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Search, Optimization, and Machine Learning,
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+ Darrell Whitley, “ Genetic Algorithm
Tutorial” —on theweb at
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* Robert Heckendorn, 2003 GECCO Tutorial

Overview of Tutorial

¢ Quick intro—What IS a genetic
algorithm?
» Classical, binary chromosome

+* Whereused, & when better to use
something else

+ A littletheory —why a GA works

¢ GA in Practice -- some moder n variants

Copyright is held by the author/owner(s).
GECCO'07, July 7-11, 2007, London, England, United Kingdom.
ACM 978-1-59593-698-1/07/0007.

Genetic Algorithms;

+ Areamethod of search, often applied to
optimization or learning

+ Arestochastic — but are not random search

¢ Usean evolutionary analogy, “ survival of fittest”

+ Not fast in some sense; but sometimes more
robust; scalereatively well, so can be useful

+ Have extensionsincluding Genetic Programming
(GP) (L1SP-like function trees), learning
classifier systems (evolving rules), linear GP
(evolving “ordinary” programs), many others
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The Canonical or Classical GA

+ Maintainsa set or “population” of strings
at each stage

¢ Each string is called a chromosome, and
encodes a “ candidate solution” —
CLASSICALLY, encodes asa binary
string (and now in almost any conceivable
representation)

Criterion for Search

* Goodness (“fitness’) or optimality of astring’s
solution determinesits FUTURE influence on
sear ch process -- survival of thefittest

+ Solutionswhich are good are used to generate
other, similar solutionswhich may also be good
(even better)

¢ The POPULATION at any time storesALL we
have lear ned about the solution, at any point

+ Robustness (efficiency in finding good solutions
in difficult searches) iskey to GA success

Classical GA:
The Representation

1011101010 - apossble10-bit string
representing a possible solution to a problem

Bit or subsets of bits might represent choice of
some feature, for example. “4WD” “2-door”
“4-cylinder” “closed cargo area” “blue’ might
be meaning of chrom above, to evaluate asthe
new standard vehiclesfor the US Post Office

Each position (or each set of positionsthat encodes
some feature) iscalled aLOCUS (plural LOCI)

Each possiblevalueat alocusiscalled an ALLELE

7

How Does a GA Operate?

¢ For ANY chromosome, must be ableto
determine a FITNESS (measur e performance
toward an objective)

+ Objective may be maximized or minimized;
usually say fitnessisto be maximized, and if
objectiveisto be minimized, define fitnessfrom
it as something to maximize
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GA Operators:
Classical Mutation

¢ Operates on ONE “parent” chromosome
¢ Produces an “offspring” with changes.

¢ Classically, togglesone bit in abinary
representation

¢ S0, for example: 1101000110 could
mutate to: 1111000110

+ Each bit has same probability of mutating

Classical Crossover

¢ Operateson two parent chromosomes
* Producesoneor two children or offspring
¢ Classical crossover occursat 1 or 2 points:
+ For example: (1-point) (2-point)
11ﬂ1111111 or 1111111111
X 0000000000 0000000000
11ﬂ0000000
and 0001111111

1110000011
0001111100

Sealection

+ Traditionally, parents are chosen to mate with
probability proportional to their fitness:
proportional selection

+ Traditionally, children replace their parents

+ Many other variations now more commonly
used (we'll come back to this)

* Overall principle: survival of thefittest

Synergy —theKEY

Clearly, selection aloneisno good ...
Clearly, mutation aloneisno good ...
Clearly, crossover aloneisno good ...

Fortunately, using all three ssimultaneously
IS sometimes spectacular!

3207



GECCO 2007 Tutorial / Introduction to Genetic Algorithms

* 6 o o

Contrast with Other Sear ch
M ethods

“indirect” -- setting derivativesto O

“direct” -- hill climber

enumer ative— search ‘em all

random —just keep trying, or can avoid
resampling

simulated annealing — single-point method, reals,

changes all loci randomly by decreasing
amounts, mostly keepsthe better answer, ...

Tabu (another common method)

BEWARE of
Asymptotic Behavior Claims

+ L OTSof methods can guaranteeto find the best
solution, probability 1, eventually...
= Enumeration
= Random search (better without resampling)
= SA (properly configured)
= Any GA that avoids “absorbing states” in a Markov
chain
¢+ ThePOINT: you can't afford to wait that long,
if the problem isanything interesting!!!

