total 
history to save resources

• Extended to population differential analysis that 
displayed failure conditions in addition to 
successes

Monitoring

Bader-Natal & Pollack 2005
Current Population vs. Ancestral Opponent

Tutorial Summary

• Provided background and introduction to 
coevolutionary algorithms

• Outlined early work and notable results

• Discussed work on pathological algorithm 
behavior and proposed remedies

• Raised the question: what do we really want 
coevolution to do?

• Creating Arms Races (Ficici & Pollack 
1998).  “The key to successful 
coevolutionary learning is a competitive 
arms race between opposed participants.”

• Optimizing Robustness (Wiegand & Potter 
2006).  “CCEAs…are adaptive optimizers of 
robustness.”

What Do We Want Coevolutionary 
Algorithms To Be Doing?

GECCO 2007 Tutorial / Introductory Tutorial on Coevolution
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• Complexifying (Stanley & Miikkulainen 
2004).  “Complexification encourages 
continuing innovation by elaborating on 
existing solutions.”

• Implementing Solution Concepts (Ficici 
2004).  “We assert that pathologies in 
coevolutionary optimization arise when 
algorithms fail to implement the required (or 
desired) solution concepts.”

What Do We Want Coevolutionary 
Algorithms To Be Doing?

Looking Forward

• Solution Concepts

– Addresses question of what a coevolutionary algorithm 
should output

• Pareto Coevolution

– Treats evaluational issues

• Compositional Coevolution and Robustness

– Treats composing evolved subparts into wholes

• NEAT and Complexification

– Treats issues of representation

Looking Forward

Solution Concepts

• Formally specifies which individuals are 
part of solutions

• Fundamental questions:
– Are common/intuitive notions of solution 

reasonable?

– What solution concepts do we know, and how 
can we find new ones?

– Given a solution concept, how do we know if 
an algorithm actually approximates it?

Looking Forward

Pareto Coevolution

• Focuses on discriminating among and evaluating 
candidate solutions.

• Fundamental questions:

– Which individuals are “good,” and why?

– How do we turn the Pareto Optimal Set into a 
working solution?

– How can we deal with the “curse of dimensionality”?

– Are memory or archive mechanisms necessary?

Looking Forward
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Cooperative/Compositional Coevolution
• Evolving populations of components that can 

be assembled into capable composite 
solutions

• Fundamental questions:
– What makes a good component?

– What makes a good composite?

– What kind of design choices help CCEAs find optimal composite 
solutions?

– Are CCEAs naturally suited for producing composite solutions 
“robust” to changes in some of the components?

Looking Forward

NEAT and Complexification

• Focuses on representing complicated 
objects in open-ended domains.

• Fundamental questions:

– Can we remedy pathologies by elaborating 
on/complexifying present solutions, versus simply 
altering them?

– Can continuous, open-ended progress be achieved?

Looking Forward
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