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Overview

• Evolutionary Computing and the business model
• Key Technologies

– Analytic Neural Networks + Support Vector Machines 
+ Genetic Programming + Particle Swarms + …

• Implementation Guidelines
• Integrate & Conquer
• Key Application Areas
• Open Issues & Research areas

In theory, there is no difference between 
theory and practice. In practice, there is.
- Jan L.A. van de Snepscheut
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Data Modeling
At the Intersection of Opportunity & Need

Enabling
Technologies

Emerging
Concepts

Industrial
Need

$$$
New ways of looking at the 
world change what is 
possible.

Technology & Price-Performance shifts 
enable implementing new concepts and 
implementing old concepts better.

The economic context 
prioritizes the 
possibilities.

Industrial research needs to 
recognize the evolving potential and 
feasibility of new ideas within the 
context of corporate needs. 
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Motivation
• Industry is great at 

collecting data … and 
then performing 
records retention

• Extracting insight 
from multivariate data 
is hard

• Time and money is 
being wasted

““We are drowning in information We are drowning in information 
and starving for knowledgeand starving for knowledge”” ––

R.D. RogerR.D. Roger
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Academic vs. industrial data analysis

Transfer data into knowledge Transfer data into value
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Special Features of Industrial Data Analysis

Operators intervention Curse of closed loops

Operators manually modify the process

The majority of process variables are in closed loops 
and depend on controller adjustments

Time scales vary from milliseconds to months

Multiple time scales

Real-time pressure

Most of models 
operate in real time

Models need to be developed & 
updated rapidly
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Intelligent Systems in Industrial Data Analysis:
Lessons From the Past

The Neural Networks campaign (early 90s)
“We’ll turn data into gold”

The Expert Systems campaign (late 80s)
“We’ll put engineers in the box”

• static rule-based models not linked to 
numerical world

• the politics of knowledge acquisition

• the efforts of knowledge acquisition

• black-box models with inefficient 
structure

• fragile models and model validation

• maintenance nightmare
GECCO 2007
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“The most exciting phrase to hear in science, the one that heralds new discoveries, is 
not ‘Eureka!’ (I found it!) but ‘That's funny …’” — Isaac Asimov (1920 - 1992)

Industrial Data Modeling Issues
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Industrial data analysis components

The role of evolutionary 
computing (symbolic 
regression)  is to …

– Facilitate physical/mechanism 
insight and understanding

– Summarize data behavior
– Identify data transforms and 

metasensors
– Perform variable selection
– Enable response surface 

exploration and optimization
– Visualize behavior in the form 

of a symbolic expression
The overall goal is to achieve 
speed, accuracy & efficiency. 
Symbolic regression is part of 
an integrated methodology.
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Competing/Complementary 
Technologies

• Linear Models
– Linear in coefficients, not 

necessarily linear in model
– Often "good enough" and 

simple
– Well developed criteria and 

foundations in linear statistical 
analysis

– Typically easy and fast to 
develop (unless subtleties are 
involved)

• Neural networks
– Often good performance but 

lots of “trust me”
– A good reference for nonlinear 

modeling potential

• Support Vector Machines
– Useful for data compression to 

match information content
– Computationally demanding
– Unique nonlinear outlier 

detection capability
• Fuzzy Rules/Recursive 

Partitioning
– Human interpretability — if 

simple
– Can handle categorical data
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Evolutionary Computing
Theory

Variants:
– Genetic Algorithms (GA)
– Evolutionary Strategies (ES)
– Evolutionary Programming (EP)
– Genetic Programming (GP)
– Particle Swarm Optimization (PSO)
– Gene Expression Programming (GEP)
– etc.