When Might a GA
Be Any Good?

+ Highly multimodal functions
+ Discreteor discontinuous functions
+ High-dimensionality functions, including many

combinatorial ones

Nonlinear dependencieson parameters
(interactions among parameters) -- “ epistasis’
makesit hard for others

Often used for approximating solutionsto NP-
complete combinatorial problems

DON'T USE if a hill-climber, etc., will work well

15

TheLimitsto Search

+ No search method isbest for all problems— per
the No Free Lunch Theorem

+ Don’t let anyonetell you a GA (or THEIR
favorite method) is best for all problems!!!

+ Needle-in-a-haystack isjust hard, in practice

+ Efficient search must beableto EXPLOIT

correlationsin the search space, or it’sno better
than random search or enumeration

+ Must balance with EXPLORATION, so don’t
just find nearest local optimum
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Examples of Successful Real-
World GA Application

¢ Antennadesign + Network design
¢ Drugdesign ¢ Control systemsdesign
¢ Chemical classification + Production parameter
+ Electronic circuits (Koza) choice
+ Factory floor scheduling ¢ Satellitedesign
(Volvo, Deere, others) + Stock/commodity
+ Turbineengine design analysis'trading
(GE) ¢ VLS partitioning/
+ Crashworthy car design placement/routing
(GM/Red Cedar) ¢ Cell phonefactory tuning
+ Protein folding + DataMining

“Genetic Algorithm” --
Meaning?

¢+ “classical or canonical” GA -- Holland
(taught in ‘60’s, book in ‘75) -- binary
chromosome, population, selection,
crossover (recombination), low rate of
mutation

* Moregeneral GA: population, selection,
(+ recombination) (+ mutation) -- may be
hybridized with LOTS of other stuff

Representation Terminology

¢ Classically, binary string: individual or
chromosome
+ What’s on the chromosomeis GENOTY PE

+ What it meansin the problem context isthe
PHENOTYPE (e.g., binary sequence may map to
integersor reals, or order of execution, or inputs
to asimulator, etc.)

+ Genotype deter mines phenotype, but phenotype
may look very different

Discr etization — Repr esentation
M eets M utation!

+ |f problem isbinary decisions, bit-flip mutation isfine
¢ BUT if using binary numbersto encode integers, asin
[0,15] = [0000, 1111], problem with Hamming cliffs:

= One mutation can change6to 7: 0110 - 0111,
BUT

= Need 4 bit-flipsto change 7to 8: 0111 - 1000
» That'scalled a“Hamming cliff”

+ May use Gray (or other distance-one) codesto
improve properties of operators. for example: 000,
001, 011, 010, 110, 111, 101, 100

20
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Mutation Revisited

On “parameter encoded” representations
¢ Binary ints

= Gray codes and bit-flips

= Or binary ints& 0-mean, Gaussian changes, etc.
+ Real-valued domain

= Can discretizeto binary -- typically powersof 2
with lower, upper limits, linear/exp/log scaling

» End result (classically) isa bit string

* BUT many now work with real-valued GAs, non-bit-
flip (O-mean, Gaussian “ noise’) mutation operators

21

Defining Objective/Fitness
Functions

*

Problem-specific, of course

Many involve using a smulator

Don’t need to know (or even HAVE) derivatives
May be stochastic

Need to evaluate thousands of times, so can’t be
TOO COSTLY

+ For real-world, evaluation timeistypical
bottleneck

*

*

*

*

22

Back tothe“What” Function?

¢ In problem-domain form -- “absolute” or “raw”
fitness, or evaluation or performance or objective
function

+ Relative fitness (to population), may require
inverting and/or offsetting, scaling the objective
function, yielding the fitness function. Fitness
should be MAXIMIZED, wher eas the objective
function might need to be MAXIMIZED OR
MINIMIZED.

23

Selection

Inaclassical, “generational” GA:

+ Based on fitness, choosethe set of individuals
(the“intermediate” population) that will soon:

= survive untouched, or
= be mutated, replaced, or

= in pairs, be crossed over and possibly
mutated, with offspring replacing parents

Oneindividual may appear several timesin the
intermediate population (or the next population)

24
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Scaling of Relative Fithesses

+ Trouble: asevolution progresses, relative
fitness differences get smaller (as
chromosomes get more similar to each
other — population is converging). Often
helpful to SCALE relative fitnessesto keep
about sameratio of best guy/average guy,
for example.

