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Evolutionary Computer Vision

� Evolutionary Computer Vision (ECV) is a recent research area devoted to the study of
artificial vision through evolutionary and genetic computing approaches.

1. Computer vision as a scientific discipline is concerned with the theory and technology for building
artificial systems that obtain information from images or multi-dimensional data.

2. Evolutionary computation is a research field of computational intelligence devoted to the study
and application of artificial evolution to develop problem solving systems.
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Computer Vision

� The following diagram shows the main areas related to computer vision:
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Computer Vision Applications
1. Industrial

2. Entertainment/Media Industry

3. Environment

4. Human

5. Forensic

6. Medical

7. Military

8. Remote Sensing

9. Scientific

10. Security and Surveillance

11. Sports

12. Others
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Typical functions found in CV Systems

1. Image Acquisition

2. Pre-processing

3. Feature Extraction

4. Detection Segmentation

5. High-level Processing
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Contents of Tutorial

� Early Visual Processing

1. Image Transformations and Filters

2. Feature Extraction Methods

� Intermediate Visual Processing

1. Systems, Models, Calibration, and Parameter Estimation

2. Sensor Fusion and Registration

3. Motion, Tracking and Time Sequence Analysis

� Visual Learning

1. Object, World, and Scene Representations

2. Recognition, Planning, and Scene Understanding
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Where to publish

� Conference proceedings

1. EvoIASP 2008

2. CEC 2008

3. ICPR 2008

� Journals

1. Pattern Recognition

2. Pattern Recognition Letters

3. Image and Vision Computing
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Bibliographie: Main Subjects
1. Image Classification [1, 6, 8, 33, 40, 199, 211, 233]

2. Image Segmentation and Clustering [3, 15, 22, 29, 32, 89]

3. Video and Motion Analysis [11, 19, 102, 84, 196]

4. Face Recognition and Modeling [6, 17, 79, 118, 119, 207, 212, 214, 240]

5. Feature Extraction [8, 18, 21, 82, 91, 96, 108, 126, 137, 145, 167, 201]

6. Medical Image [2, 34, 73, 129, 138, 216, 217]

7. Object Recognition [16, 48, 179, 237, 238]

8. Geomatics [9, 27, 156, 224, 83, 125, 23, 24]

9. Sensor Planning and Calibration [146, 39, 55, 93, 147, 30, 35, 151, 50, 53, 74]

10. Visual Learning [28, 86, 76, 107, 144, 241]

11. Matching and Registration [36, 42, 45, 47, 50, 60, 63, 67, 70, 75, 88, 121]

12. Others
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Synthesis of Interest Point Detectors

� A stereo pair taken at the EvoVisión Laboratory, notice how interest points can be used to compute the correspondence between both images.

� The interest points depicted on both images were obtained with the IPGP2 presented in this work that outperforms past human designs.

slide #9

Learning Interest Point Detectors

� Interest point detectors are computer programs that are applied to a set of images with
the goal of detecting the same set of features across all images.

� Hypothesis: genetic programming provides a machine learning strategy that could solve
the problem of learning interest point detectors.

slide #10
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Synthesis of Interest Point Detectors

Hand Coded
Designs

Genetic Programming
DesignsVS

?

� Analysis is understood as the science which treats of the exact relations existing between quantities or magnitudes, and of the methods by
which, in accordance with these relations, quantities sought are deducible from other quantities known or supposed; the science of spatial and
quantitative relations.

� Synthesis is understood as the combination of separate elements of thought into a whole, as of simple into complex conceptions. Thus,
synthesis refers to the art or process of making a compound by putting the ingredients together, as contrasted with analysis.

� Analysis and synthesis, though commonly treated as two different methods, are, if properly understood, only the two necessary parts
of the same method. Each is the relative and correlative of the other.
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Goals for ECV?
� A main aim of genetic programming research is to show that this new machine learning paradigm is able to provide solutions which are human

competitive.

� This work shows that a deep analysis of the problem provides the criteria, fitness functions, as well as the definitions of the function and

terminal sets to achieve human competitive results. We claim that this research is moving forward the state-of-the-art of interest
point detection providing not only the probe that previous man made designs have been rediscovered by genetic programming, but also that
new interest point detectors have been synthesized.
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Technical Approach

� Koza’s Genetic Programming: On the Programming of Computers by Natural Selection
(1992) provides a detailed description of genetic programming. Here we focus on two
aspects:

1. The fitness measure which evaluates the structures, and

2. The structures that undergo adaptation.

� All synthesized results have been achieved with a prototype written in Matlab and a more
efficient system developed with the VXL and LilGP libraries.
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Repeatability

A point x1 detected in image I1 is repeated in image Ii if the corresponding point xi is detected
in image Ii. In the case of planar scenes a relation between points x1 and xi can be established
with the homography H1,i where:

xi = H1,ix1 (1)

The repeatability rate measures the number of repeated points between both images, with
respect to the total number of detected points.

slide #14
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Repeatability

A 3D point X is projected onto points x1 and xi on images I1 and Ii respectively. Point x1 is said to be repeated

by xi, if a point is detected within a neighborhood of xi of size ǫ. For planar scenes x1 and xi are related by

the homography H1,i.
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Repeatability
The set of point pairs

`
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that lie in the common part of both images and correspond within an error of size ǫ is defined by:
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Thus the reapeatability rate ri (ǫ) of points extracted from image Ii with respect to points from image I1, is defined by the following equation:

ri (ǫ) =
|Ri (ǫ) |

min (γ1, γi)
(3)

where γ1 = |
˘

xc
1

¯

| and γi = |
˘

xc
i

¯

| are the total number of points extracted from image I1 and image Ii respectively.
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Fitness Function

� Our approach uses a fitness assignment that is proportional to its mean repeatability rate rJ (ǫ) computed
for a set J = {Ii} of n training images, where i = 1...n. A base image Ii is used to compute the
repeatability on all other images in J .