Genetic Programming
– Genome (genetic code) evolves
– Phenotype (realization) judged for fitness
– Goal is to evolve programs which solve 

problems
– The search space is infinite!
– Symbolic regression is one application of 

genetic programming
Symbolic Regression

– Goal is to identify expressions which summarize 
data

– NOT parameter fitting — discovery of both 
structure and parameters

– The search space is infinite!
– In practice, symbolic regression is part of an 

integrated methodology

It is this simple! 
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Why industry needs Evolutionary Computing?
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Economic benefits from Evolutionary Computing
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Benefits of integrating Evolutionary Computing 
with other approaches
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Application areas with impact

Focus  Data Gathering
Identify  Variables
which drive system

Convert  into  less
nonlinear  problem

Meaningful
Combinations

Insight  into  System

Coarse  Optimization

System  Modeling

Online  Monitoring
& Alarm

Infer  System  States

Explore  Multivariate
Relationships

Cues to Physical
Mechanisms

Understand  Variable
Relationships

Model  Discrimination  DOE

Nonlinear
DOE Variable

Sensitivity

Variable
Transforms

Emulators

Inferential
Sensors

Research
Acceleration

Industrial
Applications
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Implementation guidelines

• Requirements for successful empirical 
modeling

• Key issues to be overcome
• Implementation strategy
• Implementation tools

GECCO 2007 Tutorial / Industrial Evolutionary Computing
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Requirements for successful data-driven modeling

The  total  cost-of -ownership
(development  + operation  +
maintenance)  is proper

humans  are able  to agree
that the  model  is "reasonable"

ability  to estimate
quality  of predictions

ability  to operate
outside  training  range

ability  to withstand  minor
changes  in targeted  system

the model  matches
the observed  behavior

Cost-Effective Interpretability

Self-Assessment

Extrapolations

Robustness

CredibilityGood
Model

Aspects

Objective function:
Minimizing modeling cost and maximizing data analysis efficiency

under broad range of operating conditions
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Key issues to overcome

“Good enough is the worst enemy of better”
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Implementation Strategy

Business
Opportunities

Emerging
Technologies

Implementation
Methodology

Small
Projects

Large
Projects

Known
Technologies

Understanding lags application

(Good judgment comes from experience;
experience comes from bad judgment)
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Corporate Research Objectives
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Characteristics of a
“Good” Analysis System
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Implementation tools
• Mathematica (Dow & Evolved Analytics developed)

– Symbolic regression package
– AutoAnalysisTools
– Analytic neural networks
– Particle Swarm Optimization (PSO)
– Group Methods of Data Handling (GMDH)

• MATLAB (Dow developed)
– Genetic Algorithms (GA)
– Genetic Programmimg (GP)
– PSO (single objective and multi-objective)
– Analytic neural networks
– Support vector machines

• Tools for model deployment
– Delphi
– WebMathematica
– Excel
– Process control systems

Using a commercial framework 
allows us to bring new concepts 
and technologies to bear while 
mitigating the development and 
long-term maintenance costs of 
exploiting those technologies.
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Exploitation/Implementation Sequence of 
Computational Intelligence Approaches in Dow 

Chemical

1990 1995 2000

Classical NN

Analytic NN

GA/GP

SVM

Integrated 
methodology

PSO

Pareto GP

2005
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Integrate & Conquer

• Integrated methodology for 
successful EC implementation

• Related approaches
• A case study

GECCO 2007 Tutorial / Industrial Evolutionary Computing
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• Hybrid approach integrating multiple 
technologies exploits the strengths of 
each

• Advantages:
– Fast development (days)
– Robust performance (compact 

models)
– Direct implementation in any 

Distributed Control System (no 
need for specialized software)

– Very low capital cost (only if 
hardware for data collection is 
unavailable)

– Low average cost of ownership 
(reduced development and 
maintenance cost)

– Process engineers like it (preferable 
to black-box models)

Integrated  Methodology for Empirical Models Development

Nonlinear sensitivity analysis
Time delay influence

Analytical Neural Networks

Outliers detection
Condensed data set generation

Support Vector Machines

Symbolic regression
Functional solutions selection

Genetic Programming

Full data set

Reduced 
inputs
data

Condens
ed data 

Y = f(x)

Original spreadsheet
50 variables X 1000 data 

points

Reduced spreadsheet
5 variables X 1000 data 

points

Reduced spreadsheet
5 variables X 120 data 

points

Final model
Analytical function

Selected on Pareto
front
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Structural Risk Minimization

