GECCO 2007 Tutorial / Genetic Programming Theory

Riccardo Poli and Bill Langdon

Departments of Computer and Mathematical Sciences
University of Essex

Copyright is held by the author/owner(s).

GECCO'07, July 7-11, 2007, London, England, United Kingdom.
ACM 978-1-59593-698-1/07/0007.

Motivation

Search space characterisation
How many programs?
Limiting fitness distributions
Halting probability

GP search characterisation
Schema theory and search bias
Lessons and implications

Conclusions

We can perform many GP runs with a
set of problems and a set of parameters

We record the variations of numerical
descriptors.

Then, we about the
behaviour of the system that are compatible
with (and could explain) the empirical
observations.

3563

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex July 2007 R. Poli and W. B. Langdon - University of Essex [el
. 000000000000 0090909090900 0 11 . 000000000000 0090909090900 0 11

GP is a complex adaptive system with zillions = without (significant) return in
of degrees of freedom.

terms of fitness. E.g.
= T T
A Avg size —

So, any small number of descriptors can L et 50
capture only a fraction of the complexities of ‘
such a system.

fitness

which problems, parameter settings
and to use is an art form.

Generations

about GP’s behaviour, rather than clarify it. Bloat exists and continues forever, right?

500000

400000

300000

Average size

200000

100000

L L L L L
500 1000 1500 2000 2500 3000
Generations

theories can be incomplete

3564

number of programs

July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0 0 0 0 00 00000 00 0 0 0 0 1

1e+180

1e+160

1e+140

1e+120

1e+100

1e+80

1e+60

1e+40

1e+20

GECCO 2007 Tutorial / Genetic Programming Theory

nq4 = Number of trees of depth at

most d

@max

no = |Po| Ng = Z |Pal| X (ng—1)"

a=0

R. Poli and W. B. Langdon - University of Essex

7‘3‘={.’r.‘y. \/'—‘Fx}

- Logarithmic scale

Superexponential

July 2007 R. Poli and W. B. Langdon - University of Essex [10]

Number of Programs (log 10)

P = {29,/ + x}
Amax = 2’ ,PU = {‘T,‘y}’ 7)1 = {\/_} PZ - {+' X}

R. Poli and W. B. Langdon - University of Essex

Doubly logarithmic scale

T
Quintic, Sextic Polynomial
11 Multiplexor --
6 Multiplexor --
Binary Trees

Exponentials

Program Size

3565

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex

July 2007

The GP search space is immense, and so any
search algorithm can only explore a tiny
fraction of it (e.g. 1071000 %),

Does this mean GP cannot possibly work?
Not necessarily.

We need to know the between the size
of solution space and the size of search space

July 2007 R. Poli and W. B. Langdon - University of Essex

Empirically is has been shown that as program
length grows the distribution of functionality
reaches a limit

Memory

So, beyond a certain length, the proportion of
programs which solve a problem is constant

Since there are exponentially many more long
programs than short ones, in GP

=

R. Poli and W. B. Langdon - University of Essex

Proportion of 2-input logic functions

T/O register

R. Poli and W. B. Langdon - University of Essex

Program counter s,

Program
OR
NAND
OR
AND
AND
AND
OR

NAND

3566

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex July 2007 R. Poli and W. B. Langdon - University of Essex
. 000000000000 0090909090900 0 11

Each instruction changes the state of the machine
from a state s to a new ', so instructions are maps
There are 2" states. from binary strings to binary strings of length n

Assume 7 bits of memory

: e O g) - ,
At each time step the machine is in a state, s Eg ifn=2, is represented as

R. Poli and W. B. Langdon - University of Essex R. Poli and W. B. Langdon - University of Essex

For example,
A program is a sequence of instructions
So also the can be

described as a mapping from initial states s to
corresponding final states s’

3567

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex 2 July 2007 R. Poli and W. B. Langdon - University of Essex

Two primitives: AND mO m1 > mO0 OR m0 ml = m0O

Identity function
(no instruction
executed yet)

July 2007 R. Poli and W. B. Langdon - University of Essex R. Poli and W. B. Langdon - University of Essex

. .
C C

3568

GECCO 2007 Tutorial / Genetic Programming Theory

R. Poli and W. B. Lang

Identity

/\
/\ /\
/\ /\ /\ /\

R. Poli and W. B. Lang

..for this primitive set the distribution tends
to a limit where only behaviour C has non-
zero probability.