� The GP search could easily get lost in unwanted maxima if appropriate considerations are not taken into
account when designing the fitness function.
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Fitness Function
Hence, a good detector should extract uniformally distributed points across the image plane. Consequently, three other terms were incorporated in the
fitness function and combined in a multiplicative way:

f (x) = rJ (ǫ) · φ
α
x · φ

β
y · N

δ
% (4)

where the functions,

φx =
1

1 + e−a(Hx−c)
(5)

φy =
1

1 + e−a(Hy−c)
(6)

are sigmoidal functions used to promote point dispersion along the x and y directions.
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Fitness Function
The terms H· given by:

H· = −
X

·

P (·)log2 [P (·)] (7)

represent the entropy value of the spatial distribution of detected interest points along each direction. P (·) is approximated by the histogram of interest
point localizations. Moreover, because of the logarithmic nature of the entropy function, φx and φy are set to promote entropy values lying within a
very small range. The final term,

N% =
requestedpoints

extractedpoints
(8)

is a penalizing factor that reduces the fitness value for detectors that return less than the total number of requested points. Finally, α, β and δ control
the amount of influence that each term has on f (x).
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GECCO 2007 Tutorial / Evolutionary Computer Vision 6

3463



Function Set
The function set F contains 6 unary functions and 5 binary functions. All functions, input and output, are data matrices with the same size as images
in J. The subset of binary and unary functions are:

F2ary = {+, −, | − |, ∗, /} (9)

F1ary =
n

A
2
,
√

A, log2, EQ, G(σ = 1), G(σ = 2)
o

(10)

Where EQ is the histogram equalization, and G(σ = x) are Gaussian filters with blur σ. The complete function set is:

F = F2ary ∪ F1ary (11)
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Terminal Set
Effective IP operator requires information pertaining to the rate of change in image intensity values. Consequently, the terminal set includes first and
second order image derivatives. However, we do not claim that this set is necessary nor sufficient and further work will try to determine an optimal
set of useful information for interest point detection. Furthermore, the terminal set is image dependent, which means that each image Ii ∈ J has a
corresponding Ti defined by:

Ti =
˘

Ii, Li,x, Li,x,x, Li,x,y, Li,y,y, Li,y, Ii,σ=1
¯

(12)

Where Li,w = Ii ∗ Gw(σ = 1) are image derivatives computed in the w direction using a convolution with Gaussian kernel derivatives, and Ii,σ=1 is
the smoothed image computed by a convolution with a Gaussian smoothing function.
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Experimental Results
� All experiments were developed independently in two different systems to show the robustness of the proposed approach. A first prototype

developed on Matlab, with the Genetic Programming toolbox GPLAB a. These experiments were also developed in C language using the VXL,
LILGP, and CImg libraries.

� All image sets were downloaded from the Visual Geometry Group website b, along with matlab source code for computing the repeatability
rate and binary files for extracting Harris interest points. All matlab codes were translated to C language for testing the second system.
The scene images were VanGogh,Monet, Mars, New York, Graph, Mosaic and Leuven. VanGogh, Monet, Mars and New York present changes of

rotation, while Graph and Mosaic present changes of illumination. Finally, Leuven presents changes both rotation and illumination changes.

ahttp://gplab.sourceforge.net/index.html, GPLAB A Genetic Programming Toolbox for MATLAB by Sara
Silva

bhttp://www.robots.ox.ac.uk/∼vgg/research/
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GP runtime parameters

Parameters Description and values

Population size 50 - 75 individuals
Generations 50
Initialization Ramped Half-and-Half
Crossover & Mutation prob. Crossover prob. pc = 0.85; mutation prob. pµ = 0.15
Tree depth Dynamic depth selection
Dynamic max. depth 5 levels
Real max depth 8 levels
Selection Tournament (size of 4) with lexicographic

parsimony preassure
Survival Keep best survival strategy
Fitness function parameters ax = 7, cx = 5.05, ay = 6, cy = 4.3

α = 20, β = 20, δ = 2
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Evolved Operators

Name Operator

IPGP1∗ G2 ∗ |I − G2 ∗ I|2
IPGP3 G1 ∗ G1 ∗ G1 ∗ G2 ∗ G2 ∗ (G1 ∗ I − I)
IPGP4 G2 ∗ G2 ∗ G2 ∗ (G2 ∗ I − I)

IPGP5 G1 ∗ G2 ∗ |I − G1 ∗ I|2

IPGP6 G2 ∗ G2 ∗ G1 ∗
„

I

G2 ∗ I

«

IPGP7 G2 ∗ (2 · Lyy + 2 · Lxx)

IPGP8 G2 ∗
h

Lxx + 2 · G2(Lxx + Lyy)2
i

IPGP9 G2 ∗ G2 ∗ (2 · Lyy + 2 · Lxx + Lxy)
IPGP10 G2 ∗ (Lyy + Lxx)

IPGP11 G1 ∗
 

G1 ∗ I

(G1 ∗ G1 ∗ I)3

!

IPGP12
G2 ∗ I

3
2

(G1 ∗ I)
9
4
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Results (cont.)
Average repeatability rate achieved with the training and testing sets

Average repeatability rate
Detector VanGogh Monet Mars New York Graph Mosaic Leuven

IPGP1 96.41 85.17 91.42 88.41 92.04 93.11 69.06

IPGP2 93.74 94.80 86.26 83.47 95.97 93.79 63.18

Harris 90.71 92.96 89.90 89.75 98.00 94.43 70.42

DPIPG1 98.33 86.73 96.00 94.24 94.63 96.51 70.74

DPIPG2 97.75 89.40 95.53 94.64 93.67 96.45 71.22

DPIPG5 96.49 86.69 96.00 95.37 93.76 95.98 76.21

DPIPG6 95.90 82.72 95.85 96.57 95.03 95.82 76.08
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Results (cont.)
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Results (cont.)
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Results (cont.)