1h nh∗h h
Empirical 
Risk

Guaranteed 
Risk
Generalization 
ability
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VC-dimension

• In general, VC-dimension does not 
coincide with the number of parameters 
(can be larger or smaller)

• VC-dimension of the set of functions is 
responsible for the generalization ability 
of learning machines 

• Opens remarkable opportunities to 
overcome the “curse of dimensionality”
(large number of parameters, but low VC-
dimension)
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Two hidden nodes
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Combination:

Any complex surface can be approximated
by combining simple surfaces

corresponding to a single hidden node
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Structural difference between classical 
and analytic neural networks
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Classical NN Analytical NN
An additional link between inputs 
Xi and the output Y is introduced

Hidden nodes calculation
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Analytic neural networks have a fixed Capacity
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If input-to-hidden layer weights aij
are fixed, there is an analytical 

solution for the weights bi and ci

Standard linear regression problem 
X – inputs data matrix (known)

Z – hidden layer values vector (known)
Unique least-squares solutions for bi and ci
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Input-to-hidden layer initialization

Z1

X1 X2 X3

a11 a12 a13

Xn

a1n

•••
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0

0.2
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0.6

0.8

1
f=Sig(x,1)

5.0
)32log(.

−
+=

ni
Tn η

Hidden nodes have to be 
within the active region 
of the nonlinear function

The width of the active zone is 
defined by the steepness of the 
function or the“temperature”

The “temperature”
depends also on the 

number of inputs to the 
hidden node

Empirical expression for a 
normalized “temperature” of a 

sigmoid function

Weights from the input-to-hidden layer are 
Sampled from a normal distribution 
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Analytic Neural Network Benefits

• Robust algorithm
– No tunable parameters
– One global optimum

• Very fast, 
– possible to use a whole range of cross-validation principles 

from statistics
– No longer an NP-complete problem

• Strong theoretical foundation
– statistical learning theory
– Direct measure for the model capacity (VC-dimension)

GECCO 2007 Tutorial / Industrial Evolutionary Computing
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Stacked Analytic Neural Nets (SANN)
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• Fast development
• Diverse subnet consensus 

indicator of model output 
quality

• Allows explicit calculations of 
input/output sensitivity

• Can handle time-delayed 
inputs by convolution 
functions

• Gives more reliable 
estimates based on multiple 
models statistics

Internally developed in Dow Chemical
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Model Mismatch Indicator - 2D
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Model Mismatch Indicator - 2D
Models tend to agree where there is 

data points and tend to disagree 
where there is no data.
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Reduction of the number of input 
dimensions using Neural Networks
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An example of stacked analytic NN application -
a model for catalyst efficiency

0 100 200 300 400 500 600 700 800 900
0
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NN model for catalyst efficiency on C/Y212A 05/07 2000 (inputs 3, 5,6,15,26,27) 
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Sensitivity analysis of 
various process 
parameters on

catalyst efficiency

NN model performance with
model disagreement indicator

Model disagreement indicator
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• Hybrid approach integrating multiple 
technologies exploits the strengths of 
each

• Advantages:
– Fast development (days)
– Robust performance (compact 

models)
– Direct implementation in any 

Distributed Control System (no 
need for specialized software)

– Very low capital cost (only if 
hardware for data collection is 
unavailable)

– Low average cost of ownership 
(reduced development and 
maintenance cost)

– Process engineers like it (preferable 
to black-box models)

Integrated  Methodology for Empirical Models Development

Nonlinear sensitivity analysis
Time delay influence

Analytical Neural Networks

Outliers detection
Condensed data set generation

Support Vector Machines

Symbolic regression
Functional solutions selection

Genetic Programming

Full data set

Reduced 
inputs
data

Condens
ed data 

Y = f(x)

Original spreadsheet
50 variables X 1000 data 

points

Reduced spreadsheet
5 variables X 1000 data 

points

Reduced spreadsheet
5 variables X 120 data 

points

Final model
Analytical function

Selected on Pareto
front
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Explicit Complexity Control in Support Vector Machines 
(SVM)
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Controlled Data Compression
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Local Kernel
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Interpolation/Extrapolation of Local Kernel

