
1

Beowulf Clusters for
Evolutionary Computation

Arun Khosla
Department of Electronics and Communication Engineering

National Institute of Technology
Jalandhar – 144 011. INDIA

khoslaak@nitj.ac.in

Pramod Kumar Singh
Department of Computer Science and Engineering

Indian Institute of Technology
Kharagpur – 721 302. INDIA
pksingh@cse.iitkgp.ernet.in

Diptanu Gon Choudhury
Department of Electronics and Communication Engineering

National Institute of Technology
Jalandhar – 144 011. INDIA
admin.nitjece@gmail.com

Acknowledgements

• Gurpreet Singh Dhami
• Gaurav Dixit
• Jagmohan Singh

(ST Microelectronics, Noida. India)

Tutorial Objective

To focus on the details of assembling,
configuring, using and managing a cluster
especially for those who have never done it
before

Expected Background of
Participants

There are no pre-requisites for this tutorial,
but some familiarity with the Linux operating
system shall be useful.

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

Copyright is held by the author/owner(s).
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
ACM 978-1-59593-698-1/07/0007.

3267

2

Expected Enrollment

Useful and relevant for the researchers
working in the domain of evolutionary
computing

Tutorial Detailed Outline

• Setting up Beowulf Cluster
• Cluster Building Blocks

– Off the shelf components
– Interconnects
– Why Linux for Clusters?
– Cluster Deployment
– Cluster Packages

Tutorial Detailed Outline (Contd.)

• Cluster Benchmarking
• Parallel Programming for Clusters

– Writing Parallel Programs for Clusters

• Parallel Programming with MPI (Message
Passing Interface)

• Cluster Management
• Live Demonstration

What is a Beowulf Cluster?

• Introduction
• What is Cluster Computing?
• Why use a Cluster?

– High Availability
– High Performance Computing (HPC)

• Why use a Cluster for Evolutionary
Computation?

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3268

3

Some Architectures for Parallel and
Distributed Evolutionary Computations

• Master-Slave
• Island-Model
• Hybrid Approach ROCKS CLUSTER

Rocks Copyright
Rocks www.rocksclusters.org

Copyright (c) 2006
The Regents of the University of California.

All rights reserved.

This software developed by the Rocks Cluster
Group at the San Diego Supercomputer Center at the

University of California, San Diego and its contributors.

Rocks Identity

• System to build and manage Linux
Clusters
o General Linux maintenance system for N nodes
o Happens to be good for clusters

• Free
• Mature
• High Performance

o Designed for scientific workloads

Rocks Mission

• Make Clusters Easy
• Most cluster projects assume a system

admin will help build the cluster.
• Build a cluster without assuming CS

knowledge
o Simple idea, complex ramifications
o Clusters for Scientists

• Results in a very robust system that is
insulated from human mistakes

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3269

4

Rocks Cluster Distribution

• Fully-automated cluster-aware distribution
• Software Packages

o Full Red Hat Linux distribution
o De-facto standard cluster packages
o Rocks packages
o Rocks community package

• System Configuration

Rocks Hardware Architecture

Source: www.rocksclusters.org

Processors Supported

• x86 (Pentium/Athlon)
• Opteron
• Itanium

Interconnects Supported

• Ethernet
• Myrinet

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3270

5

Minimum Hardware Requirements

• Frontend:
o 2 Ethernet connections
o 18 GB disk drive
o 512 MB memory

• Compute:
o 1 Ethernet connection
o 18 GB disk
o 512 MB Memory

• Ethernet switches

Cluster Software Stack

Source: www.rocksclusters.org

Rocks ‘Rolls’

• Rolls are containers for software packages
and the configuration scripts for the
packages

• Rolls dissect a monolithic distribution

Login to Frontend

• Create ssh public/private key
– Ask for ‘passphrase’
– These keys are used to securely login into

compute nodes without having to enter a
password each time you login to a compute
node

• Execute ‘insert-ethers’
– This utility listens for new compute nodes

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3271

6

Insert-ethers

• Used to integrate “appliances” into the cluster
– We’ll choose “Compute”

Source: www.rocksclusters.org

Boot a Compute Node in
Installation Mode

• Instruct the node to network boot
– Network boot forces the compute node to run the PXE protocol (Pre-

eXecution Environment)

• Also can use the Rocks Base CD
– If no CD and no PXE-enabled NIC, can use a boot floppy built from

‘Etherboot’ (http://www.rom-o-matic.net)

Insert-ethers Discovers the
Node

Source: www.rocksclusters.org

eKV
Ethernet Keyboard and Video

• Monitor your compute node installation
over the ethernet network
– No KVM required!