25

Types of Selection

Proportional, using relative fitness (examples):

* “roulettewhed” -- classical Holland -- chunk of wheel ~
relative fitness

¢ stochastic uniform sampling -- better sampling -- integer
parts GUARANTEED,; still proportional

OR, NOT requiring relative fitness, nor fitness scaling:

¢ tournament selection

+ rank-based sdlection (proportional to rank or all above
some threshold)

¢ ditigt (mu, lambda) or (mu+lambda) from ES

26

Explaining Why a GA Works —
Intro to GA Theory

¢ Just touching the surface with two
classical results:

= Schema theorem — how search effort is
allocated

» Implicit parallelism — each evaluation
providesinformation on many possible
candidate solutions

27

What isa GA DOING? (Schemata
and Hyper stuff)

Schema -- adds“*”, means“don’t care’
One schema, two schemata
Definition: ORDER of schemaH = o(H): #of non-*'s

Def.: Defining Length of schema, A(H): distance between
first and last non-* in a schema; for example:
A(**1*01*0**) =5 (= number of positionswhere 1-pt
crossover can disrupt it).

(NOTE: diff. xover - diff. relationship to defining length)

¢ Stringsor chromosomes areorder L schemata, wherelL is
length of chromosome (in bitsor loci). Chromosomesare
INSTANCES (or members) of lower-order schemata

* & o o

28
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Cube and Hypercube 1o

oo
Vertices are order ? schemata
Edges are order ? schemata
Planes are order ? schemata

Cubes (a type of hyperplane)
are order ? schemata

8 different order-1 schemata
(Cubes): O***’ 1***’ *0**’

; ’ .,
o | — =y ol
L .

I
I
I
I
o4
I
I
!

OO WS m e e e mmm—————
*1**’ **O*’ **1*’ ***0’ FHk] ”

Hyper cubes, Hyper planes, Etc.

+ A string isan instance of how many
schemata (a member of how many
hyper plane partitions)? (not counting the
“al *’'s” per Holland)

¢ |f L=3, then, for example, 111 isan
instance of how many (and which)
schemata: 7 schemata

0251

30

GA Sampling of Hyper planes

So, in general, string of length L isan instance
of 2--1 schemata
But how many schemata are therein thewhole
sear ch space?
(how many choices each locus?)

Since one string instances 2--1 schemata, how
much does a population tell us about schemata
of various orders?

Implicit parallelism: onestring’sfitnesstellsus
something about relative fitnesses of morethan
one schema.

31

Fitness and Schema/
Hyperplane Sampling

+ L ook at next figure (from Whitley
tutorial), for another view of hyper spaces

32
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Fitness and Schema/ Hyper plane Sampling

Whitley’sillustration of
various partitions of
fitness hyper space

Plot fitness ver sus one
variable discretized asa
K =4-bit binary
number: then get =2

First graph shades 0***

Second superimposes
**1* g0 crosshatches
are?

Third superimposes
0*10 I

How Do Schemata Propagate?

* Viainstances-- only STRINGS appear in
pop —you’ll never actually see a schema

+ But, in general, want schemata whose
Instances have higher aver age fitnesses
(even just in the current population in
which they’reinstanced) to get more
chanceto reproduce. That’show we make
thefittest survive!

Proportional Selection Favors
“Better” Schemata

¢ Select theINTERMEDIATE population, the“ parents’
of the next generation, via fitness-proportional selection

¢ Let M(H,t) be number of instances (samples) of schema
H in population at timet. Then fitness-proportional
selection yields an expectation of:

M (H,t+intermed) = M (H,t) =

¢ In an example, actual number of instances of schemata
(next page) in intermediate generation tracked expected
number pretty well, in spite of small pop size

