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Overview

In theory, there is no difference between

theory and practice. In practice, there is.
- Jan L.A. van de Snepscheut

» Evolutionary Computing and the business model

* Key Technologies

— Analytic Neural Networks + Support Vector Machines
+ Genetic Programming + Particle Swarms + ...

* Implementation Guidelines

* Integrate & Conquer

» Key Application Areas

* Open Issues & Research areas

Kordon, Smits & Kotanchek
GECCO 2007

Data Modeling
At the Intersection of Opportunity & Need

Emerging Industrial
Concepts Need

New ways of looking at the
Industrial research needsto

prioritizesthe
possibilities.

world change what is

possible.
Enabling
Technologies

Technology & Price-Performance shifts
enable implementing new concepts and
implementing old concepts better.

feasibility of new ideaswithin the
context of cor porate needs.

Kordon, Smits & Kotanchek
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The economic context

recognize the evolving potential and

Motivation

* Industry is great at
collecting data ... and
then performing
records retention

» Extracting insight
from multivariate data
is hard

* Time and money is
being wasted

“"We are drowning in information
and starving for knowledge” -
R.D. Roger

Kordon, Smits & Kotanchek
GECCO 2007
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Academic vs. industrial data analysis
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Transfer data into value
»-

W g

Transfer data into knowledge

Special Features of Industrial Data Analysis

Operatorsintervention

Operators manually modify the process

Curse of closed loops

Syslam

)
n Controller

-

The majority of process variables are in closed loops
and depend on controller adjustments

Multiple time scales

Real-time pressure

Time scales vary from milliseconds to months

GECCO 2007

Models need to be developed &
updated rapidly

Kordon, Smits & Kotanchek

Intelligent Systems in Industrial Data Analysis:
Lessons From the Past

The Expert Systems campaign (late 80s)
“WEe'll put engineersin the box”

« static rule-based models not linked to
numerical world

« the politics of knowledge acquisition

«the efforts of knowledge acquisition

The Neural Networks campaign (early 90s)
“We'll turn datainto gold”

, ': zs | — 1

.E.SI-/ « black-box models with inefficient
h$ é structure
ey
[ « fragile models and model validation

kordon, sSHVERIALEAANCE Nightmar e

GECCO 2007

Industrial Data Modeling Issues

__ High dimensionality of the data

Highly correlated data with time delays

Qutlier detection

Application

Issues Multiple optima

Intensive number crunching needed

Too much or too little data

“The most exciting phrase to hear in science, the one that heralds new discoveries, is
not ‘Eureka!’ (I found it!) but ‘That's funny ..."” — Isaac Asimov (1920 - 1992)
Kordon, Smits & Kotanchek
GECCO 2007
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Industrial data analysis components

Linear &
Multivariate
Statistics

|

Neural
Networks

The role of evolutionary
computing (symbolic
regression) isto ...

—Facilitate physical/mechanism
insight and understanding

—Summarize data behavior
—ldentify data transforms and

Visualization
Metasensors

v,

Problem

Scoans i Symbolic metasensors
“niti Yo Regression _ .
Definition Components —Perform variable selection

—Enable response surface
exploration and optimization
—Visualize behavior in the form
of a symbolic expression
The overall goal is to achieve
speed, accuracy & efficiency.
Symbolic regression is part of
an integrated methodology.

L

Support
Vector
Machines

Recursive

Partitioning

Competing/Complementary
Technologies

¢ Linear Models .
— Linear in coefficients, not
necessarily linear in model
— Often "good enough" and
simple
— Well developed criteria and
foundations in linear statistical
analysis .
— Typically easy and fast to
develop (unless subtleties are
involved)
« Neural networks
— Often good performance but
lots of “trust me”
— A good reference for nonlinear
modeling potential

Support Vector Machines
— Useful for data compression to

match information content

— Computationally demanding
— Unique nonlinear outlier

detection capability

Fuzzy Rules/Recursive
Partitioning
— Human interpretability — if

simple

— Can handle categorical data

Kordon, Smits & Kotanchek
GECCO 2007

Kordon, Smits & Kotanchek
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Evolutionary Computing

Theory

Variants:

Fitness-Based
Propagation

Improved
Population

J

Population

Diversity
Introduction

It isthissmple! -

Kordon, Smits & Kotanchek
GECCO 2007

Genetic Algorithms (GA)

Evolutionary Strategies (ES)
Evolutionary Programming (EP)
Genetic Programming (GP)

Particle Swarm Optimization (PSO)
Gene Expression Programming (GEP)
etc.

Genetic Programming

Genome (genetic code) evolves
Phenotype (realization) judged for fitness
Goal is to evolve programs which solve
problems

The search space is infinite!

Symbolic regression is one application of
genetic programming

Symbolic Regression

Goal is to identify expressions which summarize
data

NOT parameter fitting — discovery of both
structure and parameters

The search space is infinite!

In practice, symbolic regression is part of an
integrated methodology

Why industry needs Evolutionary Computing?

No a priori modeling assumptions

Derivative-free optimization

Few design parameters

Natural selection of most important inputs

Why industry
needs EC?

Parsimonious analytical functions as a final result

__ Facilitates human understanding of derived models

Efficient modeling approach in terms of human time investment

Kordon, Smits & Kotanchek

GECCO 2007 12
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Economic benefits from Evolutionary Computing

Genetic Algorithms

Resolve complex optiumization problems Partice Swarm Optimization
_Ant Coleny Optimization
Suggestions for profitable directions for RAD
Physical interpretation & msight (Symbolic regression) " 4. upcate RAD

Higher credibiity in comparisen to black-boxes

Reduee model development cost (significantly reduced development time relative to altematives)

Benefits from
EC

Minimal model cost (no need for software)
Reduce model exploitation cost _—

Raduced maintenance cost (less frequent redraining)