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

110

Imagen

T
as

a 
de

 r
ep

et
ib

ili
da

d

Harris
DPIPG1
DPIPG2
IPGP1
IPGP2
DPIPG5
DPIPG6

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
85

90

95

100

Valor de grises relativo

T
as

a 
de

 r
ep

et
ib

ili
da

d

Harris
DPIPG1
DPIPG2
IPGP1
IPGP2
DPIPG5
DPIPG6

Leuven Graph

slide #29

Results (cont.)
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img2.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img3.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img4.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img5.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img6.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img7.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img8.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img9.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img10.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img11.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img12.pgm
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DPIPG1 VanGogh sequence

/home/agarza/tesis/imagenes/rotacion/VanGogh/img13.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic1.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic2.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic3.pgm

slide #45

GECCO 2007 Tutorial / Evolutionary Computer Vision 14

3471



DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic4.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic5.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic6.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic7.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic8.pgm

slide #50

DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic9.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic10.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic11.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic12.pgm
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DPIPG1 Mosaic sequence

/home/agarza/tesis/imagenes/light/MOSAIC/mosaic13.pgm
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Results achieved by 7 detectors
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Sample Image VanGogh
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Sample Image Monet

Harris IPGP1 IPGP2

DPIPG1 DPIPG2 DPIPG5

DPIPG6
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Sample Image Mars

Harris IPGP1 IPGP2
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DPIPG6
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Sample Image New York

Harris IPGP1 IPGP2

DPIPG1 DPIPG2 DPIPG5

DPIPG6
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Sample Image Graph
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Sample Image Mosaic
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Sample Image Leuven

Harris IPGP1 IPGP2
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The Honeybee Search Algorithm
� Introduction This talk introduces a novel analogy with the way honeybee colonies function in order to solve the problem of sparse and quasi

dense reconstruction.

� Analogy A new adaptive behavior strategy is presented based on the “divide and conquer” strategy used by the honeybee colony to solve
search problems.

� Application A new framework is proposed in which the 3D points communicate between them to achieve an improved sparse reconstruction
which could be used reliable in further visual computing tasks. The general ideas that explain the honeybee behavior are translated into a
computational algorithm following the evolutionary computing paradigm.

� Results Experiments demonstrate the importance of the proposed communication system to reduce dramatically the number of outliers.

slide #64

Introduction
� Why Honeybee Colonies? Real honeybee colonies are capable of a number of outstanding insect capacities that are coded in the dance language,

which is considered the most complex symbolic system decoded, to date, in the animal world a.

� In this work, a cooperative coevolutionary approach is applied based on the individual insect capacities and their communication system. Our
work mimics this complex behavioral strategy using the principles of cooperative cooevolution of the Parisian evolutionary computational

approach b.

a
E. Crist.“Can an Insect Speak? The Case of the Honeybee Dance Language”. Social Studies of Science. SSS and Sage Publications. 34(1), pp.

7-43. 2004.
b
E. Dunn, G. Olague, and E. Lutton. “Parisian Camera Placement for Vision Metrology”. Pattern Recognition Letters, Vol. 27, Issue 11, pages

1209-1219. 2006.
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Parisian Evolution: Cooperative Coevolution with Honeybees

� The Parisian approach, differs from typical approaches to evolutionary computation in the sense that a single individual in the population
represents only a part of the solution a. In this paradigm an aggregation of multiple individuals should be considered in order to obtain a
solution to the problem being studied.

� The motivation of such approach is to make an efficient use of the genetic search process. First, the algorithm discards less computational

effort at the end of execution, while considering more than a single best individual as output. Second, the computational expense of the fitness
function evaluation is considerably reduced for a single individual.

a
P. Collet, E. Lutton, F. Raynal, M. Schoenauer, 1999. “Individual GP: an alternative viewpoint for the resolution of complex problems”, In:

Banzhaf et al. (Eds.), Genetic and Evolutionary Computation Conf. GECCO99.
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Parisian Evolution
� In traditional cooperative coevolution the individuals are divided in species that are genetically isolated. The only feedback is through a share

domain model which produce a cooperative relationship.

� Contrary to this way of setting the framework for cooperative coevolution the Parisian approach uses the idea of individual evolution to promote
the exchange of genetic material based on the local and global fitness evaluations.

� We decide to implement the idea of separate populations in the honeybee search algorithm in order to achieve population interaction and
coadaptation.
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Parisian Evolution
� Partial Encoding. The genetic representation is achieved through a number of single individuals that encode a partial solution.

� Therefore an individual aggregation step is necessary in order to create a complete problem solution. This process of aggregation could be
explicit or implicit according to the problem being studied. This concept provides to the Parisian approach the strength to decompose the
problem by determining automatically an appropriate number of subcomponents and the role that each subcomponent will play.

� The Environment. The design of the system should provide an environment where the different partial solutions could interact and coadapt in
order to allow the emergence of better aggregate solutions.
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Parisian Evolution
� Local and Global Fitness. A meaningful merit function must be designed for each partial solution. The evolutionary engine requires a scheme

for combining local and global fitness values. This could be explicit or implicit.

� Population Diversity Preservation. In contrast to traditional computational intelligence approaches where diversity needs to be preserved only
during enough time to perform a reasonable exploration of the search space; an individual cooperative coevolutionary approach requires that
all subcomponents should be present in the final solution.

� diversity preservation techniques need to be implemented. In evolutionary algorithms three different techniques could be applied: 1) heuristic
modification of genetic operators, 2) fitness function penalization for crowded individuals, and 3) incorporation of some higher level algorithmic
structure to generate and manage sub-populations. In this work, we apply the fitness sharing scheme (Goldberg and Richardson, 1987).
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Imaging and Camera Geometry

� Perspective projection This can be written as a linear mapping between homogeneous coordinates. The equation is only up to scale factor,
where λ = Z/f .

λ

0

@

x
y
f

1

A =

0

@

X
Y
Z

1

A

.