35

34
Schemata and Fitness Yalues
[ Sehema || Mean | Count | Expect | Obs Schema | Mean | Count | Expect | Obs
ot . * || 170 z 3.4 3 el TR 11 10,9 )
| 1t1x.= || 170 2 34 | 4 00+* .= | 0957 6 5.8 1
1¥1%_* || 1.70 i 6.8 7 (TSR VR = R 1.2 1]
| =o1*..* || 138 5 6.0 G 011%..% | 0,000 3 2.7 1
A [ 1.30 i 13.0 14 o= | 0.ann 3 27 %
| *11*=.* || 122 5 61 | & o1 naon i 5.
1 * || 1.175 | 1.7 i 0.5 | D853 6 5.0 }
| oot | 1,166 3 5 | a S | nason 5 1.0 1
1 ¥4 1084 0 0.4 I 000 ..% | 0,757 3 2.3 i
01 1.033 i 6.2 7 s | oTeT |1 8.0 T
Lo* 1020 5 51 5 00*...* | D.GET 6 1.0 3
*¥ 1010 1] 1.1 12 . | 0G50 2 1.3 2
seak | Lgog | 21 2o | 2 RIS WVREIH] 5 30 1
| | 100+, | 0566 3 1.70 2

Results of example run (Whitley) showing that observed numbers
of instances of schemata track expected numbers pretty well
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Now, What Does
CROSSOVER Do to Schemata

+ One-point Crossover Examples (blackboard)
11******** and 1********1

+ Two-point Crossover Examples (blackboard)
(rings)

¢ Closer together loci are, lesslikely to be disrupted
by crossover. A “compact representation” tendsto

keep allelestogether under a given form of
crossover (minimizes probability of disruption).

37

Linkage and Defining Length

* Linkage -- “ coadapted alleles’
(generalization of a compact representation
with respect to schemata)

+ Example, convincing you that probability
of disruption by 1-point crossover of
schema H of length A(H) isA(H)/(L-1):

1****01**1

38

The Fundamental Theorem of Genetic
Algorithms -- “The” Schema Theorem

Holland published in ANAS in 1975, had taught it
much earlier (by 1968, for example, when |
started Ph.D. at UM)

It provideslower bound on changein sampling rate
of asingle schema from generation t to t+1.
We'll consider it in several steps, starting from
the change caused by selection alone:

M (H,t+intermed) = M (H,t)-C-2

39

Schema Theorem Derivation (cont.)

Now we want to add effect of crossover:

A fraction p, of pop under goes crossover, so:

M(H.t+1)=(1-p)M(H,H) X84+ p [M (H,t) 122 (1-|osses) + gains]

Conservative assumption: crossover within the
defining length of H isalwaysdisruptivetoH,
and will ignore gains (we're after aLOWER
bound -- won’t be astight, but simpler). Then:

M(H,t+1)2(1- p,)M(H,t) 22+ p [M(H,t) 22 (1- disruptions)]

40
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Schema Theorem Derivation (cont.)

Whitley adds a non-disruption case that Holland ignored:

If crossinstance of H with another, anywhere, get no
disruption. Chance of doing that, drawing second
parent at random, isP(H,t) = M(H,t)/popsize: so prob.
of disruption by x-over is:

L2 (A-P(H,t))

Then can simplify the inequality, dividing by popsize and
rearrangingrep,

P(H,t+1)> P(H,t) 01— p 482 (1- P(H, )]

So far, we have ignored mutation and assumed second
parent ischosen at random. But it’sinteresting, already.

41

Schema Theorem Derivation (cont.)

Now, we'll choose the second parent based on
fitness, too:

P(H,t+1)2 P(H, ) {801 - p 45 (1- P(H, ) L8]

Now, add effect of mutation. What is probability
that a mutation affects schema H? (Assuming
mutation always flips bit or changesallele):

Each fixed bit of schema (o(H) of them) changes
with probability p,,, sothey ALL stay
UNCHANGED with probability:

(1= pp)° ™

42

Schema Theorem Derivation (cont.)

Now we have a more comprehensive
schema theorem:

P(H,t+1) 2 P(H,O- 1 - p A5 (1= P(H,)-4)]1- p, )

People often use Holland’ s ear lier, smpler,
but less accurate bound, first
approximating the mutation lossfactor as

(2-o(H)p,,), assuming p,<<1.

43

Schema Theorem Derivation (cont.)

That yields:
P(H,t+1) > P(H,t)~ 21— p, 75 ][1-0(H) p, ]

But, since p,,<<1, we can ignore small cross-
product termsand get:

P(H,t+1)> P(H,H) 21— p,. 45 —o(H) p, ]

c L-1
That iswhat many people recognize asthe

“classical” form of the schema theorem.
What does it tell us?