• Small widths of kernel 
interpolate better

• Outside input range, no 
local information is 
available and the kernel 
levels off – no 
extrapolation

• No single choice of 
width achieves both
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Global Kernel
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Interpolation/Extrapolation of Global Kernel

• Lower order  polynomials  
extrapolate better

• High order polynomials 
needed  to interpolate

• No single choice of order 
achieves both

GECCO 2007 Tutorial / Industrial Evolutionary Computing
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Mix of Local and Global Kernel
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Interpolation/Extrapolation with Mixed kernels

• Mixture of first degree 
polynomial and RBF with 
σ=0.01

• RBF contribution makes 
interpolation possible

• Polynomial makes 
extrapolation possible

• Single choice of 
parameters achieves both
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Industrial Example: Polynomial Kernel
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Industrial Example: RBF Kernel
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Industrial Example: Mixed Kernel
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• Hybrid approach integrating multiple 
technologies exploits the strengths of 
each

• Advantages:
– Fast development (days)
– Robust performance (compact 

models)
– Direct implementation in any 

Distributed Control System (no 
need for specialized software)

– Very low capital cost (only if 
hardware for data collection is 
unavailable)

– Low average cost of ownership 
(reduced development and 
maintenance cost)

– Process engineers like it (preferable 
to black-box models)

Integrated  Methodology for Empirical Models Development

Nonlinear sensitivity analysis
Time delay influence

Analytical Neural Networks

Outliers detection
Condensed data set generation

Support Vector Machines

Symbolic regression
Functional solutions selection

Genetic Programming

Full data set

Reduced 
inputs
data

Condens
ed data 

Y = f(x)

Original spreadsheet
50 variables X 1000 data 

points

Reduced spreadsheet
5 variables X 1000 data 

points

Reduced spreadsheet
5 variables X 120 data 

points

Final model
Analytical function

Selected on Pareto
front
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Genetic Programming
• Based on artificial evolution of 

millions of potential nonlinear 
functions => survival of the fittest

• Many possible solutions with 
different levels of complexity

• The final result is an explicit 
(nonlinear) function

• Can have better generalization 
capabilities than neural nets

• Low implementation requirements 
• Issues include …

• Time delays
• Sensitivity analysis of large data 

sets
• Relatively slow development 

(hours of computation time)

Genome Tree Plots

Example of Crossover Operation

Parents

Children

Parents

Phenotypes (Expressions)

Children

GECCO 2007

Kordon, Smits & Kotanchek

52

Steps Based on Genetic Programming
Representative data collection 

Data preprocessing and classification 

Sensitivity analysis of all inputs

Convolution parameters’ estimation

Outlier detection and data set condensation

GP function generation

Analytical function selection/verification

On-line implementation

Model maintenance
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Classic Problems with
Genetic Programming

• Relatively Slow Discovery
– Computational demands are intense

• Selection of “Quality” Solutions
– Trade-off of Complexity vs. Performance

• Good-but-not-Great Solutions
– Other nonlinear techniques (e.g., neural nets) 

outperform in raw performance
• Bloat

– Parsimony control requires user intervention and is 
problem dependent
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The Pareto Front

Note that much evolutionary effort is spent exploring 
high complexity & high fitness regions

• Identifies trade-off 
surface between 
competing objectives
– e.g., performance vs. 

complexity
• Pareto front solutions are 

the best “bang-for-the-
buck”

• Introns are punished 
automatically

• How can we exploit?
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Pareto Performance
• Characterizing Pareto 

Performance
– Dominance
– Domination
– Layer
– Combinations …

• Computational Issues
– Brute force is M N2

– Can do M N logM-1(N) or M N
logM-2(N) if clever

• M = # of objectives
• N = population size

– Computation demands need 
to be considered in algorithm 
design 

Dominance Domination

Layers
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Genome Complexity
• What is complexity?

– # of nodes?
– Tree depth?
– Included functions?
– Number of variables?
– Combinations?