• Execute: ‘ssh compute-0-0’

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3272

7

Node Info Stored In A MySQL
Database

• If you know SQL, you can
execute some powerful
commands

Source: www.rocksclusters.org

Cluster Database

Source: www.rocksclusters.org

Kickstart

• Red Hat’s Kickstart
– Monolithic flat ASCII file
– No macro language
– Requires forking based on site information and

node type.

• Rocks XML Kickstart
– Decompose a kickstart file into nodes and a

graph

• Graph specifies OO framework
• Each node specifies a service and its

configuration
– Macros and SQL for site configuration
– Driven from web cgi script

Source: www.rocksclusters.org

Extra insert-ethers Usage

• If you have more than one cabinet:
insert-ethers --cabinet=1

To replace a dead node:
insert-ethers --replace=compute-0-0

To rebuild and restart relevant services:
insert-ethers --update

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3273

8

Installation Timeline

MPI

The Message Passing Model

• Parallel programs consist of cooperating
processes, each with its own memory

• Processes send data to one another as
messages

• Messages may have tags that may be
used to sort messages

• Messages may be received in any order

What is MPI?

• A message-passing library specification
– extended message-passing model
– not a language or compiler specification
– not a specific implementation or product

• For parallel computers, clusters, and
heterogeneous networks

• Full-featured
• Designed to provide access to advanced

parallel hardware for
– end users
– library writers
– tool developers

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3274

9

Why Use MPI?

• MPI provides a powerful, efficient, and
portable way to express parallel programs

• MPI was explicitly designed to enable
libraries…

• … which may eliminate the need for many
users to learn (much of) MPI

Why was MPI needed?

• Software crisis in parallel computing
– Each vendor provided their own, different

interface
– No “critical mass” of users

• Enabling libraries (code sharing)
• Turnkey parallel applications

– CFD, pharmaceutical design, etc.

Quick Tour of MPI

• Point-to-point
• Collective
• Process groups and topology
• Profiling
• Other

Point-to-point

• Send/Receive

• Datatype
– Basic for heterogeneity
– Derived for non-contiguous

• Contexts
– Message safety for libraries

• Buffering
– Robustness and correctness

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3275

10

Collective

• Process groups
– Collections of cooperating processes
– Hierarchical algorithms need nested

collections

• Categories
– Communication: Broadcast data
– Computation: Global sum
– Synchronization: Barrier

New MPI-2 Features

• Remote Memory
• Parallel I/O
• Dynamic Process
• Threads

MPI Implementations

• MPICH (Argonne National Lab)
• LAM-MPI (Ohio, Notre Dame,

Bloomington)
• Cray, IBM, SGI
• MPI-FM (Illinois)
• MPI / Pro (MPI Software Tech.)
• Sca MPI (Scali AS)
• C-MPI (CDAC)
• Others

MPI Services

• Hide details of architecture
• Hide details of message passing, buffering
• Provides message management services

o packaging
o send, receive
o broadcast, reduce, scatter, gather message

modes

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3276

11

MPI Program Organization

• MIMD Multiple Instruction, Multiple Data
o Every processor runs a different program

• SPMD Single Program, Multiple Data
o Every processor runs the same program
o Each processor computes with different data
o Variation of computation on different

processors through if or switch statements

MPI starting and finishing

• Statement needed in every program
before any other MPI code
MPI_Init(&argc, &argv);

• Last statement of MPI code must be
MPI_Finalize();

• Program will not terminate without this statement

MPI Messages

• Message content, a sequence of bytes
• Message needs wrapper

– analogous to an envelope for a letter
Letter Message

Address Destination
Return Address Source
Type of Mailing (class) Message type
Letter Weight Size (count)
Country Communicator
Magazine Broadcast

A Minimal MPI Program (C)

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

return 0;

}

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3277

12

Notes on C and Fortran

• C and Fortran bindings correspond closely
• In C:

– mpi.h must be #included
– MPI functions return error codes or MPI_SUCCESS

• In Fortran:
– mpif.h must be included, or use MPI module (MPI-2)
– All MPI calls are to subroutines, with a place for the return

code in the last argument.