Programs in this search space tend to copy
the initial value of m1 into m0.

R. Poli and W. B. Langdon

R. Poli and W. B. Langdon - University of Essex

Using Markov chain theory we have proved
that a limiting distributions of functionality
exists for a large variety of CPUs

There are from linear
to tree-based GP.

See Foundations of Genetic Programming
book for an introduction to the proof
techniques.

3569

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex July 2007 R. Poli and W. B. Langdon - University of Essex
. 00000000 00000 00 0900 0 0 0 0 1 . 00000000 00000 00 0900 0 0 0 0 1

solution space'/'search space —constant
Generally .

Unless inputs are protected, almost all long
programs are constants.

GP can succeed if
the is not too small or

there is in the search space to

Write protecting inputs makes linear GP /
guide the search or

more like tree GP.
the search operators are towards

searching solution-rich areas of the search
space

No point searching above threshold?

Predict where threshold is? Ad-hoc or

theoretical. .
‘ or any combination of the above.

July 2007 R. Poli and W. B. Langdon - University of Essex R. Poli and W. B. Langdon - University of Essex

Memory and loops make linear GP Turing
complete, but what is the effect search space
and fitness?

Program counter

Does the distribution of functionality of Py ertow fag
—H

ADD

Turing complete programs tend to a limit as
programs get bigger?

R I =)

3570

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0 0 0 0 00 00000 00 0 0 0 0 1

There are too many programs to test them all.
Instead we gather statistics on random samples.

Chose set of program lengths 30 to 16777215
Generate 1000 programs of each length

Run them from random start point with random
input

Program terminates if it obeys the last instruction
and this is not a jump

How many stop?

R. Poli and W. B. Langdon - University of Essex

State 0 = no instructions executed, yet

State 1 = 1 instructions but no loops have been
executed

Sink state = at least one loop was executed
Halt state = the last instruction has been

successfully executed and PC has gone
beyond it.

July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0 0 0 0 00 00000 00 0 0 0 0 1

T7 Looping and Non-Looping Prograns
W—»—»———H——'—‘— T
Programs known rot to Halt ——
Prograws uhich never loop ——

Fraction

100000 1e+06 18407
1angdon//ep/t5/)

R. Poli and W. B. Langdon - University of Essex

Executed i
() instructions
(state i)

Current
—\ Instruction
in NOT Last

Instruction
does not cause
a Jump

Instruction Instruction

causes a Jump

p3 \l—pB

previously
E
New Instruction e
) Found atter Jump

p3

New Instruction
(éiiwnadw e
U

er
Executed i+1 SINK Executed i+l SINK Executed i+l SINK
instructions instructions instructions

(state i+1) (state i+1) (state i+1)

3571

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex
. 00000000 00000 00 0900 0 0 0 0 1

These are obtained by adding up “paths” in
the program execution event diagram
E.g. looping probability

instructions
(state i)

(e 5 s (O

Executed i+l Executed i+l SINK Executed i+l \ SINK
instructions instructions instructions \ =/
(state i+1) (state i+1) (state i+1) —

July 2007 li and W. B. Langdon - University of

The distribution of future states can be
computed by taking appropriate powers of
the Markov matrix M

p.Sta,t@S = A[T

July 2007 R. Poli and W. B. Langdon - University of Essex [3]
. 0000000000000 11

For example, for T7 and L = 7 we obtain

0

0
0.8312

0

0 0.6812

0 0 0 566 0

0 0 0 0 0.3868
0.05655 0.1231 0.2065 0.3217 0.501
0.1122 0.1122 0.1122 0.1122 0.1122

a2 =
S 8
2§
g8 8
= =
3 3
S =

2 instructions
3 instructions
4 instructions
5 instructions

July 2007 R. Poli and W. B. Langdon - University of Essex

For T7, L=7 and i=3

0
0
0
0.6356
Ptates = 8 prob. looping in
0 3 instructions
0.1589

0.9055 prob. halting in
2U99

3 instructions

For T7, L=7 and i=L

6 instructions

Pstates =

0 instructions
1 instructions
2 instructions
3 instructions
4 instructions
5 instructions
6 instructions
loop

halt

3572

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0 0 0 0 00 00000 00 0 0 0 0 1

Instructions executed by halting programs
. , Cew
Markov chain estimate -+ L i:gﬁ’,‘“ L o]
Programs which never loop +-m-— o