__ Reduce cost of ndustrial expenments (minumizes the number of additional expeniments)

Kordon, Smits & Kotanchek

GECCO 2007 13

Benefits of integrating Evolutionary Computing
with other approaches

Data with high information content

Ir i quality of g ted models _
Model complexity measure

Reduced model development time and cost -
Benefits of integration| “ velop . ~

. Faster model selection

_Final users

Broader support from different stakeholders /
"~ Statistical community

: _Machine leaming community

Kordon, Smits & Kotanchek

Application areas with impact

Understand Variable
Relationships System Modeling

Research
Acceleration

Cues to Physical Emulators

Mechanisms

Coarse Optimization

o Insight into System
Explore Multivariate
Relationships

Industrial
Applications

Meaningful
Combinations

Variable
Transforms

Infer System States Inferential

Sensors

. - Convert into less
Online Monitoring nonlinear problem

& Alarm

. Identify Variables
onlinear which drive system

Focus Data Gathering N
DOE

Variable
Sensitivity

Model Discrimination DOE

Kordon, Smits & Kotanchek

GECCO 2007 15

Implementation guidelines
» Requirements for successful empirical
modeling
» Key issues to be overcome
* Implementation strategy
* Implementation tools
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Requirements for successful data-driven modeling

Objective function:
Minimizing modeling cost and maximizing data analysis efficiency
under broad range of operating conditions

ability to withstand minor Robustnest
changes in targeted system

ability to estimate
quality of predictions

Extrapolations Credibility the model matches

the observed behavior

ability to operate
outside training range

The total cost-of -ownership
(development + operation +
maintenance) is proper

Cost-Effective Inter pretability

humans are able to agree
that the model is "reasonable"

Kordon, Smits & Kotanchek
GECCO 2007 17

Key issues to overcome

Data pre-processing and condensation

Model selection

User-friendly implementation tools

Marketing of EC to different

ey Implementation modeling communities

Issues

Resistance to implement empirical models
(inherited from black-box models)

Seamless integration into existing
maintenance and support infrastructure

Critical mass of model
developers familiar with EC

“Good enough is the worst enemy of better”

Kordon, Smits & Kotanchek
GECCO 2007

Implementation Strategy
Opportunities
Technologies
Technologies

GECCO 2007 19

Implementation
Methodology

Understanding lags application

(Good judgment comes from experience;
experience comes from bad judgment)

Kordon, Smits & Kotanchek

Corporate Research Objectives

Do novel things ...

which have value & impact ...

R&D

Objectives in a timely fashion ...

for an affordable cost

Kordon, Smits & Kotanchek
GECCO 2007
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Characteristics of a
“Good” Analysis System

developed ONCE i scalable
by gurur:; ___Portabilit, o
™ “._ 08 Independent

uus live wilh_Algorithms

eir nlgorilhms T minimal cuslom
!

_code dovelopment

gurus maintaln H'x Low, Vg
algorilhms (nol code) ./ Demmpmeﬂt .r"r complele basaline
Cost tunclionalily
dala separale =2 ) ‘\‘-\
from algorilhms A standards-Orented

__Data : Whatis ) \\
use dalabases \‘Good?/ '\ compatible with
(not natiles) 7 2 ¥ \_other products

qur can lap power Low change poinls are
compafimentalized
production useris Muttiple Maintenance -~
shialded rom v Imterfaces Cost 7 Indifferent to OS and
complexily 7 'Z\'-. __hardware "upgrades"
{
same underlying J,."' b, algorilhms, dala, hardware
execilables & dala / *__etc. maintained separately

Kordon, Smits & Kotanchek

GECCO 2007 21

Implementation tools

* Mathematica (Dow & Evolved Analytics developed)
— Symbolic regression package
— AutoAnalysisTools
— Analytic neural networks
— Particle Swarm Optimization (PSO)
— Group Methods of Data Handling (GMDH)
*« MATLAB (Dow developed)
— Genetic Algorithms (GA)
— Genetic Programmimg (GP)
— PSO (single objective and multi-objective)
— Analytic neural networks
— Support vector machines
* Tools for model deployment

Using a commercial framework
allows us to bring new concepts
and technologies to bear while

— Delphi ety e | i’
— WebMathematica mitigating the development an
_ Excel long-term maintenance costs of

exploiting those technologies.

— Process control systems

Kordon, Smits & Kotanchek
22
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Exploitation/Implementation Sequence of
Computational Intelligence Approaches in Dow

Chemical
2000 2005
SVM PSO

Kordon, Smits & Kotanchek

Integrated
methodology

Classical NN

1990 1995

Integrate & Conquer

 Integrated methodology for
successful EC implementation

» Related approaches
» A case study

Kordon, Smits & Kotanchek

GECCO 2007 23

GECCO 2007 24
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Integrated Methodology for Empirical Models Development

« Hybrid approach integrating multiple
technologies exploits the strengths of
each

1 * Advantages:

Nonlincer ensiiviy ancysis — Fast development (days)

R — Robust performance (compact
models)
— — Direct implementation in any

Svarbles X 1000 dta o Distributed Control System (no

oints T need for specialized software)

Outliers detection — Very low capital cost (only if

Condensed data set generation hardware for data collection is

unavailable)

— Low average cost of ownership
(reduced development and
maintenance cost)

— Process engineers like it (preferable
to black-box models)

Original spreadsheet
50 variables X 1000 data

Full data set
points T

Analytical Neural Networks

Reduced spreadsheet
5variables X 120 data
points

Final model
Analytical function

Kordon, Smits & Kotanchek

GECCO 2007

25

Structural Risk Minimization

Guaranteed
Risk
Generalization
ability

. Empirical

h1 W P ;

n

GECCO 2007

26

VC-dimension

* In general, VC-dimension does not
coincide with the number of parameters
(can be larger or smaller)

» VC-dimension of the set of functions is
responsible for the generalization ability
of learning machines

» Opens remarkable opportunities to
overcome the “curse of dimensionality”
(large number of parameters, but low VC-
dimension)

Kordon, Smits & Kotanchek

GECCO 2007

27

Two hidden nodes

wl=1w2=1b=0.5t=5

wl=-1w2=1 b=0.5 t=5

Any complex surface can be approximated
by combining simple surfaces
corresponding to a single hidden node

Combination:

Kordon, Smits & Kotanchek

GECCO 2007

28
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Structural difference between classical

and analytic neural networks
Classical NN Analytical NN

An additional link between inputs
Xi and the output Y is introduced

Bias(1) Bias(1)

Zy=F, (ay + ay X, + ayp X, + 35 X)

T ———r—— Z; =F,(a +an X+ apX, +axX;)
idden nodes calculation

2, =F, (ag + 4 X + a5 X, + g X;)
Zy=F(as +anX, +apX; +aigXs)

Y =F,(by+bZ +b,Z, +b,Z,+ b, Z,)

Z, =F, (ay +ay X, +ap X, + a3 X3)
Z, =F (ay +ay X, +a, X, +ayXs)
Zy=F,(ax + ay X, + ap X, + agX;)
Zy=F (ay+auX, +a,X,+a,X;)
Y =F (by+bZ,+b,Z, +bZ +b,Z, +c, X, + ¢, X, +¢,X,)

Kordon, Smits & Kotanchek
GECCO 2007 29

Analytic neural networks have a fixed Capacity

arefixed, thereis an analytical

If input-to-hidden layer weights aij ‘
solution for the weights bi and ci

bl)
Fr0)=1XZ]*| ¢,
hr

2, = Fi(ay +au Xy + @, X, + a3, Xy)
Zy=Fy (a0 +ax Xy +ap Xy +aXy)

Zy=F (4 + Xy + X, + a0 Xz)

Zy=Fas +an Xy +a,X, +a,Xs)
Y =F,(by+bZ, +b,2, +b,Z+b, 2, + ¢, X+, X, +¢:X,) . .
T A e Standard linear regression problem

X —inputs data matrix (known)
Z —hidden layer values vector (known)
Unique least-squares solutions for bi and ci

Kordon, Smits & Kotanchek

GECCO 2007 30

Input-to-hidden layer initialization

Hidden nodes have to be
within the active region
of the nonlinear function

f=Sig0c,1)

The “temperature”
depends also on the
number of inputsto the
hidden node

defined by the steepness of the

The width of the active zone is ‘
function or the"temperature”

Empirical expression for a
normalized “temperature” of a
sigmoid function

| og(Z + \/é) Weights from the input-to-hidden layer are

Tn=n. - Sampled from anormal distribution
ni—05

Kordon, Smits & Kotanchek
GECCO 2007 31

Analytic Neural Network Benefits

* Robust algorithm
— No tunable parameters
— One global optimum

e Very fast,

— possible to use a whole range of cross-validation principles
from statistics

— No longer an NP-complete problem
« Strong theoretical foundation
— statistical learning theory
— Direct measure for the model capacity (VC-dimension)

Kordon, Smits & Kotanchek
GECCO 2007 32
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Stacked Analytic Neural Nets (SANN)

Fast development

» Diverse subnet consensus
indicator of model output
quality

« Allows explicit calculations of
input/output sensitivity

¢ Can handle time-delayed
inputs by convolution
functions

» Gives more reliable

estimates based on multiple

models statistics

OGO

Internally developed in Dow Chemical

Kordon, Smits & Kotanchek
GECCO 2007 33

Model Mismatch Indicator - 2D

Model Mismatch Indicator - 2D

Modelstend to agree where thereis ‘

data points and tend to disagree
where there is no data.

Kordon, Smits & Kotanchek
GECCO 2007 35

¢ F3
Reduction of the number of input
dimensions using Neural Networks
1oy
Np ¢ 0X,
St e ‘
JOXX)
ONN, (X)

A !
e W+ Z wia, (1-a; )] .w), where a] = Sig(z wi X7, th)
: =i =0

ICM(X) :iw INN,(X)
ox, =" X

i

Kordon, Smits & Kotanchek
GECCO 2007

36
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An example of stacked analytic NN application - Integrated Methodology for Empirical Models Development

a model for catalyst efficienc
Y y « Hybrid approach integrating multiple

Sequence of inputs elimination C/212A may 30NN

| o Sensitivity analysis of e TR technologies exploits the strengths of
° 20 various process points > each
parameters on 1 ¢ Advantages:
catalyst efficiency Nonlinearsesiivity anaysi — Fast development (days)

— Robust performance (compact
Analytical Neural Networks models

—~— ) .) -
— Direct implementation in any

Reduced spreadsheet P
5 variobles X 1000 data Distributed Control System (no
oints T need for specialized software)
. — Very low capital cost (only if
Outliers detection
NN model performanceW|th (,‘:j‘m‘re‘ns:e;;;l!];et generation hardware for data collection is
el R A A e model disagreement indicator ;
oo M\ A I | A sag Support Vector Machines unavallable)
Reduced spreadshest — Low average cost of ownership
aool-f 41— — Wy — 7 Svar "*";fmslzo data (reduced development and

maintenance cost)

— Process engineers like it (preferable
to black-box models)

Model disagreement indicator

100 — —l— — L,,\,,J,,L+
| | | | [ o
iy iy Mgl
e e u am s soe  ew 7o a0 o

Final model
Analytical function

Kordon, Smits & Kotanchek Kordon, Smits & Kotanchek
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Explicit Complexity Control in Support Vector Machines Co ntrol |ed Data Com p ression
(SVM)
¢€=0.0 (100% sv) £ =0.05 (48% sv)
1.5 1.5
(a) L-Curve (b) Maodel with C=5
. C=7220808 '8 1 * -
B 1 ' -~
£ é .
4 &
m 0-5
Eh A 05 2
E =054 . ;
o =5 L b 4 0 - \
= 0.5 0.5
-10 5 [ 05 0E ] 0 0.5 1 0 0.5 1
In(Errar norr)
(<) Model with G=254 (d) Model with C=7220809 €=0.1(22% sv) € =0.15 (12% sv)
5 5 1.5 1.5
L L 1 *
05 ¢ 05 05
0 R 4 0 < J Y,
0 4 \
-0.5 -0.5 \
0 K] 1 0 K] 1 -0.5 -0.5
0 0.5 1 0 0.5 1
Kordon, Smits & Kotanchek Kordon, Smits & Kotanchek
GECCO 2007 39 GECCO 2007 40
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x=(0.0)

*=(0.25.0)

P

x—rO 50

‘_,_

x-:O 750

V

®*=(1.0)

— 4

...