• Chosen function is sum of sum 
of node counts
– Provides more resolution at 

low end of complexity than 
simply using node count

– Rewards fewer layers
• Real goal is to characterize the 

(relative) “smoothness” of the 
evolved function

Complexity = 36
Complexity = 17

GECCO 2007 Tutorial / Industrial Evolutionary Computing
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ParetoGP Algorithm
• Maintain archive based 

upon Pareto layers
• Each child results from 

one archive and one 
population parent 

• Cascades …
– Pareto archive maintained
– Population wiped out (fresh 

genes!)
• Independent runs with 

independent archives for 
diversity

• This approach is 
intrinsically Pareto-aware
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ClassicGP Algorithm
• ClassicGP can be Pareto-

aware if a Pareto-aware 
selection scheme is used

• Most Pareto selection 
schemes are slow

• Finding the Pareto front can 
be relatively efficient

• Pareto Elite or Pareto 
Tourney may be viable 
selection schemes
– Pareto tourney: select Pareto 

fronts from random 
subpopulations until desired 
number of models is reached

– Pareto elite: select randomly 
from elite (defined using 
Pareto layers)
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Symbolic Regression via GP

Nuances…
choice of operators

– functional building blocks
parsimony pressure

– preference for simpler/smaller solutions
diversity operators

– modify fit solutions and the relative presence of each mechanism
fitness-based breeding rights 

– proportional, ranking, elitist, tournament, random, etc.
evolution environment

– population size, number of generations, population interaction, 
fitness criteria, etc.

genetic modifications
– coefficient & structure optimization

automatically defined functions
– dynamically determined building blocks

metasensor definitions
– dynamically determined transforms and variable combinations

Parent

Mutant

Child

Introns are either overly
complex or non-functional
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A Toy Problem for Illustration
• We sampled a function of two 

variables at 100 random points 
in the range [0,4] 

• The data matrix has three 
random spurious variables in 
the range [0,4]

• Notice that the entire 
parameter space is not 
covered

GECCO 2007 Tutorial / Industrial Evolutionary Computing
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Getting the Zen 
of the Data

• In this simple example, we 
could probably guess that 
only two variables were 
important for model building

• Correlated inputs can be a 
problem for some other 
modeling techniques

• However, lack of correlation 
to the response does not 
necessarily correspond to 
lack of importance

Context-free analysis leads to confidently wrong answers!
GECCO 2007
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Linear 
Models

• Here we look at 2nd through 
5th order models of the two 
driving variables (a 3rd order 
model with all five variables 
has 56 terms)

• Notice the edges -- these 
models would likely not 
extrapolate well!

• However, not much time was 
required to achieve a poor 
model!
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The Pareto Front: Handling 
Competing Objectives

• Identifies trade-off surface between 
competing objectives

– e.g., performance vs. complexity
• Pareto front solutions are the best 

“bang-for-the-buck”
• Accuracy and simplicity are 

automatically rewarded
• Pareto Front Benefits

– Avoids need for a priori combination 
of objectives into a single metric

– The shape of the front gives us 
insight into the problem

– Identifies multiple candidate 
solutions simultaneously

No more things should be presumed to exist than are absolutely 
necessary — W. Occam  [1280–1349]

These are the error vs. complexity results of multiple 
independent symbolic regressions. Note that there is 
variability from run to run due to the random nature 
of the evolutionary process.
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Evolved Models
• A run tends to fully explore a foundation 

structure
• Independent evolutions will result in different 

(but still fit) structures
• Cascading results from independent evolutions 

seems to be beneficial
• Note that we are not strictly restricted to the 

Pareto front in selecting models -- many 
models may be “good enough” and have the 
benefit of being structurally different and 
diverse

similar performance but diverse structure

2nd

3rd

4th

5th
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Pareto Front 
Models

Truth

Complexity

Er
ro

r

Explicit model
complexity vs. accuracy

control
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Parsimony &
Extrapolation

• Note the pathologies at 
high complexity when 
extrapolating

• In general, we want to 
avoid over-modeling!