44
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Using the Schema Theorem

Even a smpleform helpsbalanceinitial selection
pressure, crossover & mutation rates, etc.:

P(H,t+1) 2 P(H,t) "5 [1- p. 55 —o(H) p,,]

c L-1
Say relativefitnessof His1.2, p. = .5, p,, = .05 and
L =20: What happensto H, if H islong?
Short? High order? Low order?

Pitfalls: slow progress, random search, premature
conver gence, etc.

Problem with Schema Theorem —important at
beginning of search, but lessuseful later ...

45

Building Block Hypothesis

Define a Building block as: a short, low-order, high-
fitness schema

BB Hypothesis: “Short, low-order, and highly fit
schemata are sampled, recombined, and resampled
to form strings of potentially higher fitness... we
construct better and better stringsfrom the best
partial solutions of the past samplings.”

-- David Goldberg, 1989

(GA’scan begood at assembling BB’s, but GA’sare
also useful for many problemsfor which BB’sare
not available)

46

Using the Schema Theorem to Exploit
the Building Block Hypothesis

For newly discovered building blocks to be
nurtured (made available for combination with
others;, but not allowed to take over population
(why?):

¢ Mutation rate should be:

(but contrast with SA, ES, (1+4), ...)

¢ Crossover rate should be:

+ Selection should be ableto:

+ Population size should be (oops—what can we
say about this?... sofar... infinity islarge...):

47

Traditional Waysto Do GA
Search...

+ Population “large”
+ Mutation rate (per locus) ~ 1/L

+ Crossover rate moder ate (<0.3) or high
(per Dedong, .7, or up to 1.0)

+ Selection scaled (or rank/tour nament, etc.)
such that Schema Theorem allows new
BB’sto grow in number, but not lead to
premature convergence

48
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Schema Theorem and
Representation/Crossover Types

If we use a different type of representation
or different crossover operator:

. Must formulate a different schema
theorem, using same ideas about
disruption of some form of “schemata”

49

*
*

*

*
*

Uniform Crossover & Linkage

2-pt crossover issuperior to 1-point

Uniform crossover chooses allele for each locus at
random from either parent

Uniform crossover isthus moredisruptive than 1-pt or
2-pt crossover

BUT uniform isunbiased relativeto linkage

If all you need is small populationsand a “rapid
scramble’ to find good solutions, uniform xover
sometimes wor ks better —but isthiswhat you need a GA
for? Hmmmm...

Otherwise, try to lay out chromosome for good linkage,
and use 2-pt crossover (or Booker’s 1987 reduced
surrogate crossover, (described later))

50

The N3 Argument (Implicit or
Intrinsic Parallelism)

Assertion: A GA with pop size N can usefully
processon the order of N3 hyperplanes
(schemata) in a generation.

(WOW! If N=100, N3 =1 million)
To elaborate, assume:
+ Random population of size N.

+ Need ¢ instances of a schemato claim weare
“processing’ it in a statistically significant way
in one generation.

51

The N2 Argument (cont.)

Example: to have 8 samples (on average) of 2nd

order schemata in a pop., (thereare4 distinct
(CONFLICTING) schemata in each 2-position pair

_for example’ *0*0**, *0*1**’ *1*0**’ *1*1**)’
we'd need 4 bit patternsx 8 instances = 32 popsize.
In general, the highest ORDER of schema, 6, thatis

“processed” islog (N/¢); in our case, log(32/8) =
log(4) = 2. (log meanslog,)

52
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The N3 Argument (cont.)

Instead of general case, Fitzpatrick & Grefenstette argued:

+ Assume L>64and2°<N<2%

* Pick ¢=8, which implies 3<0 <17

+ By inspection (plugin N's, get 0's, etc.), the number of
schemata processed is greater than N3, For example,

N=64, # schemata order 3or lessis> 2**61 > 64**3 =
2**18 = 256K .

¢ S0, aslong asour population sizeisREASONABLE (64 to
amillion) and L islarge enough (problem hard enough),
the argument holds.

+ But thisdealswith theinitial population, and it does not
necessarily hold for the latter stages of evolution. Still, it
may help to explain why GA’s can work so well...

53

Exponentially Increasing Sampling
and the K-Armed Bandit Problem

Question: How much sampling should above-aver age
schemata get?