GECCO 2007

Local Kernel

%=(0.0.25) *=(0,0.5) %=(0,0.75) x=(0.1)
"N f
~1'l-lh. - = L
x={0. 25 0.25) =0 ZSU 5 ¥={0.25,075) %=(0.25.1)
Y | A | 4
x—[U 5 0. 25} x=(0.5.0.5) x=(0.5,0.75) *=(0.51)
s | | 4
xn[ﬂ 75,0.25) *=(0.75,0.5) x=(0,75,0.75) *=(0.75,1)
- |- LA |
> i
*=(1,0.23) ¥=(1,0.5) *=(1,0.75) x=(1.1)

REF Kemel with o=0,2

Kordon, Smits & Kotanchek

Interpolation/Extrapolation of Local Kernel

Small widths of kernel
interpolate better

Outside input range, no £ 'w
. . . Z0s ) -

local information is e

available and the kernel 05

levels off — no

extrapolation : \\ [

No smgle_ch0|ce of X M y

width achieves both 08

Kordon, Smits & Kotanchek

GECCO 2007

+ Data

— a=00
a=005
o=01

+ Oala

— g=015

=+ g=02
a=025

41
Global Kernel
*=(0,0) %=(0,0.25) %={0,0.5) *=(0.0.75) *=(0.1)
*=(0250) =(025,025) =(02508) x;.cﬁ"is'.o.-?m ;—-.td'és-.;:.
_~
- & ¢ @ >
x=(050) %=(05,0.25) =05,05) =(05075) =05.1)
A
x=(0.75.0) %=(0.75.0.25) =(0.75,0.5) ¥=(0.75,0.75) x=(075.1)
- P | PO
x=(1.,0) x-[] 0. 25} #={1,0.5) x=(1,0.75) w=(1,1)
R el e A A
Polynomial Kernel with degree=2
Kordon, Smits & Kotanchek
GECCO 2007 43

Interpolation/Extrapolation of Global Kernel

e Lower order polynomials

extrapolate better
 High order polynomials ,_|;

needed to interpolate £ -
» No single choice of order

achieves both

i

3307



GECCO 2007 Tutorial / Industrial Evolutionary Computing

Mix of Local and Global Kernel

©=(0,0)

/

¥=(0.25.0)

y

x=(0.5,0)

D

4=(0.75.0)

%=(0.0.25) ¥=(0,0.5)

|

| . ! ‘ -
=(0.25.0.25) ¥=(0.25,05)

| <>

x:tO.‘)O 25) ©=(05.0.5)

- |
|
¥={0.75.0.25) ¥=(0.75.0.5)

x=(0,0.75)

-

%=(0.25,0.75)

.

w=(05.0.75)

()

X=(0.75,0.75

o

x=(1.0.75)

-—

Mixed Kernel with degree=1,  o=0.2, p=0.7

Kordon, Smits & Kotanchek

x=(0.1)

¥=(0251)
I -
=
=(0.5.1)
.

x={0.75,1)

Interpolation/Extrapolation with Mixed kernels

* Mixture of first degree
polynomial and RBF with
0=0.01

* RBF contribution makes
interpolation possible

« Polynomial makes B
extrapolation possible
+ Single choice of s
parameters achieves both i

i L P L
o 9z 094 05 03 1
®

L N L L
08 08 04 02

Kordon, Smits & Kotanchek
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Industrial Example: Polynomial Kernel
EVWM's using Folynomial (Tesl Dak)
140 T T
Degree 3
-Dagmaez
Degrea 2
Degres 3
Degrae 1
Degrae 4
Degrae 5 |
: | Dagrea 1
i i
_E. : Degrea &
Pl N
| " |Degrea 4
m . . . :
-z a az 0.4 0 a8 1 12 14
fest % impul
Kordon, Smits & Kotanchek
47
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Industrial Example: RBF Kernel

SVM's using RBF (Test Data)

70

o a=D5

' a-03

| b ~|e=04

L “{e-02

] [ 9

' o

' ! ENT
] 1
!
' 1
' !
! i
1 1
i i
! !
i i
p \ L s . s \

-0z [} 0.2 04 05 [T 1 2 14
bt x inget
Kordon, Smits & Kotanchek
GECCO 2007 48
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Industrial Example: Mixed Kernel

e-Insena tive SYM (Learnin g Set)
T T T T

El T T T

Learning Output

a 01 0.2 03 04 05 06 o7 08 09 1
fe = £000)
e-dnsensktive SYM (Test Saf)

Teat Output

Input

Kordon, Smits & Kotanchek
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Genetic Programming

» Based on artificial evolution of
millions of potential nonlinear
9% functions => survival of thefittest
@ L « Many possible solutions with
4 different levels of complexity
@ l « Thefinal result is an explicit
[ ] (nonlinear) function
Children y x * Can have better gener alization
, capabilities than neural nets
H Example of Crossover Operation I * Low implementation requirements
* Issuesinclude ...
Phenotypes (Expressions) » Time delays
Parents o  Sengitivity analysis of large data
—(-0.787700)% + x H sets
Children . e « Relatively slow development
-(-0.787701)F "+ x 2 (hours of computation time)

-X+¥
Kordon, Smits & Kotanchek

Genome Tree Plots

Parents

5—
—P
-0.79

GECCO 2007 51

Integrated Methodology for Empirical Models Development

« Hybrid approach integrating multiple

Original spreadsheet technologies exploits the strengths of
50 variables X 1000 data Full data set
paints — each
1 * Advantages:
Nonlner sars — Fast development (days)
ime delay inf
— Robust performance (compact
Analytical Neural Networks models
—~— ) .) -
Reduced - e — Direct implementation in any
e e s Distributed Control System (no
oints T need for specialized software)
Outliers detection — Very low capital cost (onI_y if_
Condensed data set generation hardware for data collection is
Support Vector Machines unavallable)

Reduced spreadsheet
5variables X 120 data
points

— Low average cost of ownership
(reduced development and
maintenance cost)