(13)
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Camera Geometric Model

� Internal camera parameters Where the units of ku and kv are in [pixels/length].

K =

0

@

−ku 0 0 u0
0 kv 0 v0
0 0 0 1

1

A (14)
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Camera geometric model

� External camera parameters Euclidean transformation between world and camera coordinates.

A =

0

B

B

@

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

1

C

C

A

=

„

R t

0 1

«

.

(15)
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Euclidean coordinate system.

slide #73

Internal Parameters

Foto αu αv u0 v0

1 -181.860 206.802 272.685 134.143
2 -182.435 207.513 272.573 134.107
3 -186.876 212.852 272.816 134.170
. . . . .
. . . . .
. . . . .

18 -184.466 209.814 272.961 134.538
19 -183.284 208.471 273.185 134.633
20 -175.497 199.044 273.522 134.869

Media -184.099 209.444 272.700 134.404

Desv.Est. 5.199 6.248 0.389 0.229
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External Parameters

Foto Rx Ry Rz tx ty tz

1 −89.308◦ −46.487◦ −89.796◦ -125.225 12.506 351.920
2 −89.431◦ −46.476◦ −88.068◦ -125.471 12.510 352.621
3 −89.204◦ −46.556◦ −87.892◦ -124.950 12.369 359.286
. . . . . . .
. . . . . . .
. . . . . . .

18 −89.293◦ −46.598◦ −87.956◦ -124.770 11.996 355.612
19 −89.302◦ −46.665◦ −87.947◦ -124.438 11.818 353.956
20 −89.319◦ −46.604◦ −87.961◦ -123.961 11.632 342.635

Media −89.329◦ −46.550◦ −88.076◦ -125.204 12.123 355.592

Desv.Est. 0.059◦ 0.064◦ 0.408◦ 0.600 0.287 6.848
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Two View Geometry
� Cameras P and P′ such that

x = PX x
′
= P

′
X

� Baseline between the cameras is non zero.

� Main Questions

1. Given an image point in the first image, where is the corresponding point in the second image?

2. What is the relative position of the cameras?

3. What is the 3D geometry of the scene?
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Epipolar Geometry

� Correspondence Geometry Given the image of a point in one view, what can we say about its position in another?

� A point in one image “generates” a line in the other image.

� This line is known as an epipolar line, and the geometry which gives rise to it is known as epipolar geometry.
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The Honeybee Search Process

hive


C


C


Resource


Resource


Scene


Bees


� The honeybee algorithm is based on the idea, first proposed in the fly algorithm, of evolving a population of 3D points in order to concentrate
those points on the object surface of the scene.
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The Fly Algorithm
� The Parisian approach, in the work of Louchet (2001), was applied to the evolution of a population of 3D points, called flies, whose positions

were concentrated on the object surface of the scene. The main drawback of that first attempt was the lack of applying the concepts of
population interaction and coadaptation, as well as the identification of local and global fitness evaluations. Indeed, a high number of outliers

were produced with their technique due to the overlook of these aspects. Moreover, the omission of these concepts produce a shortcoming of
the paradigm to provide those 3D points with intelligent capabilities.
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Honeybee Search

Success

Success

Success

Inactivity

Explore

Recruit

Harvest

Yes

Yes

Yes

No

No

No

� The honeybee search process is composed of three main activities: exploration, recruitment and harvest.
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Honeybee Algorithm

Stop

Preservebest �(�E; �E)
Evaluate(�E)Generate(�E)
Evaluate(�E)Initialize(�E)Start

Condition
Sharing(�E; �E)

Allasignation
Initialize(�H)Evaluate(�H)StopCondition Preservebest �(�H ; �H)

EndYes

Yes
No

No

No Yes
Explore

Re
ruit HarvestAssignharvesters(�E) Assignsear
hspa
e(�E) visited?

Generate(�H) Evaluate(�H) Sharing(�H; �H)

Start

End

 = Random()
� = � + � + 

�=Crossover(P)
�=Mutation(P)
P=Tournament
P=Tournament
Sele
tion(�)
Sele
tion(�)

� Flowchart describing the honeybee search algorithm.
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Honeybee Algorithm

a) Sobel b) Cross-correlation

� The fitness function of the honeybees’ explorers is composed of two main criteria: 1) The contour information obtained with the sobel operator,
and 2) The correlation between both images to estimate if the bee is posed on a surface.
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Evaluating the Fitness Function
� The Exploration Stage starts creating a random population µE of 3D points called explorers, which are then transformed into a new popu-

lation λE using the mutation, crossover and random steps. This stage attempts to simulate the natural process in which the bees explore
asynchronously the space in search of the food source. The evaluation is obtained with the following criteria:

FE = g(pIzq, pDer) × f(pIzq, pDer), (16)

g(pIzq, pDer) = ‖∇(pIzq)‖ × ‖∇(pDer)‖ (17)

f(pI , pD) =

Pn
i=−n

Pn
j=−n(I(xI + i, yI + j) − I(xI , yI ).(I(xD + i, yD + j) − I(xD, yD)

q

PP

(I(xI + i, yI + j) − I(xI , yI ))2.
PP

(I(xD + i, yD + j) − I(xD, yD))2
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Fitness Sharing
� The Exploration Stage The selection of the best explorers is made with a tournament selection after being evaluated together with the old

population. We apply a sharing step in order to balance the distribution of the explorers in the Euclidean world. We repeat this stage until
a given number of generations n = 30.
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Recruitment Stage
� Each explorer recruits a number of foragers proportionally to its fitness function. The size of the search space is proportional to the distance

between the pair of cameras (hive) and the current 3D point (explorer). Obviously the explorers that are closer to the hive should have a
bigger search space, compared with the explorers that are farther away. We start with a fixed size ζ to the nearest visited place near the hive.
Then, as long as the bees are farther away from this initial bee; the search space starts to be reduced using as information the distance on
the images in order to have an evaluation about the depth in which the points are located as follows:.