• C++ bindings, and Fortran-90 issues, are part of
MPI-2.

Error Handling

• By default, an error causes all processes
to abort.

• The user can cause routines to return
(with an error code) instead.
– In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom
error handlers.

• Libraries might want to handle errors
differently from applications.

Running MPI Programs

• The MPI-1 Standard does not specify how to run an MPI
program, just as the Fortran standard does not specify
how to run a Fortran program.

• In general, starting an MPI program is dependent on the
implementation of MPI you are using, and might require
various scripts, program arguments, and/or environment
variables.

• mpiexec <args> is part of MPI-2, as a
recommendation, but not a requirement
– You can use mpiexec for MPICH and mpirun for SGI’s MPI in

this class

Finding Out About the Environment

• Two important questions that arise early in a
parallel program are:
– How many processes are participating in this

computation?
– Which one am I?

• MPI provides functions to answer these
questions:
– MPI_Comm_size reports the number of

processes.
– MPI_Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling
process

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3278

13

What is message passing?

• Data transfer plus synchronization

• Requires cooperation of sender and receiver
• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

Some Basic Concepts

• Processes can be collected into groups.
• Each message is sent in a context, and must

be received in the same context.
• A group and context together form a

communicator.
• A process is identified by its rank in the group

associated with a communicator.
• There is a default communicator whose

group contains all initial processes, called
MPI_COMM_WORLD.

MPI Datatypes

• The data in a message to sent or received is described
by a triple (address, count, datatype), where

• An MPI datatype is recursively defined as:
– predefined, corresponding to a data type from the language

(e.g., MPI_INT, MPI_DOUBLE_PRECISION)
– a contiguous array of MPI datatypes
– a strided block of datatypes
– an indexed array of blocks of datatypes
– an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes,
such an array of (int, float) pairs, or a row of a matrix
stored columnwise.

MPI Tags

• Messages are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the message.

• Messages can be screened at the receiving
end by specifying a specific tag, or not
screened by specifying MPI_ANY_TAG as the
tag in a receive.

• Some non-MPI message-passing systems
have called tags “message types”. MPI calls
them tags to avoid confusion with datatypes.

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3279

14

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the
rank of the target process in the communicator specified
by comm.

• When this function returns, the data has been delivered
to the system and the buffer can be reused. The
message may not have been received by the target
process.

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

• Waits until a matching (on source and tag) message is
received from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or
MPI_ANY_SOURCE.

• status contains further information

• Receiving fewer than count occurrences of datatype is
OK, but receiving more is an error.

Retrieving Further Information

• Status is a data structure allocated in the user’s program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

• In Fortran:
integer recvd_tag, recvd_from, recvd_count

integer status(MPI_STATUS_SIZE)

call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)

tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)

call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

When to use MPI

• Portability and Performance
• Irregular Data Structures
• Building Tools for Others

– Libraries

• Need to Manage memory on a per
processor basis

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3280

15

PVM (Parallel Virtual Machine)
versus MPI

• PVM
o The development of PVM started in summer 1989

at Oak Ridge National Laboratory (ORNL).
o PVM was effort of a single research group,

allowing it great flexibility in design of this system

• MPI
o The development of MPI started in April 1992.

MPI was designed by the MPI Forum (a diverse
collection of implementers, library writers, and end
users) quite independently of any specific
implementation

PVM and MPI - GOALS

PVM
A distributed
operating system

Portability

Heterogeneity

Handling
communication
failures

MPI
A library for writing
application program,
not a distributed
operating system

portability

High Performance

Heterogeneity

Well-defined behavior

Ganglia

Cluster and Grid Monitoring System

Live Demonstration

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3281

16

References

• William Gropp, Ewing Lusk and Thomas Sterling
(Editors), Beowulf Cluster Computing with Linux, MIT
Press, 2003

• http://www.rocksclusters.org
• http://ganglia.sourceforge.net/
• MPI Forum: http://www.mpi-forum.org
• MPI Tutorials: http://www.mcs.anl.gov/mpi/learning.html
• Marc Dubreuil, Christian Gagne and Marc Parizeau,

“Analysis of a Master-Slave Architecture for Distributed
Evolutionary Computation”, IEEE Transactions on
Systems, Man and Cybernetics-Part B: Cybernetics, Vol.
36, No. 1, 2006, pp. 229-235.

Thanks

GECCO 2007 Tutorial / Beowulf Clusters for Evolutionary Computation

3282