Truth
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Symbolic Regression:
Summary Benefits

Compact Nonlinear Models
– Compact empirical models can be suitable for 

online implementation
– Model(s) can be used as an emulator for coarse 

system optimization
Driving Variable Selection & Identification

– Appropriate models may be developed from 
poorly structured data sets (too many variables 
& not enough measurements)

– Identified driving variables may be used as 
inputs into other modeling tools

Metasensor (Variable Transform) 
Identification

– Identifying variable couplings can give insight 
into underlying physical mechanisms

– Identified metavariables can enable linearizing
transforms to meld symbolic regression and 
more traditional statistical analysis

– Metavariables can also be used as inputs into 
other modeling tools

Diverse Model Ensembles
– The independent evolutions will produce 

independent models. Independent (but 
comparable) models may be stacked into ensembles 
whose divergence in prediction may be an indicator 
of extrapolation & model trustworthiness. This is 
an issue in high dimensional parameter spaces.

Human Insight
– The transparency of the evolved models as well as 

the explicit identification of the model complexity-
accuracy trade-off is very compelling

– Examining an expression can be viewed as a 
visualization technique for high-dimensional data

Rapid Modeling
– Exploitation of the Pareto front has resulted in 

several orders-of-magnitude in the symbolic 
regression performance relative to more traditional 
GP. This greatly increases the range of possible 
applications.

There are many benefits to symbolic 
regression. These are enhanced when 
coupled with other analysis tools and 
techniques.
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Particle swarm optimization

At each time step t
For each particle i

Update the position change (velocity)

Then move )1()()1( ++=+ tVtXtX iii

χ,, 21 cc- parameters
Note: - stochastic component

+⋅=+ )( ()1( tVtV ii χ ))()(( )1,0(1 tXtPrandc ii −⋅⋅

))()(()1,0(2 tXtPrandc ig −⋅⋅+

default values (2.05, 2.05, 0.73)

Global best

Local best

Local best

An efficient technique to find the global optimum 
for model inversion and non-linear parameter estimation
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Particle’s Movement – A Compromise

Current 
position!

Personal best 
position

Global best 
position

New position!

)(tXi

)1( +tXi

)(tPbest i

)(tGbesti

)(tVi
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Multi-Objective PSO
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Efficient technique to determine the Pareto front for problems with convex, non-
convex and even disconnected Pareto fronts.
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Software tools 
Representative data collection 

Data preprocessing and classification 

NN sensitivity analysis of all inputs

Convolution parameters’ estimation

Outlier detection and data set condensation

GP function generation

Analytical function selection/verification

On-line implementation

Model  maintenance

DAP, Cave, IP21

Excel, JMP, SIMCA,
Mathematica

MATLAB, Excel

MATLAB Toolbox

MATLAB &MATHEMATICA Toolboxes

G2, MOD, IP21, 
WebMathematica

DAP, Cave, IP21
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Case Study: Inferential Sensors

143.0 ppm

Training
data

Inferential Sensors
Development Software

Simple
formulas

Easy On-Line
implementation

Inferential Sensor
An empirical model based on 

analytical equations with built-
in self-assessment capability

Key objective:
To predict difficult-to-measure 

parameter (melt index) from easy-
to-measure data (temperature, 

pressure, flow, etc.)
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Issues with neural net-based inferential sensors
Issues with existing neural net-based inferential sensors:
- High sensitivity to process changes
- Frequent re-training
- Complicated development & maintenance
- Low survival rate after 3 years in operation
- Engineers hate black-boxes

Analytical expressionBlack box

Specialized run-time
software

Directly coded into 
most on-line systems
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Inferential sensor for emission monitoring: A case study 
Data Collection

143.0 ppm

Design Of ExperimentsChemical
Process

8 inputs

251 training data 
points 107 test data points

(~40% outside training range)

Emission
variable
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Inferential sensor for emission monitoring: A case study 
Sensitivity analysis by SANN

A NN with 4 inputs: x2, x5, x6, 
and x8 is selected after discussion 

with process engineers

Input x3 
removed after 
first sequence

Input x7 
removed after 

second 
sequence

Input x6 has the 
strongest 

sensitivity
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Inferential sensor for emission monitoring: A case 
study (SANN model performance)  

