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Why Neuroevolution?

• Neural nets powerful in many statistical domains

– E.g. control, pattern recognition, prediction, decision making

– Where no good theory of the domain exists

• Good supervised training algorithms exist

– Learn a nonlinear function that matches the examples

• What if correct outputs are not known?
2

Sequential Decision Tasks

• POMDP: Sequence of decisions creates a sequence of states

• No targets: Performance evaluated after several decisions

• Many important real-world domains:
– Robot/vehicle/traffic control
– Computer/manufacturing/process optimization
– Game playing 3

Forming Decision Strategies

Win!

• Traditionally designed by hand

– Too complex: Hard to anticipate all scenarios

– Too inflexible: Cannot adapt on-line

• Need to discover through exploration

– Based on sparse reinforcement

– Associate actions with outcomes
4
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Standard Reinforcement Learning

Win!
Function

Approximator

Sensors

Value

Decision

• AHC, Q-learning, Temporal Differences
– Generate targets through prediction errors
– Learn when successive predictions differ

• Predictions represented as a value function
– Values of alternatives at each state

• Difficult with large/continuous state and action spaces

• Difficult with hidden states 5

Neuroevolution (NE) Reinforcement Learning

Neural NetSensors Decision

• NE = constructing neural networks with evolutionary algorithms

• Direct nonlinear mapping from sensors to actions

• Large/continuous states and actions easy

– Generalization in neural networks

• Hidden states disambiguated through memory

– Recurrency in neural networks 69

6

How well does it work?

Poles Method Evals Succ.
One VAPS 500,000 0%

SARSA 13,562 59%
Q-MLP 11,331

NE 127
Two NE 1,249

• Difficult RL benchmark: Non-Markov Pole Balancing

• NE 3 orders of magnitude faster than standard RL

• NE can solve harder problems

7

Role of Neuroevolution

• Powerful method for sequential decision tasks 21,46,81

– Optimizing existing tasks
– Discovering novel solutions
– Making new applications possible

• Also may be useful in supervised tasks 41,51

– Especially when network topology important

• Unique model of biological adaptation and development 47,56,75
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Outline

• Basic neuroevolution techniques

• Advanced techniques

– E.g. combining learning and evolution

• Extensions to applications

• Application examples

– Control, Robotics, Artificial Life, Games

9

Neuroevolution Decision Strategies

• Input variables describe the state

• Output variables describe actions

• Network between input and output:
– Hidden nodes
– Weighted connections

• Execution:
– Numerical activation of input
– Nonlinear weighted sums

• Performs a nonlinear mapping
– Memory in recurrent connections

• Connection weights and structure evolved
10

Conventional Neuroevolution (CNE)

• Evolving connection weights in a population of networks 41,57,81,82

• Chromosomes are strings of weights (bits or real)

– E.g. 10010110101100101111001

– Usually fully connected, fixed topology

– Initially random
11

Conventional Neuroevolution (2)

• Each NN evaluated in the task

– Good NN reproduce through crossover, mutation

– Bad thrown away

– Over time, NNs evolve that solve the task

• Natural mapping between genotype and phenotype

• GA and NN are a good match!
12
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Problems with CNE

• Evolution converges the population (as usual with EAs)

– Diversity is lost; progress stagnates

• Competing conventions

– Different, incompatible encodings for the same solution

• Too many parameters to be optimized simultaneously

– Thousands of weight values at once
13

Advanced NE 1: Evolving Neurons

• Evolving individual neurons to cooperate in networks 1,45,51

• E.g. Enforced Sub-Populations (ESP 21)

– Each (hidden) neuron in a separate subpopulation

– Fully connected; weights of each neuron evolved

– Populations learn compatible subtasks

• Can be extended to evolving weights (CoSyNE 25) 14

Evolving Neurons with ESP
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• Evolution encourages diversity automatically

– Good networks require different kinds of neurons

• Evolution discourages competing conventions

– Neurons optimized for compatible roles

• Large search space divided into subtasks

– Optimize compatible neurons

15

Advanced NE 2: Evolutionary Strategies

• Evolving complete networks with ES (CMA-ES 30)

• Small populations, no crossover

• Instead, intelligent mutations

– Adapt covariance matrix of mutation distribution

– Take into account correlations between weights

• Smaller space, less convergence, fewer conventions 16
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Advanced NE 3: Evolving Topologies

• Optimizing connection weights and network topology 3,20,83

• E.g. Neuroevolution of Augmenting Topologies (NEAT 61,64)

• Based on Complexification

• Of networks:

– Mutations to add nodes and connections

• Of behavior:

– Elaborates on earlier behaviors 17

How Can Crossover be Implemented?