di =
q

(xl − xr)2 + (yl − yr)2 .
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Search Space Reduction
Now, we can proceed to reduce the search space with the following relationship:

f = 0.5 × (1 − u) + u ,
ζ′

i = ζi × f .
(18)

Where u = di/dmax represents the degree of desirability that a place holds according to the distance. The value of f lies in the interval [0.5, 1], where
0.5 is related to the highest distance, while 1 is related to the closest 3D point.
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The Harvest Stage
� The next stage is to harvest the source patch for each explorer using an algorithm similar to the exploration stage. The first cycle is dedicated

to visit each place that was selected by the explorer. In this way, the foragers that have been selected by the explorer start a new search
process around the point where the explorer is located in order to exploit this location. Hence, the exploration and exploitation steps are
achieved by the explorers and foragers respectively. As we can observe each group of foragers exploits sequentially all places. Note that the
number of foragers that have been assigned to each explorer is variable according to the fitness function.

pi = fitnessi/
N
X

j=1

fitnessj .
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Cooccurrence Matrix
Thus, the number of foragers assigned to each explorer is computed using the following factor

ri = pi ∗ λ , (19)

where λ is the total size of the population. Here, the fitness function computation uses besides the ZNCC the homogeneity of the texture without
gradient computation. The homogeneity is computed using the Gray Level Cooccurrence Matrix because it has been proved reliable in image classification
and segmentation for content based image retrieval (Haralick, 1979).

homog =
n
X

i

n
X

j

M(i, j)

1 + |i − j|
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Experimental Results
Parameters of the algorithm that were used in order to compare the mutation operators.

Polynomial Mutation Normal Mutation
Population:

µE 100 µE 100
λE 200 λE 200
µR 1000 µR 1000
λR 2000 λR 2000

Mutation:
ηm 25 σX 2

σY 2
σZ 2

Crossover (SBX):
ηc 2 ηc 2

Sharing:
σrep 25 σrep 25
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Experimental Results

� Results of applying the honeybee search algorithm to obtain a sparse reconstruction.
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Experimental Results

� Results of applying the honeybee search algorithm to obtain a sparse reconstruction.
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Experimental Results

a) 60000 points. b) 12000 points.

� These images show the 3D reconstruction using the method of triangulation.
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Experimental Results

a) Bees projected on the left image. b) Right image.

c) 16000 bees. d) 8000 bees.

� These images show the results after applying the honeybee search algorithm to a real stereo pair to obtain a quasi-dense reconstruction.
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Experimental Results

a) Bees projected on the left image. b) Right image.

c) VRML. d) 4000 bees.

� These images show the results after applying the honeybee search algorithm to a real stereo pair to obtain a quasi-dense reconstruction.
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Conclusions
� The advantage of using the honeybee search algorithm is the robustness against outliers. We can appreciate in the VRML images that all 3D

points are grouped coherently with the goal of reconstructing compact patches. This is due to the intelligent process described in this paper
in which some artificial honeybees (explorers) guide the search process to obtain an improved sparse and quasi-dense reconstruction.

� This work has shown the benefit of using an intelligent approach in which the total number of points needed to obtain a significant model of
the scene is smaller for the honeybee search algorithm compared to the triangulation approach. The explorers guide the foragers using texture
and correlation information during the whole process.

� Similar to the natural process the goal is achieved using a communication system that we have adapted to the classical evolutionary algorithm.
It is suitable to think that the honeybee search algorithm could be applied in other contexts.
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Autonomous Measurement System

slide #96

Some Initial Questions

� Where should we placed the cameras in order to obtain the minimal 3D error?

� From this question several subproblems arise:

1. How can we develop a good criterion to judge our configuration?

2. What conditions are needed for our system to work?

3. Which are the interrelated aspects involved in the development of the system?

4. What would be a good method to optimize the placement of the cameras?
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Photogrammetric Network Design
� Camera calibration is understood as the process of determining the interior orientation parameters. Beside the camera constant and the

location of the principal point this may also include the parameters of lens distortion. This is a well established procedure (standard) in
photogrammetry and computer vision.

� Bundle adjustment is recognized as a critical factor in exploiting the mensuration potential of photogrammetry and is almost exclusively used
in applications requiring high-accuracy.

1. In our previous work (Olague and Mohr, 2002)the projective model was used to derive an analysis of the uncertainty that is useful in
the determination of a camera configuration.

2. The projective and collinearity based approaches have been used recently (Olague and Dunn, 2007) to achieve a practical photogram-
metric network design.
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Error Propagation in Computer Vision
� The key to simulate networks of complex objects and testing the solution in the real world with a standard laptop is a much faster analytical

method based on Taylor series used to estimate the 3D measurement accuracy:

f(p) = f(E[p]) +
∂f(E[p])

∂p
(p − E[p]) + Θ(p) . (20)

The analytical approach takes account that the 3D measurement point Pj is related to the input data pij by an analytical function f
(non-linear). This relationship is approximated by a linear one through a first order expansion.

� After ignoring the second order terms, it is easy to compute the mean value of the output meaurements and consequently the covariance of
the measurements

ΛP =
∂f(E[p])

∂p
E[(p − E[p])(p − E[p])

T
](

∂f(E[p])

∂p
)
T

,
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Experimental Results

Height Z

Width X Depth Y

Height Z

Width X
Depth Z
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Height Z
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Depth Y
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Genetic Representation

slide #101

Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Evolutionary Visual Learning

� Texture Linear Genetic Programming for Multi-Class Object Recognition

1. Recognition is a classical problem in computer vision whose task is that of determining whether or not the image data contains some specific
object, feature, or activity.

2. This task can normally be solved robustly by a human, but is still not satisfactory solved by a computer for the general case: arbitrary objects
in arbitrary situations.
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Evolutionary Visual Learning

� Texture Linear Genetic Programming for Multi-Class Object Recognition

1. Our LGP approach solves simultaneously the region selection and feature extraction tasks, that are applicable to common image recognition
problems.