Reduced number of inputs 
from 8 to 4  

Bad extrapolation
(test data is 40% outside 

the range of training data)

Model based on 30 stacked  NN
with 10 neurons in hidden layer

Fast test of the hypothesis about
potential nonlinear relationship

(in 20-30 min)  

Measured emission variable

Predicteded emission variable
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Inferential sensor for emission monitoring: A case 
study (SVM parameters)

Parameters:
% support vectors: 10
C = 106

Mixed Kernels: Polynomial and RBF
Range of Polynomial kernels: 1-3
Range of RBF kernel: 0.25-0.75
Range of ratio 0.5 – 0.99
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Inferential sensor for emission monitoring: A case study 
(SVM model performance)

Impressive extrapolation
(test data is 40% outside 

the range of training data)

Reduced number of training data points 
from 251 to 34 (based on support vectors)

Model based on a mixture of 2nd order
polynomial global kernel and RBF local kernel

with width of 0.5 and ratio of 0.95
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Inferential sensor for emission monitoring: A case 
study (GP parameters)

Reference data                         :34  
Random subset selection [%]               :100
Number of runs                                     :20
Population size                                      :500
Number of generations                          :100
Probability for function as next node      :0.6
Optimization function                   :Corr.
Parsimony pressure                               :0.1
Prob. for random vs guided crossover   :0.5
Probability for mutation of terminals       :0.3
Probability for mutation of functions       :0.3

Parameters for a GP simulated evolution
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Inferential sensor for emission monitoring: 
A case study 

(Selected symbolic regression model)

Selected model on Pareto 
front

Simple expression with acceptable 
performance (R2 = 0.87)

Response surface of model 
according to process 

physics
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Inferential sensor for emission monitoring: 
A case study 

(Final solution: Stacked Symbolic Regression model)

Model based on 8 Stacked 
Symbolic Predictors

Shorter evolutionary process based 
on 8.44% of the original training

data set

In operation since August 
2001
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Key application areas

Robust Inferential Sensors
Mass-scale on-line empirical models

Automated Operating Discipline
Consistent intelligent on-line supervision

Empirical Emulators of Fundamental Models
Effective on-line process optimization

Nonlinear DOE based on GP
Minimizing expensive process experiments

Fundamental model building based on GP
Accelerated new product development
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EC Applications in Dow Chemical
Application Domains Examples

Material Design
• Color Matching
• Appearance Engineering
• Polymer Design
• Synthetic Leather

Materials Research

• Diverse Chemical Library Selection
• Fundamental Model Building
• Reaction Kinetics Modeling
• Combi-Chem Catalyst Exploration
• Combi-Chem Data Analysis

Production Design
• Acicular Mullite Emulator
• EDC/VCM Nonlinear DOE
• Bioreactor Optimization

Production Monitoring
& Analysis

• Epoxy Holdup Monitoring
• Isocyanate Level Estimation
• FTIR Calibration Variable Selec tion
• Poly-3 Volatile Emission Monitoring
• Epoxy Intelligent Alarm Processing
• PerTet Emulator for Online Optimization
• Emissions Monitoring

Business Modeling
• Diffusion of Innovation
• Hydrocarbon Trading & Energy Systems Optimization
• Scheduling Heuristics
• Plant Capacity Drivers
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Automating Operating Discipline

• Heuristic rules defined verbally 
by process engineers/operators

• holdup predictor designed by 
stacked analytic NN and GP

• all decision blocks have fuzzy 
thresholds defined by 
membership functions

• simple empirical models and 
mass balances

• fundamental model predictions 
are used in the heuristic rules

• reduced major shutdowns
• reduced lab sampling
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Emulator for optimization of an industrial chemical process

Reactor
Model

20-25 min/
prediction

10 inputs 12 outputs

Four
levels  
DOE

Training
Data set

Test
Data set

Symbolic
Regression
Emulator

5 ms/
prediction

On-line process
optimization
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Fundamental Model Building Based on GP

Accelerated fundamental
model building steps

1. Problem
definition

2. Run symbolic
regression

3. Identify key
factors&transforms

6. Select&verify the
final model solution

7. Validate
the model

GP

4. Select GP
generated models

5. Construct first
principle models

Run simulated evolution
before beginning

fundamental modeling

[ ] 00545.1
x

)(xln1013868.3

4

2
2

3
x217

k
1

+×=
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The evolutionary process identifies 
the key input variables as well as 
natural groupings & relationships. 
Combining this with a domain 
knowledge and first-principles 
insights is very powerful.