• Problem: Structures do not match

• Solution: Utilize historical markings

Node 1
Sensor

Node 2
Sensor

Node 3
Sensor

Node 4
Output

Node 5
Hidden

In 1
Out 4
Weight 0.7

Enabled
Innov 1

In 2
Out 4
Weight−0.5

DISABLED
Innov 2

In 3
Out 4
Weight 0.5

Enabled
Innov 3

In 2
Out 5
Weight 0.2

Enabled
Innov 4

In 5 In 1 In 4
Out 4 Out 5 Out 5
Weight 0.4 Weight 0.6 Weight 0.6

Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

  

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3
5

4

18

How can Innovation Survive?

• Problem: Innovations have initially low fitness

vs.

• Solution: Speciate the population

– Innovations have time to optimize

– Mitigates competing conventions

– Promotes diversity

19

How Can We Search in Large Spaces?

• Need to optimize not just weights but also topologies

vs.

• Solution: Start with minimal structure and complexify
– Hidden nodes, connections, input features 79

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

20
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Advanced NE 4: Indirect Encodings

• Instructions for constructing the network evolved
– Instead of specifying each unit and connection 3,39,59,83

• E.g. Cellular Encoding (CE 27)

• Grammar tree describes construction
– Sequential and parallel cell division
– Changing thresholds, weights
– A “developmental” process that results in a network 21

Properties of Indirect Encodings
• Smaller search space

• Avoids competing conventions

• Describes classes of networks efficiently

• Modularity, reuse of structures
– Recurrency symbol in CE:

XOR → parity

– Useful for evolving morphology

• Not all that powerful (yet)

• Promising current work
– More general L-systems;

developmental codings; embryogeny 65

– Spatial coding 13
(D’Ambrosio GECCO’07)

– Genetic Regulatory Networks 52

(Reisinger GECCO’07)

22

How Do the NE Methods Compare?
Poles Method Evals
Two-1 CE (840,000)

CNE 87,623
ESP 26,342

NEAT 24,543
CoSyNE 3,416

Two-2 CMA-ES 6,061 - 25,254
ESP 7,374

NEAT 6,929
CoSyNE 1,249

Two poles, no velocities, 2 different setups:

• Advanced methods better than CNE

• Advanced methods are still improving

• Indirect encodings future work

• DEMO
23

Further NE Techniques

• Incremental evolution 23,71,82

• Utilizing population culture 5,37

• Evolving ensembles of NNs 33,50,77

• Evolving neural modules 53

• Evolving transfer functions and learning rules 8,55,68

• Combining learning and evolution

24
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Combining Learning and Evolution

• Good learning algorithms exist for NN

– Why not use them as well?

• Evolution provides structure and initial weights

• Fine tune the weights by learning

• Lamarckian evolution is possible

– Coding weight changes back to chromosome

• Difficult to make it work

– Diversity reduced; progress stagnates

25

Baldwin Effect

Fi
tn
es
s With learning

Without learning

Genotype

• Learning can guide Darwinian evolution 4,28

– Makes fitness evaluations more accurate

• With learning, more likely to find the optimum if close

• Can select between good and bad individuals better
– Lamarckian not necessary

• How can we implement it?
– How to obtain training targets? 26

Targets from a Related Task

sensory input

predicted

proprioceptive
input

motor output sensory input

F

F

F

F

F

• Learning in a related task is sufficient

• E.g. foraging for food in a microworld 47

– Network sees the state, outputs motor commands

– Trained with backprop to predict the next input

– Training emphasizes useful hidden-layer representations

– Allows more accurate evaluations
27

Evolving the Targets
angle target angle distance target distance

angle distance
Sensory Input

Motor Output

• Evolve extra outputs to provide targets

• E.g. in the foraging task 49

– Motor outputs and targets with separate hidden layers

– Motor weights trained with backprop, targets evolved

– Targets do not correspond to optimal performance:
Direct system towards useful learning experiences

28
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Targets from the Population

• Train new offspring to imitate parents/champion 37

– Trained in population “culture”

• Local search around good individuals

– Limited training: 8-20 backprop iterations

• Becomes part of the evaluation

– Individuals evolve to anticipate training

– Perform poorly at birth, well after training

• Evolution discovers optimal starting points for learning!
29

Targets from Q-Learning
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Q−Learning

• E.g. NEAT+Q 78: Evolve network to represent value function

– Input is the state, outputs are Q-values of actions

• Form targets according to Q-learning equations

– Compare successive Q-values, use backprop to train

• Improves evolution of a value function

– Faster than NEAT alone, better than Q-learning

• Utilize both evolution and on-line learning

30

No Targets: Unsupervised Learning

• Hebbian adaptation during performance 17,62

• E.g. handwritten character recognition 74

– Evolution determines the starting point
– Competitive learning finishes the design

• Starting points are poor recognizers
– Only bias learning away from local minima