2. The method searches for optimal regions of interest, using texture information as its feature space and classification accuracy as the fitness
function.

3. Texture is analyzed based on the gray level cooccurrence matrix and classification is carried out with a SVM committee.

4. Results show effective performance compared with previous results using a standard image database.
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Multi-Class Object Recognition

� Recognition of a particular object and recognition of a class of objects.

1. Imagine the problem of identifying our own car. The object that we are looking for is obviously a car with unique attributes which correspond
to the car that belong us. On the other hand, the problem of recognizing a class of objects is more general, for example that of identifying
cars as a class of objects.

2. In this work, the task is to use the information from a training dataset in order to create an internal model of the idea of car, that will be
used in activities such as detection and classification of objects into cars or no-cars. This problem could be further extended into the problem
of face recognition, background extraction, or even more complicated like facial expression recognition.
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Object Recognition

The task of object recognition is that of determining if an object belongs to one or more classes
in a collection or sequence of images.

� Given an image I, a database of k objects, and one representation Rj for each object j in the image database; the object recognition could
be expressed as follows:

Q = arg min c(Rj , I) j ǫ 1, .., k ,

where c(Rj , I) is a function which provides the compatibility or consistency for representing the object j in the image I.
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Object Recognition

A simpler definition proposed by Russell and Norving (1995) could be expressed as follows:

1. Given a set of images that contains one or more objects selected from a collection of objects O1, O2, ..., On known a priori, and

2. Given an image of the scene taken from an unknown position and orientation;

Answer the following question:

1. Which objects O1, O2, ..., On are presented in the scene?

2. In such a way that, for each object, it is possible to determine the position and orientation of the observer.
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Images for the class ”building”

(a) Set of training images
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Images for the class ”building”

(b) Set of testing images
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Images for the class ”faces”

(c) Set of training images
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Images for the class ”faces”

(d) Set of testing images
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Images for the class ”cars”

(e) Set of training images
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Images for the class ”cars”

(f) Set of testing images
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Images for the class ”trees”

(g) Set of training images
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Images for the class ”trees”

(h) Set of testing images
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Images for the class ”cows”

(i) Set of training images
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Images for the class ”cows”

(j) Set of testing images
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Evolutionary Learning

� The general methodology that is proposed in this work considers the identification of Regions of Interests
(ROIs) and the selection of the set of features of interest (texture descriptors). Two tasks are solved
simultaneously.

1. The first task consists in identifying a set of suitable regions where feature extraction is to be performed.

2. The second task consists in selecting the parameters that define the GLCM, as well as the set of descriptors that should be computed.
This second task could be further extended with other image operators.

� The output of these two tasks is taken as input by a SVM committee that gives the experimental accuracy
of a multiclass problem using the selected features and ROIs.
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Linear Genetic Programming
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figure 1: LGP uses a tree structure similar to the Multicellular Genetic Algorithm (Olague,
2002).

slide #124

GECCO 2007 Tutorial / Evolutionary Computer Vision 38

3495



Evolutionary Learning

� The LGP searches for the best set Ω of ROIs for all images and optimizes the feature extraction procedure
by tuning the GLCM parameter set

πωi
∀ωi ∈ Ω

through the selection of the best subset

{βωi,1, ..., βωi,2t}

of mean and variance descriptor values from the set of all possible descriptors Ψ , to form a feature vector
~γi = (βωi,1, ..., βωi,2t) for each ωi ∈ Ω.
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ROI Selection

1. r structural variables {c1....cr}, represented by a single bit each. Each one controls the activation of one
ROI definition block. These variables control which ROI will be used in the feature extraction process.

2. r ROI definition blocks ω1....ωr. Each block ωi, contains four parametric variables ωi =
{xωi

, yωi
, hωi

, wωi
}, where the variables define the ROIs center (xωi

, yωi
), height (hωi

) and width (wωi
).

Basically, each ωi establishes the position and dimension for a particular ROI.
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Feature Extraction
1. A parameter set πωi

is coded ∀ωi ∈ Ω, using three parametric variables. Each πωi
= {Rωi

, dωi
, θωi

} describes the size of the region R,
distance d and direction θ parameters of the GLCM computed at each ωi. Note that R is a GLCM parameter, not to be confused with the
ROI definition block ωi.

2. Eleven decision variables coded using a single bit to activate or deactivate a descriptor βωi,j ∈ Ψ at a given ROI. These decision variables

determine the size of the feature vector ~γωi
, extracted at each ROI in order to search for the best combination of GLCM descriptors. In this

representation, each βωi,j represents the mean and variance values of the jth descriptor computed at ROI ωi. This part of the chromosome

could be further enhanced with new image operators.
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Classification and Fitness Evaluation
� Since the recognition problem aims to classify every extracted region ωi, we implement a SVM committee that uses a voting scheme for

classification. The SVM committee Φ, is formed by the set of all trained SVMs {φi}, one for each ωi.

� The SVM Committee uses voting to determine the class of the corresponding image.

� In this way, the fitness function is computed with the Accuracy, which is the average accuracy of all SVMs in Φ for a given individual. In
other words,

Accuracy = 1
|Φ|

P

x Accφx
,

summed ∀φx ∈ Φ, where Accφx
is the accuracy of the φj SVM.
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SVM Parameters
� Kernel Type: A Radial Basis Function (RBF) kernel was used, given by:

k(x, xi) = exp(−
‖x − xi‖2

2σ2
) (21)

The RBF shows a greater performance rate for classifying non linear problems than other types of kernels.

� Training Set: The training set used was extracted from a whole set of different images, see Section ??.

� Cross Validation: In order to compute the accuracy of each SVM, we perform k-fold cross validation, with k=6. In general, the accuracy
computed with crossvalidation will out perform any other type of validation approach (Goutte, 1997). In k-fold cross validation the data is
divided into k subsets of (approximately) equal size. The SVM was trained k times, each time leaving out one of the subsets from training,
but using only the omitted subset to compute the classifiers accuracy.
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CALTECH Image Database
� The image database (CALTECH, 2005) contains 240 images from which 120 images contain several objects and the other 120 correspond to

the same images that have been segmented manually.