Virtual modelers
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Approaches to accelerate fundamental model 
building process

AI approach GP as automated
invention machine

Mimic the expert

Maximize creativity of the expert

Reduce hypothesis
search by GP  

Eliminate the expert

out
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The problem of structure-properties 
in fundamental modeling

Properties:
- molecular weight
- particle size
- crystallinity
- volume fraction
- material morphology
- etc.

Material structure

Modeling issues:
• nonlinear interaction
• large number of preliminary 

expensive experiments required
• large number of possible mechanisms
• slow fundamental model building
• insufficient data for training neural nets

Key modeling effort
for new product

development
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Case Study with Structure-Property Relationships

Theoretical Analysis Hypothesis Search Fundamental model

3 months

10 hours

Fundamental Model Building + Symbolic 
Regression = Accelerated New Product 

Development
Structure-
property 
data sets

Sensitivity Analysis

x
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Simulated Evolution Symbolic Regression Model

Fundamental
Model Building

Symbolic
Regression

5
k
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dT
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dt
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GP and Design Of Experiments (DOE)
Models Showing Lack of Fit

Situations of Lack  of Fit

∑ ∑∑
= <

++=
k

i ji
jijiiio xxβxββy

1

Classical approach if LOF
add experiments to fit second 
order model

∑ ∑∑∑
= <

+++=
k

i ji
jijiiiiiiok xxxxS

1

2 ββββ

Suggested approach:
Use GP to transform inputs

1. Simple factorial DOE
Enough experiments to fit first order 
model

2. A response surface DOE
already had all experiments to fit 
second order model

∑ ∑∑∑
= <

+++=
k

i ji
jijiiiiiiok xxxxS

1

2 ββββ

Classical approach if LOF
no alternative (use model as it is)

More costly experiments
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0.9999

Max RSq
0.30720.000710002Total Error
Prob > F0.0001090.000218102Pure Error
2.25540.0002460.000491902Lack of Fit
F RatioMean SquareSum of SquareDFSource

1. Generate GP models

∑ ∑∑∑
= =<

+++=
4

1

4

1

2

i i
iii

ji
jijiiiok ZZZZS ββββ

2. Generate input transforms

3. Fit response surface model in 
transformed variables

No Lack Of Fit
(p=0.3037)

Selected solution
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PSO application: Optimizing color spectrum of 
plastics  

0

10

20

30

40

50

60

Frequency

0 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 More
Residual error of match

ColourPro Formulation Optimization

Frequency Swarm
GA

Multiple-objective PSO 
with 15 variables

PSO and GA
convergence

Real-time optimization
in 2-3 seconds
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Other PSO applications

• Drug release predictor
– 6 parameters
– population size = 30
– optimization time: ~ 30 seconds

• Foam acoustics performance predictor
– 8 parameters
– population size = 50
– optimization time: ~ 5 seconds

• Crystallization kinetics predictor
– 4 parameters
– population size = 30
– optimization time: ~ 2 seconds

GECCO 2007

Kordon, Smits & Kotanchek

94

Open Issues & Current Research
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Summary
• Evolutionary Computing can create significant value to industry by 

reducing model development time and model exploitation cost
• Integrating EC with Neural Networks, Support Vector Machines, and 

Statistics is recommended for successful industrial applications
• This strategy works for many real applications in the chemical 

industry
• The key application areas are:

– Inferential sensors
– Improved process monitoring and control
– Accelerated new product development
– Effective design of experiments

• And this is only the beginning …
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