• Synergetic effect: Evolution utilizes learning

• Future work: Constructing developmental systems
31

Extending NE to Applications

• Control

• Robotics

• Artificial life

• Gaming

Issues:

• Evolving composite decision makers 77

• Evolving teams of agents 6,63,84

• Utilizing coevolution 54,66

• Real-time neuroevolution 63

• Combining human knowledge with evolution 7,15,86

32
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Applications to Control

• Pole-balancing benchmark

– Originates from the 1960s

– Original 1-pole version too easy

– Several extensions: acrobat, jointed, 2-pole,

particle chasing 50

• Good surrogate for other control tasks

– Vehicles and other physical devices

– Process control 72 33

Controlling a Finless Rocket

Task: Stabilize a finless version of

the Interorbital Systems RSX-2 sounding

rocket 24

• Scientific measurements in the upper

atmosphere

• 4 liquid-fueled engines with variable

thrust

• Without fins will fly much higher for

same amount of fuel

34

Active Rocket Guidance

• Used on large scale launch vehicles
(Saturn, Titan)

• Typically based on classical linear
feedback control

• High level of domain knowledge required

• Expensive, heavy

35

Rocket Stability

roll

(a) Fins: stable

CG

CP

CG

CP

Thrust

Drag

(b) Finless: unstable

αα

β β

pitch
yaw

Side force

Lift

36
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Simulation Environment: JSBSim

• General rocket simulator

• Models complex interaction between air-

frame, propulsion, aerodynamics, and at-

mosphere

• Used by IOS in testing their rocket designs

• Accurate geometric model of the RSX-2

37

Rocket Guidance Network
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Results: Control Policy

39

Results: Apogee
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• DEMO
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Driving and Collision Warning

• Goal: evolve a collision warning system
– Looking over the driver’s shoulder
– Adapting to drivers and conditions
– Collaboration with Toyota 32 41

The RARS Domain

• RARS: Robot Auto Racing Simulator
– Internet racing community
– Hand-designed cars and drivers
– First step towards real traffic

42

Evolving Good Drivers

• Evolving to drive fast without crashing

(off road, obstacles)

• An interesting challenge of its own 70

• Discovers optimal driving strategies

(e.g. how to take curves)

• Works from range-finder & radar inputs

• Works from raw visual inputs

• DEMO
43

Evolving Warnings

• Evolving to estimate probability of crash

• Predicts based on subtle cues (e.g. skidding off the road)

• Compensates for disabled drivers

• Human drivers learn to drive with it!

• DEMO
44
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Applications to Robotics

• Controlling a robot arm 44

– Compensates for an inop motor

• Robot walking 29,58

– Various physical platforms

• Mobile robots 11,16,48,60

– Transfers from simulation to physical robots

– Evolution possible on physical robots

3

1

2

45

Robotic Soccer

• E.g. robocup soccer “Keepaway” task 77

• Three keepers, one (algorithmic) taker

• Includes many behaviors:

Get-Open, Intercept, Evaluate-Pass, Pass... 46

Direct Evolution

• Mapping sensors directly to actions

– Difficult to separate behaviors

– Ineffective combinations evolve

• DEMO 47

Cooperative Coevolution

• Evolve multiple actions

– Each one in a separate network

– Decision tree to decide on actions

– Or evolve a decision network

48
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Cooperative Coevolution (2)

• Networks learn individual tasks

• Learn to anticipate other tasks
– Lining up for a pass

• Cooperative coevolution of composite behavior

• DEMO
49

Applications to Artificial Life

• Gaining insight into neural structure

– E.g. evolving a command neuron 2,31,56

• Emergence of behaviors

– Signaling, herding, hunting... 75,76,85

• Future challenges
– Emergence of language

– Emergence of community behavior

50

Competitive Coevolution

• Evolution requires an opponent to beat

• Such opponents are not always available

• Co-evolve two populations to outdo each other

• How to maintain an arms race? 40
51

Competitive Coevolution with NEAT

• Complexification elaborates instead of alters

– Adding more complexity to existing behaviors

• Can establish a coevolutionary arms race

– Two populations continually outdo each other

– Absolute progress, not just tricks
52
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Robot Duel Domain

• Two Khepera-like robots forage, pursue, evade 66

– Collect food to gain energy

– Win by crashing to a weaker robot
53

Early Strategies

• Crash when higher energy

• Collect food by accident

• DEMO 54

Mature Strategies

• Collect food to gain energy

• Avoid moving to lose energy

• Standoff: Difficult to predict outcome

• DEMO

55

A Sophisticated Strategy

• “Fake” a move up, force away from last piece

• Win by making a dash to last piece

• Complexification → arms race

• DEMO
56
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Applications to Games
a b

1

2

3

4

5

6

7

8

c d e f g h

• Good research platform 38

– Controlled domains, clear performance, safe
– Economically important; training games possible