— Process engineers like it (preferable
to black-box models)

Symbolic regression
Functiona solutions selection

Final model
Analytical function

Genetic Programming

Kordon, Smits & Kotanchek

GECCO 2007 50

Steps Based on Genetic Programming

Representative data collection
Data preprocessing and classification

N im,
‘ Sensitivity analysis of all inputs | I - —— £ iy 5’" d rw)'
S— 1 R 2
i 21 1A R R
su e e e ST K118

‘ Convolution parameters’ estimation ‘

¥ ERERER

‘Ouﬂ ier detection and data set condensation|

|
GPfunction generaion  emm—"

o — =T — — = |- — — = — ¥ et il R L ]

Analytical function selection/verification =
¥ T/

. =

On-line implementation - |

1 i

i‘“i

‘ Model maintenance ‘

Kordon, Smits & Kotanchek
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Classic Problems with
Genetic Programming

Relatively Slow Discovery

— Computational demands are intense
Selection of “Quality” Solutions

— Trade-off of Complexity vs. Performance
Good-but-not-Great Solutions

— Other nonlinear techniques (e.g., neural nets)
outperform in raw performance

* Bloat

— Parsimony control requires user intervention and is
problem dependent

Kordon, Smits & Kotanchek
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The Pareto Front

» |dentifies trade-off
surface between
competing objectives

- e.g., performance vs.
complexity

the best “bang-for-the-
buck”

Introns are punished
automatically

» How can we exploit?

Note that much evolutionary effort is spent exploring
high complexity & high fitness regions

anchek

GECCO 2007

» Pareto front solutions are

Pareto Performance

¢ Characterizing Pareto
Performance

— Dominance

— Domination

— Layer

— Combinations ...

© ©
© © A
[©) o Computational Issues
e ® — Brute force is M N2
— Cando M Nlog,,_,(N) or M N
logy.»(N) if clever
* M = # of objectives
* N = population size
— Computation demands need
to be considered in algorithm

design

Dominance Domination

Kordon, Smits & Kotanchek

GECCO 2007
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Genome Complexity

OQO $o oQo o+ wnatis compleny?
— # of nodes?
5 = 1 + 1 . a

— Tree depth?

+ 3 — Included functions?

-] = 1 + 2
— Number of variables?
— Combinations?
¢ Chosen function is sum of sum

of node counts
— Provides more resolution at
low end of complexity than
simply using node count
— Rewards fewer layers

1 i b %o « Real goal is to characterize the
(relative) “smoothness” of the
evolved function

Complexity = 36 1
~—~_  — -27=%
X

Complexity = 17
——— nuui e & nonchek

GECCO 2007
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ParetoGP Algorithm

Kordon, Smits & Kotanchek

GECCO 2007

* Maintain archive based
upon Pareto layers

» Each child results from
one archive and one

f T~ e population parent
e e = T + Cascades ...
— ﬂ,— ﬁ — { — Pareto archive maintained
L':{:L'_H_J—_ —— — Population wiped out (fresh
e genes!)

* Independent runs with
independent archives for
diversity

e This approach is

intrinsically Pareto-aware

57

ClassicGP Algorithm

* ClassicGP can be Pareto-
aware if a Pareto-aware
selection scheme is used

* Most Pareto selection
— schemes are slow

g2 « Finding the Pareto front can
| | | be relatively efficient
e e —— « Pareto Elite or Pareto
Tourney may be viable
selection schemes
[— — Pareto tourney: select Pareto
fronts from random
subpopulations until desired
number of models is reached
— Pareto elite: select randomly
from elite (defined using
Pareto layers)

Orgres el S0m
inptona)

[ Cascate Nests

Conscooans Aess

Kordon, Smits & Kotanchek
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Symbolic Regression via GP

GenomeTreePlot[{parents.
HutateSubtree[parents,
HaximumTreeDepth — 3,
HarimumArity - 2,
DataYariables - {x, ¥}1.
Crossover[parents]}]:

|~ %r@
F A |
ﬂ?@r‘frﬁ

Introns are either overly
complex or non-functional

GECCO 2007

Nuances...

choice of operators

— functional building blocks
parsimony pressure

— preference for simpler/smaller solutions
diversity operators

- modify fit solutions and the relative presence of each mechanism
fitness-based breeding rights

— proportional, ranking, elitist, tournament, random, etc.
evolution environment

— population size, number of generations, population interaction,
fitness criteria, etc.

genetic modifications
— coefficient & structure optimization
automatically defined functions
— dynamically determined building blocks
metasensor definitions
— dynamically determined transforms and variable combinations

Kordon, Smits & Kotanchek
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A Toy Problem for lllustration

¢ We sampled a function of two
variables at 100 random points
in the range [0,4]

* The data matrix has three
random spurious variables in
the range [0,4]

* Notice that the entire
parameter space is not

covered
o-(-14b)2 ~
1.2+ (-2.5+a)?
Kordon, Smits & Kotanchek
GECCO 2007 60
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Context-free analysis Jeads tp.gonfidently wrong answers!

GECCO 2007

Evolutionary Computing

Getting the Zen
of the Data

* In this simple example, we
could probably guess that
only two variables were
important for model building

» Correlated inputs can be a
problem for some other
modeling techniques

» However, lack of correlation
to the response does not
necessarily correspond to
lack of importance

chek

61

GECCO 2007

Blodel Onder — 2 = R¥ = 0420007

Linear
Models

« Here we look at 2nd through
5th order models of the two
driving variables (a 3rd order
model with all five variables
has 56 terms)

« Notice the edges -- these
models would likely not
extrapolate well!

« However, not much time was
required to achieve a poor
model!