Holland showed, subject to some conditions, using analysis
of problem of allocating choicesto maximize reward
returned from slot machines (“ K-Armed Bandit
Problem”) that:

+ Should allocate an exponentially increasing fraction of
trialsto above-average schemata

» The schema theorem saysthat, with careful choice of
population size, fitness measur e, crossover and mutation
rates, a GA can do that:

* (Schema Theorem says M (H,t+1) >=k M(H,t))
That is, H'sinstances in population grow exponentially, as

long as small relative to pop sizeand k>1 (H isa“building
block™).

54

Want More GA Theory?

Voseand Liepins ('91) produced best-known
model, looking at a GA asa Markov chain —the
fraction of population occupying each possible
genomeat timetisthe state of thesystem. It's
“correct”, but difficult to apply for practical
guidance.

Shapiro and other s have developed a model based
on principles of statistical mechanics

L ots of otherswork on aspects of GA theory

Attend other GECCO tutorialsor the FOGA
Workshop for moretheory!

55

What are Common Problems
when Using GAsin Practice?

+ Hitchhiking:
BB1.BB2.junk.BB3.BB4:
junk adjacent to building
blockstendsto get “fixed” — =
can bea problem

+ Deception: a 3-bit
deceptive function =

ORPNWHUDN®OO

* EpISaSS. nonlinear effects, '000 '001 '010 ‘011 '100 '101 ‘110 '111
mor e difficult to captureif
spread out on chromosome

56
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In PRACTICE —GAsDoaJOB

*

DOESN'T mean necessarily finding global optimum

DOES mean trying to find better approximate answers
than other methods do, within the time available!
People use any “dirty tricks’ that work:

= Hybridizewith local search operations

= Usemultiple populations/multiplerestarts, etc.

= Use problem-specific representations and oper ators
The GOALS:

= Minimize# of function evaluations needed

= Balance exploration/exploitation so get best answer can during
time available (AVOIDING premature convergence)

*

*

*

57

Other Formsof GA

Generational vs. “ Steady-State”

+ “Generation gap”: 1.0 meansreplace ALL
by newly generated “children”

+ at lower extreme, generate 1 (or 2)
offspring per generation (called “ steady-
state’) —noreal “generations’ —children
ready to become parents on next operation

58

M ore Forms of GA

Replacement Policy:
1. Offspringreplace parents
2. K offspring replace K wor st ones

3. Offspring replace random individualsin
inter mediate population

4. Offspring are*“crowded” in
5. “Elitism” —always keep best K

59

Crowding

Crowding (DeJong) helpsform “niches’ and reduce
premature takeover by fit individuals

For each child:

+ Pick K candidatesfor replacement, at random,
from inter mediate population

¢ Calculate pseudo-Hamming distance from child to
each

* Replaceindividual most similar to child
Effect?

60
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Example GA Packages—
GENITOR (Whitley)

+ Steady-state GA
+ Two-point crossover, reduced surrogates
¢ Child replaces wor st-fit individual

* Fitnessisassigned according to rank (so
no scaling is needed)

¢ (elitism isautomatic)

61

Example GA Packages—
CHC (Eshelman)

+ Elitism -- (E+x) from ES: generateA offspring from

W parents,

eep best p of the p+A parentsand
chlldren

¢ Usesincest prevention (reduction) — pick mates on

basis of their Hamming dissimilarity

¢ HUX —form of uniform crossover, highly disruptive

+ Regjuvenate with “ cataclysmic mutation” when
population starts conver ging, which is often (small
populations used)

+ No mutation

62

Hybridizing GAs—a Good | dea!

IDEA: combinea GA with local or problem-
specific search algorithms

HOW: typically, for someor all individuals, start
from GA solution, take one or mor e steps
according to another algorithm, useresulting
fitness asfitness of chromosome.

If also change genotype, “Lamarckian;” if don’t,
“Baldwinian” (preserves schema processing)

Helpful in many constrained optimization
problemsto “repair” infeasible solutionsto
near by feasible ones

63

Other Representations/Operators.
Permutation/Optimal Ordering

¢ Chromosome hasEXACTLY ONE copy
of each int in [O,N-1]

+ Must find optimal ordering of those ints

* 1-pt, 2-pt, uniform crossover ALL useless

+ Mutations. swap 2 loci, scramble K
adjacent loci, shuffleK arbitrary loci, etc.