• Board games: beyond limits of search
– Evaluation functions in checkers, chess 9,18,19

– Filtering information in go, othello 42,67

– Opponent modeling in poker 34 (Lockett, Chen GECCO’07)

57

Discovering Novel Strategies in Othello

(a) (b) (c)

• Players take turns placing pieces

• Each move must flank opponent’s piece

• Surrounded pieces are flipped

• Player with most pieces wins

58

Strategies in Othello

(a) (b) (c)

• Positional

– Number of pieces and their positions

– Typical novice strategy

• Mobility

– Number of available moves: force a bad move

– Much more powerful, but counterintuitive

– Discovered in 1970’s in Japan
59

Evolving Against a Random Player

0 10 20 30 40 50 60

Move Number

0

10

20

30

40

50

Network Random

• Network sees the board, suggests moves by ranking 43

• Networks maximize piece counts throughout the game
• A positional strategy emerges
• Achieved 97% winning percentage

60
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Evolving Against an α-β Program

0 10 20 30 40 50 60

Move Number

0

10

20

30

40

50

Network Searcher

• Iago’s positional strategy destroyed networks at first

• Evolution turned low piece count into an advantage

• Mobility strategy emerged!

• Achieved 70% winning percentage
61

Example game
a b

1
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c d e f g h a b
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7

8

c d e f g h

(a) (b)

• Black’s positions strong, but mobility weak

• White (the network) moves to f2

• Black’s available moves b2, g2, and g7 each will

surrender a corner

• The network wins by forcing a bad move 62

Discovering Novel Strategies
a b

1
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4
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8

c d e f g h a b

1
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7

8

c d e f g h

(a) (b)

• Neuroevolution discovered a strategy novel to us

• “Evolution works by tinkering”

– So does neuroevolution

– Initial disadvantage turns into novel advantage

63

Video Games

• Economically and socially important

• Adaptation an important future goal
– More challenging, more fun games
– Possible to use for training people

• How to make evolution run in real time? 64
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Real-time NEAT

Reproduction

X

mutation

crossover

high−fitness units

low−fitness

new unit

unit

.

• A parallel, continuous version of NEAT 63

• Individuals created and replaced every n ticks

• Parents selected probabilistically, weighted by fitness

• Long-term evolution equivalent to generational NEAT 65

NERO: A Complex Game Platform
Scenario 1: 1 enemy turret Scenario 2: 2 enemy turrets Scenario 17: mobile turrets &

obstacles

... ...

Battle

• Teams of agents trained to battle each other
– Player trains agents through excercises
– Agents evolve in real time
– Agents and player collaborate in battle

• New genre: Learning is the game

• Challenging platform for reinforcement learning
– Real time, open ended, requires discovery

• DEMO

66

Utilizing Human Knowledge

• Given a problem, NE discovers a solution by exploring
– Sometimes you already know (roughly) what works
– Sometimes random initial behavior is not acceptable

• How can domain knowledge be utilized?
– By incorporating rules 12,86

– By learning from examples 7
67

Incorporating Rules into NE

E.g. how to go around a wall in NERO

• Specify as a rule:
– wall ahead: move forward, turn right
– wall 45deg left, move forward, turn right slightly

• Convert into a network with KBANN 35 68
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Incorporating Rules into NE (2)

• KBANN network added to NEAT networks
– Treated as complexification
– Continues to evolve
– If advice is useful, it stays

• Initial behaviors, on-line advice

• Injecting human knowledge as rules

• DEMO

69

Lessons from NERO

• NEAT is a strong method for real-time adaptation
– Complex team behaviors can be constructed
– Novel strategies can be discovered

• Problem solving with human guidance

• Coevolutionary arms race

• NE makes a new genre of games possible!

(NERO details, download: http://nerogame.org)

70

Numerous Other Applications

• Creating art, music 10

• Theorem proving 14

• Time-series prediction 36

• Computer system optimization 22

• Manufacturing optimization 26

• Process control optimization 72,73

• Finding the top quark 80

• Etc.
71

Evaluation of Applications

• Neuroevolution strengths
– Can work very fast, even in real-time
– Potential for arms race, discovery
– Effective in continuous, non-Markov domains

• Requires many evaluations
– Requires an interactive domain for feedback
– Best when parallel evaluations possible
– Works with a simulator & transfer to domain

72
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Conclusion

• NE is a powerful technology for sequential decision tasks

– Evolutionary computation and neural nets are a good match

– Lends itself to many extensions

– Powerful in applications

• Easy to adapt to applications

– Control, robotics, optimization

– Artificial life, biology

– Gaming: entertainment, training

• Lots of future work opportunities

– Theory not well developed

– Indirect encodings

– Learning and evolution

– Knowledge and interaction 73
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