Kordon, Smits & Kotanchek

62

The Pareto

Competing Objectives :

No more things should be presumed to exist than are absolutely

necessary — W. Occam [1280-1349]

Front: Handling ;

Identifies trade-off surface between
competing objectives
— e.g., performance vs. complexity

PCPTT @) wiarity « Pareto front solutions are the best g
04 | ”
l bang-for-the-buck’ o
oE «  Accuracy and simplicity are 1
o3 automatically rewarded 2
025 |am * Pareto Front Benefits 3
’E 0z — Avoids need for a priori combination

of objectives into a single metric

— The shape of the front gives us 5

o | e

insight into the problem

05 = x — Identifies multiple candidate
ST [ . "
~FN PLad uti imu u
"fl‘.ﬂ'} L o solutions simultaneously 7
0 100 150 20 230 300

Gomplexity o
]
These are the error vs. complexity results of multiple .

independent symbolic regressions. Note that there is
variability from run to run due to the random nature
of the evolutionary process.

Kordol
GECCO 2007

, Smits & Kotanchek
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el complexity vars  abwcorr R®
ar 1 a2 0.672146 0 45178
ay -y 5 2l g7zves 0529765 E
4 volve oaels
0. 263706% & 11 :‘, 0. 806409 0. 645008
0. 3012140 48090 w, 9 811084w, 17 :} 0. BLBEET 0. 670084 ond
e 1 ... .
Lt i mz 0-085864 0.737648 «  Arun tends to fully explore a foundation
[zr)Rmr= S 2 o.essas 0.smss2 | structure
z3880% IR 2L — 3% . Independent evolutions will result in different
2.23080% (-5+m) m (L) & 32 0S4 090233 - (but still fit) structures
28T (-4 9307 e my) my | 5 :i 0.950524 0.903495 T . Cascading results from independent evolutions
seraet " (s . Ly asases 09185 £ seems to be beneficial
L. TEMA" (=54 33) ¥ ‘ 384 ' . X
L - E . Note that we are not strictly restricted to the
2. ZIBBOP % (8 emp)? nf 40 :5 0.972973 0 94T 2 Pareto front in selecting models -- many
. e ai = models may be “good enough” and have the
0. 426404 {5 - 20} a2y 2p w =L 5 benefit of being structurally different and
17BN =5 sm)¥ af I.L.‘"' """ 52 M oogsoent 0.961599 © diverse
(5 - 2107 af [22 )™ El 3 oosea 0oss1em 32
fin]
o N 5 —
gy 1 o * —ixz-1)"
T - $I0389 2
TR 62 M 0.9es068 0. 97008 4 um €
1956047+ (9 - 22} ) &5 ‘; 0.989806 0 979716 a3 L2+(x; =2 :)2
» 50 . 5
L (2 72 % 0994007 0968051
Ml 000w, ) -y - aZ
(9o (5-2ag)™ sag)™ 73 1 0.eseze 0osmasse
{8.18508 + (3= Zny)™ « L 2 omezen 0 988896
(90 (9 2ag)™ e 2ag)™ &3 i ooesassz 0 ses73
(94 (9-2ay)" o2y -2y y 95 :“,‘ 0. 995965 0. 59197
(818505 4 13- Zay)® s Zm - © 200 3 0.s0s04 0592088

similar performance but diverse structure

Kordon, Smits & Kotanchek
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% Truth
§ e-r2-17?

1.2+ (x; - 2.52

Pareto Front

Models

Explicit model
complexity vs. accuracy
control

Parsimony &
Extrapolation

o Phass e o o . -
) 00 150 200 250 30

* Note the pathologies at
high complexity when
extrapolating

* In general, we want to
avoid over-modeling!

GECCO 2007
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Soz A
i
o1
a - -
= o = 200 250 =
Complexity
GECCO 2007 65
Symbolic Regression:
.
S Benefits
Compact Nonlinear Models Diverse Model Ensembles
— Compact empirical models can be suitable for — The independent evolutions will produce
online implementation independent models. Independent (but
comparable) models may be stacked into ensembles
— Model(s) can be used as an emulator for coarse whose divergence in prediction may be an indicator
system optimization of extrapolation & model trustworthiness. This is
Driving Variable Selection & Identification an issue in high dimensional parameter spaces.
— Appropriate models may be developed from Human Insight
poorly structured data sets (too many variables — The transparency of the evolved models as well as
& not enough measurements) the explicit identification of the model complexity-
— Identified driving variables may be used as accuré;y trade-off is ‘very Compel‘“"g
inputs into other modeling tools — Examining an expression can be viewed as a
X visualization technique for high-dimensional data
Metasgnsgr (Variable Transform) Rapid Modeling
Idennflc'a"non . . o — Exploitation of the Pareto front has resulted in
— Identifying variable couplings can give insight several orders-of-magnitude in the symbolic
into underlying physical mechanisms regression performance relative to more traditional
— Identified metavariables can enable linearizing GP'I,Th',S greatly increases the range of possible
transforms to meld symbolic regression and applications.
more traditional statistical analysis . .
— Metavariables can also be used as inputs into There E_‘re many benefits to symbollc
other modeling tools regression. These are enhanced when
coupled with other analysis tools and
techniques.
Kordon, Smits & Kotau wiien
GECCO 2007 67

Particle swarm optimization

An efficient technique to find the global optimum
for model inversion and non-linear parameter estimation

At each time step t

For each particle i
Update the position change (velocity)
Vit+D) =g (Vi (6)+ ¢-rand(0])-(R() - X,(1)
+c,-rand(02)- (P, (1) — X,(t))

X@+)=X,()+V.(t+))

Then move

Note: - stochastic component
- parameters ¢,,C,, ¥ default vaues (2.05, 2.05, 0.73)

Kordon, Smits & Kotanchek
GECCO 2007
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Particle’s Movement — A Compromise

Global best

Gbest (t)
o position

Current X.0 @ Pbest,(t) Personal best
position! /—PQ position
40] X (t+])

Kordon, Smits & Kotanchek
GECCO 2007 69

Software tools

Representative data collection

DAP, Cave, |P21
Excel, IMP, SIMCA,
Mathematica
Data preprocessing and classification
MATLAB, Excel
i
‘ NN sensitivity analysis of all inputs

! s

‘ Convolution parameters’ estimation L

box | Outlier detection and data set condensation

G2,MO0D, I1P21,
WebM athematica

GP function generation = o o
MATLAB & MATHEMATICA Toolboxes
7 —
Online implementation
Model maintenance _
DAP, Cave, |P21
Kordon, Smits & Kotanchek

‘ Analytical function selection/verification
GECCO 2007 71

Multi-Objective PSO

Efficient technique to determine the Pareto front for problems with convex, non-
convex and even disconnected Pareto fronts.