64
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Crossover Operatorsfor
Permutation Problems

What properties do we want:

+ 1) Want each child to combine
building blocks from both parents in a
way that preserves high-order
schemata in as meaningful a way as
possible, and

+ 2) Want all solutions generated to be
feasible solutions.

65

Operators for Permutation-Based

Representations, Using TSP Problem:
Example: PMX -- Partially Matched Crossover

+ 2 sites picked, intervening section specifies
“cities” to interchange between parents:

A= 984|567 |13210
B= 871|2310|954 6
A'= 984|2310|165 7
B'=8101|56 7 |924 3

+ (i.e., swap 5with 2, 6 with 3, and 7 with 10 in both
children.)

+ Thus, some ordering information from each parent
is preserved, and no infeasible solutions are
generated

+ Only one of many specialized operators developed
66

* & ¢ o
1

Other Approachesfor
Combinatorial Problems

Choose aless direct representation that
allows using traditional operators:

¢ Assign an arbitrary integer to each
position on chromosome

¢ Order phenotype by sorting theintegers

+ Then ordinary crossover, mutation work
fine, produce legal genotypes
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Parallel GAs
(Independent of Parallel Hardware)

Three primary models: coarse-grain (island), fine-
grain (cellular), and micro-grain (trivial)

Trivial (not really a parallel GA —just a paralld
implementation of a single-population GA): pass
out individualsto separ ate processor s for
evaluation (or run lots of local tournaments, no
master) — still actslike onelarge population
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Coarse-Grain (Idand) Parallel GA

N “independent” subpopulations, acting asif
runningin parallel (timeshared or actually on
multiple processor s)

Occasionally, migrants go from one to another,
in pre-specified patterns

Strong capability for avoiding premature
conver gence while exploiting good
individuals, if migration rates/patternswell
chosen
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Fine-Grain Parallel GAs

+ Individualsdistributed on cellsin atessdlation,
oneor few per cell (often, toroidal checkerboard)

+ Mating typically among near neighbors, in some
defined neighborhood
+ Offspring typically placed near parents

+ Can help to maintain spatial “niches,” thereby
delaying prematur e conver gence

¢ Interesting to view asa cellular automaton
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Refined Iland Models —
Heter ogeneous/ Hierarchical GAs

+ For many problems, useful to use different
representations/levels of refinement/types of
models, allow them to exchange “ nuggets’

* GALOPPSwasfirst packageto support this

+ Injection Iland ar chitecture arose from this,
now used in HEEDS, etc.

+ Hierarchical Fair Competition is newest
development (Jianjun Hu), breaking populations
by fitness bands

Multi-L evel GAs

¢ |dand GA populations areon lower levd, their
parameter s/oper ator &/ neighbor hoods on
chromosome of a single higher-level population
that controlsevolution of subpopulations (for
example, DAGAZ2, 1995)

+ Excdlent performance—reproducible
trajectories through operator space, for example
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Examples of Population-to-Population
Differencesin a Heter ogeneous GA

+ Different GA parameters (pop size, crossover
type/rate, mutation typefrate, etc.)
= 2-level or without a master pop

+ Examples of Representation Differences:

= Hierarchy —one-way migration from least refined
representation to most refined

= Different modelsin different subpopulations

= Different objectives/constraintsin different subpops
(sometimes used in Evolutionary M ultiobjective
Optimization (“EMOO"))
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Multiobjective GAs

+ Often want to address multiple obj ectives

¢ Can use a GA to explorethe Pareto
FRONT

+ Many approaches, Deb’s book good place
to start
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How Do GAs Go Bad?

+ Prematur e conver gence
Unable to over come deception
Need mor e evaluations than time per mits

Bad match of representation/mutation/cr ossover,
making oper ator s destructive

Biased or incomplete representation
Problem too hard
(Problem too easy, makes GA look bad)

*

*

*

*

*

*
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So, in Conclusion...

+ GAscan beeasy to use, but not necessarily easy
touseWELL

¢ Don’t usethem if something else will work —it
will probably befaster

+ GAscan’t solve every problem, either ...

+ GAsareonly oneof several strongly related
“branches’ of evolutionary computation —and
they all commonly get hybridized

¢ There'slotsof expertiseat GECCO —talk to
peoplefor ideas about how to address YOUR
problem using evolutionary computation
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