Halting probability 1

Instructions executed by halting programs

Programs which never loop -1
Markov chain estimate (finite memory, improved p3) -
Markoy chain estimate (finite memory, improved p3 and pf)

1000 10000 100000 1e+06 1e+07 1e+08

Program Length

L L L L
1000 10000 100000 1e+06 1e+07 1e+08

Program Length

R. Poli and W. B. Langdon - University of Essex R. Poli and W. B. Langdon - University of Essex

If only halting programs can be solutions to
Nunber of Terminating 17 Programs
%% 17 Frogeans shicn stos Cover sound T~ prob] ems, SO

1100 000 000

Doubly logarithmic scale Isolution spacel/Isearch spacel < p(halt)
In T7, p(halt) = 0, so,

Isolution spacel/Isearch spacel > 0

100060

Since the search space is immense,

T7 CPU

100000 18406 18407
1 angdon/gp/t5/%L7)

3573

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex July 2007 R. Poli and W. B. Langdon - University of Essex
. 0000000000000 11 . 00000000 00000 00 0900 0 0 0 0 1

Modify the probability of using jumps

Control p(halt)
Size population appropriately . CPﬁ "

L=100
Design fitness functions which promote
termination

Repair

Use result of program even if it is still running

Any mix of the above hain predictions
“hain predictions

i .
0.06 008 01
Probability of jump instructions

July 2007 R. Poli and W. B. Langdon - University of Essex R. Poli and W. B. Langdon - University of Essex

So, as the number of instructions executed
grows, the distribution of functionality of
non-looping programs approaches a limit.

Non-looping programs halt
The distribution of instructions in non-
looping programs is the same as with a

primitive set without jumps not

program length, tells us how close the
distribution is to the limit

E.g. for T7, very long programs have a tiny
subset of their instructions executed (e.g.,
1,000 instructions in programs of L = 109).

3574

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex

Divide the search space into
()

Characterise the schemata using

Model how and why the individuals in the
population from one subspace to
another ().

GAs and GP search like this:

How can we (characterise, study
and predict) this search?

R. Poli and W. B. Langdon - University of Essex

The in a given schema H
at generation f, , s a good descriptor

A schema theorem models mathematically
from one generation to

the next.

3575

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0 0 0 0 00 00000 00 0 0 0 0 1

The selection/crossover/mutation process is a
random New
individuals are either in schema H or not.

So, m(H,t+1) is a binomial stochastic variable.

Given the of each trial
, an exact schema theorem is

E[m(H,t+1)] =M o(H,1)

R. Poli and W. B. Langdon - University of Essex

Syntactically, with some
“don’t care” nodes (“=") that represent exactly
one primitive.

Semantically, of all programs
that match size, shape and defining nodes of such
a tree.

For example, (= =)) represents the set
of programs

{

July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0 0 0 0 00 00000 00 0 0 0 0 1

R. Poli and W. B. Langdon - University of Essex

Let us assume that only reproduction and
(one-offspring) crossover are performed.

Creation probability tree for a schema H:

) . . parent selection and XO
Sel§Ct{01‘l picks an point choice produce
individua H an individual in H

offspring in H offspring in H

3576

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex July 2007 R. Poli and W. B. Langdon - University of Essex
[. 0 0 0 0 0 00 00000 00 0 0 0 0 1

Adding “paths” to success produces

SN
gl

July 2007 R. Poli and W. B. Langdon - University of Essex

offspring in H offspring in H

The process of
from the actual primitives in the parent
tree.
The of choosing a particular crossover
point depends only on the actual of
the parent.
For example, the probability of choosing any
crossover point in the program
(+x (+yx)
is identical to the probability of choosing any
crossover point in
(AND D1 (OR D1 D2))

R. Poli and W. B. Langdon - University of Essex

3577

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex

Let us assume that crossover points are
selected with uniform probability:

R. Poli and W. B. Langdon - University of Essex

L

Computing these two probabilities requires the
introduction of a new concept: the variable arity
hyperschema

July 2007 R. Poli and W. B. Langdon - University of Essex

The offspring has the right shape and
primitives to match the schema of interest

if and only if
after the removal of the chosen subtree, the

first parent has shape and primitives
compatible with the schema

and

the subtree to be inserted has shape and
primitives compatible with the schema.