" orsns, ornes & Kotanchek

GECCO 2007 70

Case Study: Inferential Sensors

Key objective:

To predict difficult-to-measure
parameter (melt index) from easy-
to-measure data (temperature,
pressure, flow, etc.)

Training
data

Process Quality Inferential Sensors

Process input
Development Software

Lab-test SITES

formulas
———-
% Quality Prediction

Inferential Sensor

An empirical model based on
analytical equations with built-
in self-assessment capability

ol

<
B dD
25

Easy On-Line
implementation

Kordon, Smits & Kotanchek
GECCO 2007 72
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Issues with neural net-based inferential sensors

Issueswith existing neur al net-based inferential sensors:
- High sensitivity to process changes
- Freguent re-training
- Complicated development & maintenance
- Low survival rate after 3 yearsin operation
Engineers hate black-boxes

Black box
[ \ y rateshopp wt
e rate? frac o EEEIEEEL | it vy
Fus o —

denaity « tonp’

Analytical expression

i

Specialized run-time Directly coded into
software most on-line systems

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring: A case study
Data Collection

251 training data
Q Emission

points
variable

107 test data points
(~40% outside training range)

4

N

Chemical 8 inputs
Process

T: Design Of Experiments

Kordon, Smits & Kotanchek
GECCO 2007
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Inferential sensor for emission monitoring: A case study
Sensitivity analysis by SANN

Input x3
removed after
first sequence

A NN with 4 inputs: x2, x5, X6,
and x8 is selected after discussion
with process engineers

Input X7
removed after
second
sequence

Input x6 has the
strongest
sensitivity

Camslation corficient

Pumber of shminated inputs

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring: A case
study (SANN model performance)

Bad extrapolation
(test datais 40% outside

! the range of training data)
/\

Stacked NN mode| with R2=0 83058

Model based on 30 stacked NN
with 10 neuronsin hidden layer

Reduced number of inputs
from8to 4

Fast test of the hypothesis about
potential nonlinear relationship
(in 20-30 min)

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring: A case
study (SVM parameters)

e, Sclling Pasametess

loix
Dataset [ ] cevouton: (uam
Problom Type © Chufcsion  © Aegseon Parameters:
% support vectors: 10
e ‘ ‘ ° C =10°

Mixed Kernels: Polynomial and RBF
Range of Polynomial kernels: 1-3
wiah [ 03 Range of RBF kernel: 0.25-0.75
Comploxity  [Fe sweet Ve ﬂlrmpm.n = Range of ratio 0.5 — 0.99
nu [ 0F
[ = el
Loss-Function [Lreslonfuwien =]

Kemel Choice [nmumu|wm||'ur|j.|mm'awms| =]

[t I

Kordon, Smits & Kotanchek
GECCO 2007
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Inferential sensor for emission monitoring: A case
study (GP parameters)

—— == Parameters for a GP simulated evolution

amezn

— . - Reference data :34
] L Random subset selection [%)] :100
— - Number of runs :20
L e~ Population size :500
e = Number of generations :100
oot 3% Probability for function as next node  :0.6
T o Optimization function :Corr.
e . :°-° Parsimony pressure 0.1
T o Prob. for random vs guided crossover :0.5
*__:'::":_"v‘_";m“ = Probability for mutation of terminals :0.3
vttty gt o e O] [ Probability for mutation of functions :0.3
LT . ]
Flur, Detsits Furctons Hep

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring: A case study
(SVM model performance)

SWM model with F2=0.948

Impressive extrapolation
(test data is 40% outside
the range of training data)

Model based on a mixture of 2nd order
polynomial global kernel and RBF local kernel
with width of 0.5 and ratio of 0.95

Output

4;,: = Reduced number of training data points

T T T T from 251 to 34 (based on support vectors)
key input

Kordon, Smits & Kotanchek
GECCO 2007
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Inferential sensor for emission monitoring:
A case study
(Selected symbolic regression model)

Farstn From ter (° (traming dats)

Simple expression with acceptable
performance (R2 = 0.87)

Response surface of model
according to process
physics

Selected model on Pareto LN
front o P nxm:ccm|— L]

Kordon, Smits & Kotanchek
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Inferential sensor for emission monitoring:
A case study
(Final solution: Stacked Symbolic Regression model)

Stacked GP model with R2=0 8348

In operation since August
2001

Model based on 8 Stacked
Symbolic Predictors

Shorter evolutionary process based
on 8.44% of the original training
data set

1 15 2 25 3 35 4 45
key input it

Kordon, Smits & Kotanchek
GECCO 2007
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Key application areas

Robust Inferential Sensors
¥ "ﬂ. i Mass-scele on-line empirical models

[m——ll
—

iE:

Empirical Emulators of Fundamental M odels
Effective on-line process optimization

Fundamental model building based on GP
Accelerated new product development

Nonlinear DOE based on GP
Minimizing expensive process experiments

GECCO 2007

Automated Operating Discipline
Consistent intelligent on-line supervision

82

EC Applications in Dow Chemical

Application Domains Examples

Color Matching
Appearance Engineering
Polymer Design
Synthetic Leather

Material Design

Diverse Chemical Library Selection
Fundamental Model Building
Reaction Kinetics Modeling
Combi-Chem Catalyst Exploration
Combi-Chem Data Analysis

Materials Research

Acicular Mullite Emulator
Production Design + EDC/VCM Nonlinear DOE
Bioreactor Optimization

Epoxy Holdup Monitoring

Isocyanate Level Estimation

FTIR Calibration Variable Selection
Poly-3 Volatile Emission Monitoring
Epoxy Intelligent Alarm Processing
PerTet Emulator for Online Optimization
Emissions Monitoring

Production Monitoring
& Analysis

Diffusion of Innovation
Hydrocarbon Trading & Energy Systems Optimization
Scheduling Heuristics
Plant Capacity Drivers