� The experiments consider such database to test the accuracy of the proposed methodology using a standard database, as well as a set of
images downloaded from the web.

� These images contain objects with different lighting conditions, in different positions, and with several viewpoints. The database could be
considered as one representing a challenging multi-class object recognition problem.

� The experiments confirm that evolution have found always the simplest solution using only one ROI.
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Individual 92.22%
This individual performs very well with a high average accuracy for training that achieves 92.22%, while the testing is quite good with 73%. This
difference is due to the new characteristics of the images downloaded from the web. The LGP selects only one big region located in the lower part of
the image because most of the cars are in this part of the images.

Building Faces Cars

Building 68% 20% 12%
Faces 18% 78% 4%
Cars 14% 14% 72%

table 1: Confusion matrix obtained for the testing set: 73%.
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Individual 88.88%
Another solution corresponding to an individual with an average accuracy for training of 88.88% was selected to show the level of classification. Its
average during testing was as high as 80% because the set of testing images is composed only by the more similar images with respect to the training
stage. Similar to the previous case the best individual selects the lower part of the images due to its characteristics.

Building Faces Cars

Building 85% 11% 4%
Faces 6% 80% 14%
Cars 12% 12% 76%

table 2: Confusion matrix obtained for the testing set: 80%.
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Experimental Results

Second part:

Best solution

1

x,y h,w V, d, 0 descriptors

1 23 115 123 91 1 1 2

1 1 1 1 1 1 1 1 0 1 0

23, 115 123, 91 1, 1, 2

First part:

region
entropy, contrast, homogeneity, local homogeneity, correlation, uniformity, 
directivity, first order difference moment, inverse moment

(a) Best individual with an Accuracy of
92.22%

(b) ROI
found
by the
LGP
system

figure 2: Best individual found by the LGP approach using three classes.
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Experimental Results

Second part:

Best solution

1

x,y h,w V, d, 0 descriptors

56, 40 62, 123 1, 3, 0

1 56 40 62 123 1 1 3

0 1 1 1 1 0 1 0 0 1 0

directivity, inverse moment

First part:

region
contrast, homogeneity, local homogeneity, correlation,

(a) Best individual with an Accuracy of
88.88%

(b) ROI
found
by the
LGP
system

figure 3: Best individual found by the LGP approach using three classes.
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Experiment using Five Classes
Due to the encouraging results obtained in our previous experiment, we decide to increase the number of classes. We keep the first three classes of the
previous experiment (building, faces, and cars), and two more classes (trees and cows) were added to this second experiment. Therefore, the second
experiment to test the multi-class object recognition system considers a total of five classes. The parameters of the LGP were keeped to 85% crossover,
15% mutation, 80 generations, and 80 individuals. Next, the best solution is described:
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Individual 83.33%
In this experiment, the best individual achieves a training score of 83.33% of classification accuracy. Its average during testing was as high as 77%. In
this case, the location of the region of interest is placed over the higher part of the images because the trees are located in general towards this part
of the images and because it also covers most parts of the other object classes.

Building Faces Cars Trees Cows

Building 74% 8% 1% 8% 9%
Faces 6% 80% 4% 2% 8%
Cars 26% 0% 68% 0% 6%
Trees 7% 0% 3% 87% 3%
Cows 4% 4% 4% 12% 76%

table 3: Confusion matrix obtained for the testing set: 77%.
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Experimental Results

0

0

1

0 0 0 1 0 97 113 119 79 91 1 121 57 124 116 92 67 65 42 61 99 15 17 92 46 1 3 0 1 1 3 0 2 2 0 1 2 0 4 0

0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1

0 x,y h,w V, d, 0 descriptores

65, 42 61, 99 0, 1, 2

Best solution
First part:

Second parte:

inverse moment, max. probability

0

entropy, homogeneity, local homogeneity, correlation

(a) Best individual with an Accuracy
of 77%

(b) ROI
found
by the
LGP
system

figure 4: Best individual found by the LGP approach using five classes.
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Comparison with Other Approaches
The advantage of using a standard database is that it is possible to compare with previous results. For example, in (Winn et al., 2005) the authors
proposed a method that classifies a region according to the proportion of several visual words. The visual words and the proportion of each object are
learned from a set of training images segmented by hand. Two methods were used to evaluate the classification: nearest neighbor and Gaussian model.
On the average (Winn et al., 2005) achieved 93% of classification accuracy using the segmented images; while on average the same method achieves
76% after selecting the regions by hand. This last result is comparable to our result. Several aspects could be mentioned:

� The approach proposed in this paper does not use segmented images.

� The ROI was automatically selected by the LGP.

� The images used in the testing stage does not belong to the original database (CALTECH, 2005), these images with a bigger difference were
obtained from the web.
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Comparison with Other Approaches

Win et al. LGP-SVM
NN NN Objects (3) Objects (5)

k = 2000 k = 216 Gaussian 88.88% 83.33%
Feature selection Hand Hand Hand Automatic Automatic

Accuracy 76.3% 78.5% 77.4% 80.0% 77.0%

table 4: Recognition Accuracy
slide #139

References
[1] D. Agnelli, A. Bollini, L. Lombardi. Image Classification: An Evolutionary Approach. Pattern Recognition Letters. Vol. 23,

pages 303-309. 2002.

[2] I. Aizenberg, N. Aizenberg, J. Hiltner, C. Moraga, and E. Meyer zu Bexten. Cellular Neural Networks and Computational
Intelligence in Medical Image Processing. Image and Vision Computing. Vol. 19, pages 177-183. 2001.

[3] P. Andrey, and P. Tarroux. Unsupervised Image Segmentation Using a Distributed Genetic Algorithm. Pattern Recognition.
Vol. 27, No. 5, pages 659-673. 1994.

[4] P. Andrey, and P. Tarroux. Unsupervised Segmentation of Markov Random Field Modeled Textured Images Using Selectionist
Relaxation. IEEE Trans. on Pattern Analysis and Machine Intelligence. Vol. 20, No. 3, pages 252-262. March 1998.

[5] P. Andrey. Selectionist Relaxation: Genetic Algorithms Applied to Image Segmentation. Image and Vision Computing. Vol.
17, pages 175-187. 1999.

[6] G. Anelli, A. Broggi, and G. Destri. Decomposition of Arbitrarily Shaped Binary Morphological Structuring Elements Using
Genetic Algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 20, No. 2, pages 217-224. February
1998.

[7] G. Antoniol, and M. Ceccarelli. Microarray Image Gridding with Stochastic Search Based Approaches. Image and Vision
Computing. In press 2006.

[8] W. A. Arentz, and B. Olstad. Classifying offensive Sites Based on Image Content. Computer Vision and Image Understanding.
Vol. 94, pages 295-310. 2004.
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[136] M. Mignotte, C. Collet, P. Pérez, and P. Bouthemy. Hybrid Genetic Optimization and Statistical Model-Based Approach for
the Classification of Shadow Shapes in Sonar Imagery. IEEE Trans. on Pattern Analysis and Machine Intelligence. Vol.
22, No. 2, pages 129-141. February 2000.

GECCO 2007 Tutorial / Evolutionary Computer Vision 46

3503



[137] M. Mirmehdi, P. L. Palmer, and J. Kittler. Genetic Optimization of the Image Feature Extraction Process. Pattern Recog-
nition Letters. Vol. 18, pages 355-365. 1997.

[138] A. Mishra, P. K. Dutta, and M. K. Ghosh. A GA Based Approach for Boundary Detection of Left Ventricle with Echocar-
diographic Image Sequences. Image and Vision Computing. Vol. 21, pages 967-976. 2003.

[139] A. Mishra, P. K. Dutta, and M. K. Ghosh. Fuzzy Shape Based Motion Evaluation of Left Ventricle Using Genetic Algorithm.
Image and Vision Computing. Vol. 24, pages 436-446. 2006.

[140] S. K. Mitra, C. A. Murthy, and M. K. Kundu. A Technique for Image Magnification Using Partitioned Iterative Function
System. Pattern Recognition. Vol. 33, pages 1119-1133. 2000.

[141] R. Myers, and E. R. Hancock. Genetic Algorithm parameter sets for Line Labelling. Pattern Recognition Letters. Vol. 18,
pages 1363-1371. 1997.

[142] R. Myers, and E. R. Hancock. Genetic Algorithms for Ambiguous Labelling Problems. Pattern Recognition. Vol. 33, pages
685-704. 2000.

[143] R. Myers, and E. R. Hancock. Least-commitment Graph Matching with Genetic Algorithms. Pattern Recognition. Vol. 34,
pages 375-394. 2001.

[144] F. Neri, and L. Saitta. Exploring the Power of Genetic Search in Learning Symbolic Classifiers. IEEE Trans. on Pattern
Analysis and Machine Intelligence. Vol. 18, No. 11, pages 1135-1141. November 1996.

[145] I. S. Oh, J. S. Lee, and B. R. Moon. Hybrid Genetic Algorithms for Feature Selection. IEEE Trans. on Pattern Analysis and
Machine Intelligence. Vol. 26, No. 11, pages 1424-1437. November 2004.

[146] G. Olague. Automated Photogrammetric Network Design Using Genetic Algorithms. Photogrammetric Engineering & Remote
Sensing, Vol. 68, No. 5, pages 423-431. May 2002. Paper awarded the “2003 First Honorable Mention for the Talbert
Abrams Award”, by ASPRS.

[147] G. Olague, and R. Mohr. Optimal Camera Placement for Accurate Reconstruction. Pattern Recognition. 35(4), pages 927-944.
April 2002.

[148] G. Olague, and B. Hernández. A New Accurate and Flexible Model Based Multi-corner Detector for Measurement and
Recognition. Pattern Recognition Letters. Vol. 26, Issue 1, pages 27-41. 2005.

[149] G. Olague, S. Cagnoni, and E. Lutton. Introduction to the Special Issue on Evolutionary Computer Vision and Image
Understanding. Pattern Recognition Letters. Vol. 27, Issue 11, pages 1161-1163. 2006.

[150] G. Olague, and C. Puente. Parisian Evolution with Honeybees for Three-dimensional Reconstruction. Genetic and Evolu-
tionary Computation Conference. Vol. 1, pages 191-198. 2006.

[151] G. Olague, and E. Dunn. Development of a Practical Photogrammetric Network Design Using Evolutionary Computing. The
Photogrammetric Record. Vol. 22(117), pages 22-38. 2007.

[152] G. Olague, E. Romero, L. Trujillo, and B. Bhanu. Multiclass Object Recognition Based on Texture Linear Genetic Program-
ming. M. Giacobini et al. (Eds.): EvoWorkshops 2007, LNCS 4448, pages 291-300, 2007.

[153] E. Ozcan, and C. K. Mohan. Partial Shape Matching Using Genetic Algorithms. Pattern Recognition Letters. Vol. 18, pages
987-992. 1997.

[154] S. K. Pal, D. Bhandari, and M. K. Kundu. Genetic Algorithms for Optimal Image Enhancement. Pattern Recognition Letters.
Vol. 15, pages 261-271. 1994.

[155] S. M. Pan, and K. S. Cheng. An Evolution-based Tabu Search Approach to Codebook Design. Pattern Recognition. In press
2006.

[156] J. A. Parikh, J. S. DaPonte, J. N. Vitale, and G. Tselioudis. Comparison of Genetic Algorithm Systems with Neural Network
and Statistical Techniques for Analysis of Cloud Structures in Midlatitude Storm Systems. Pattern Recognition Letters.
Vol. 18, pages 1347-1351. 1997.
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