Business Modeling

Kordon, Smits & Kotanchek
GECCO 2007
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Automating Operating Discipline

« Heuristic rules defined verbally
by process engineers/operators

« holdup predictor designed by
stacked analytic NN and GP

« all decision blocks have fuzzy
thresholds defined by
membership functions

* simple empirical models and
mass balances

« fundamental model predictions
are used in the heuristic rules

Fie Process Alanws  Preferences  About  Help

()8 [Lasg bor Wi E i e
e || B ool of REGAD

hatguanin bt Cotar Ten s - .
lTIT_G_gm : * reduced major shutdowns

« reduced lab sampling

" — —

Kordon, Smits & Kotanchek
GECCO 2007
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Emulator for optimization of an industrial chemical process

Fundamental Model Building Based on GP

Run simulated evolution
before beginning
fundamental modeling

1. Problem
definition

2. Runsymbolic = GPFusctionl « e - Logl-Loglsl] - xf +xs emil” - Yoz e meomy

regression == g
E.:' yma+h (o= 4]
=
= o A
| @ 5, - 313%68x10 e o) ]Azﬂ_m
3. Identify key | i
iz o

The evolutionary process identifies
the key input variables as well as
natural groupings & relationships.
Combining this with a domain

knowledge and first-principles
insights is very powerful.

4. Sdect GP I
generated models
5. Construct first I
principle models

6. Selectaverify the
final model solution

Accelerated fundamental
model building steps

on, Smits & Kotanchek
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Four
levels
DOE -
Training |—,|
Data set .
] On-line process
10 inputs Reactor 12 outputs Symbollic optimization
Regression
|::> Model ) Emulator |::>
20-25 min/
prediction 5ms/
- prediction
Test
Data set ||
Approaches to accelerate fundamental model
building process
Al approach Reduce hypothesis _GP as_automate_d
invention machine

search by GP

®oco0 g

b= ot

Eliminate the expert

Mimic the expert

Maximize creativity of the expert

Kordon, Smits & Kotanchek
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The problem of structure-properties
in fundamental modeling

Materia structure

Properties:

- molecular weight )

- particlesize

- crystallinity I:>

- volume fraction

- material morphology

- etc. Key modeling effort
for new product

development

Modeling issues:
« nonlinear interaction
« large number of preliminary

expensive experiments required
« large number of possible mechanisms
« slow fundamental model building
« insufficient datafor training neural nets

Kordon, Smits & Kotanchek
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Case Study with Structure-Property Relationships

Fundamental model .

y=a+[bx, +clog(x,)] € +dx, T,

Theoretical Analysis Hypothesis Search

Fundamental dr _ FT_DHdc 6
Model Building  “ar~ ‘%% ¢ a :

Sensitivity Analysis Symbolic Regression Model

| S

Fundamental Model Building + Symbolic
Regression = Accelerated New Product
Development

Structure-

property
data sets

Simulated Evolution

Symbolic
Regression
o ES an - N E
T g I = e 10 hours
-

GP and Design Of Experiments (DOE)
Models Showing Lack of Fit

Situationsof Lack of Fit

1. Simple factorial DOE 2. A response surface DOE
Enough experiments to fit first order already had all experiments to fit
model second order model

v BB+ T B, 5.=8, +ﬁﬁ.x. + 2B+ LB,

Classical approach if LOF
no alternative (use model asit is)

Classical approach if LOF
add experimentsto fit second
order model

S,= A+ S s+ TR+ T A

More costly experiments

GECCO 2007 90

Suggested appr oach:
Use GP to transform inputs

Kordon, Smits & Kotanchek

1. Generate GP models 2. Generate input transforms
Variable transformations suggested by GP model
5 5 138681017 VT ].n’(x3)2] TG Original Variable :l mnsforme_d Variable
Xy X L= ".‘cpl‘_-l_’.\l ]
X3 4, =%
Z;=n[(x,)]
Xy Z.=x,7
Selected solution 3. Fit response surface model in
transformed variables
4 4
S, = ﬁa + zﬁizi + ZZﬁi_,'ZiZj + zﬁiiziz
i=1 i<j i=1

Source DF | Sum of Square | Mean Square | F Ratio
Lack of Fit | 2 0.00049190 0.000246 2.2554 /
Pure Error |2 0.00021810 0.000109 Prob > F—< No Lack Of Fit
Total Error [2 [ 0.00071000 0.3072 (p=0.3037)

Max RSq

0.9999

Kordon, Smits & Kotanchek
GECCO 2007
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PSO application: Optimizing color spectrum of

plastics
e ——
: FUTu 80 QT vad - - ¥ L4
T T '_ Real-time optimization
‘ in 2-3 seconds
PSO and GA
convergence
—
=
Multiple-objective PSO
with 15 variables
Kordon, Smits & Kotanchek
GECCO 2007 92
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Other PSO applications

» Drug release predictor
— 6 parameters
— population size = 30
— optimization time: ~ 30 seconds
e Foam acoustics performance predictor
— 8 parameters
— population size = 50
— optimization time: ~ 5 seconds
 Crystallization kinetics predictor
— 4 parameters
— population size = 30
— optimization time: ~ 2 seconds

Kordon, Smits & Kotanchek
GECCO 2007
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Open Issues & Current Research

Complexity Control & Smoothness Characterization

Diversity Detection

Identifying Metavariables

Open

Convert Hard GP Problems into Easy Ones
Issues

Should we be doing Cultural Programming?

Blending Heuristics & Prior Knowledge

Integrating Ordinal Optimization Concepts

Kordon, Smits & Kotanchek
GECCO 2007 94

Summary

« Evolutionary Computing can create significant value to industry by
reducing model development time and model exploitation cost

» Integrating EC with Neural Networks, Support Vector Machines, and
Statistics is recommended for successful industrial applications

» This strategy works for many real applications in the chemical
industry

* The key application areas are:
— Inferential sensors
— Improved process monitoring and control
— Accelerated new product development
— Effective design of experiments

* And this is only the beginning ...

Kordon, Smits & Kotanchek
GECCO 2007
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