R. Poli and W. B. Langdon - University of Essex

A GP variable arity hyperschema is a tree with
internal nodes from =. # | and leaves
from = #
is a “don't care” symbols which stands for exactly
one node

is a more general “don’t care” that represents either a
valid subtree or a tree fragment depending on its
arity

3578

GECCO 2007 Tutorial / Genetic Programming Theory

R. Poli and W. B. Langdon - University of Essex

For example, (# x (+ = #))

VA Hyperschema Sample Instances

/NN N A
/NN > ANWA
\

July 2007

Schema theorem for standard GP crossover

E[m(H,t+ 1)/M] = (1 — pzo)p(H, t)+
1

Pro 2 NGIN(G)

Z Z p(U(H,i)ﬁGk,t)p(L(H,i,j)ﬁGl,t)
1€HNGY jEG

July 2007 R. Poli and W. B. Langdon - University of Essex

Variable arity hyperschemata express which parents
produce instances of a schema
U (’Hi) l(H ij) U (H i) L(Hr/)

/%X%\—»/\ — A x/¥
ANAN L
/\

Crossing over at points i and j any individual in L(H,i,j)
with any individual in U(H,i) = offspring in H

R. Poli and W. B. Langdon - University of Essex

A model is as good as the predictions and the
understanding it can produce

So, what can we learn from schema
theorems?

3579

GECCO 2007 Tutorial / Genetic Programming Theory

R. Poli and W. B. Langdon - University of Essex July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0 0 0 0 00 00000 00 0 0 0 0 1

Size evolution equation
Bloat control
Optimal parameter setting

Optimal initialisation

R. Poli and W. B. Langdon - University of Essex July 2007 R. Poli and W. B. Langdon - University of Essex

Population
Alfe

v
Selection

i =

A ;Population

Perfectly Mixed Populations
(Geiringer Manifold)

3580

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0000000000900 0 0 0 0 1

73
[

(1 o
].:11\{ ?I} = LJ. — (_(-pa} ("”I:») LJ. _pa)(a—ljn+lpz

Proportion ol proorinis
with » inlernal nodes

. 2p0 + (a = 1) = /(1 = @) = 220)" + 4(1 — s3)
Pa = 2a(1 + o)

Mean lunetion arity

Medn proeram size

Note: uniform selection of crossover points

R. Poli and W. B. Langdon - University of Essex

Probability of sampling a particular program
of size n under subtree crossover

(1 — apa) an+ 1\ (a—1)n
Psample(“) = _/':‘n']'(u——l)an-l—l " Ll 7])51)(0 l'm'*'lpf.f

So, GP samples short programs much more
often than long ones

July 2007 R. Poli and W. B. Langdon - University of Essex
. 0 0 0 0 0 00 00000 00 0 0 0 0 1

Theory is right!

Empirical data (a=d) ——
Theory -+

R. Poli and W. B. Langdon - University of Essex

The linear,
variable-length programs under GP subtree
Crossover is

N
B(hihe ...y, 00) = B(=)",00) x [] e(hs)

i=1

a) = ¥((=)"a,0)

n>0

3581

GECCO 2007 Tutorial / Genetic Programming Theory

July 2007 R. Poli and W. B. Langdon - University of Essex

Crossover attempts to push the population towards
distributions of primitives where

The primitives in a particular individual tend not
just to be swapped with those of other individuals
in the population, but also to within the
representation of each individual.

Experiments with unary GP confirm the theory.

July 2007

G
[y

i

1 2 1
t)=1 e 3x — Ex — =3
PO =1x +3x,+5x,

July 2007 R. Poli and W. B. Langdon - University of Essex

The mean size of the programs at
generation 7 18
=2, N(G) DP(G,1)

where
G, = set of programs with shape /
N(G,) = number of nodes in programs in G;
D(G,t) = proportion of population of shape /

at generation ¢

R. Poli and W. B. Langdon - University of Essex

In a GP system with symmetric subtree
Crossover

N(G) p(G,1)
where
p(G, 1) = probability of selecting a program of
shape / from the population at
generation ¢
The mean program size evolves
selection only was acting on the population

3582

GECCO 2007 Tutorial / Genetic Programming Theory

R. Poli and W. B. Langdon - University of Essex

Growth can happen only if
>
Or equivalently

Y. W@ -Gty > Y (w(t) - N(G)p(Gy,t)

Gi€Glarge G1€Ggmal

R. Poli and W. B. Langdon - University of Essex

one needs
To the selection probability for
below-average-size programs
To the selection probability for
above-average-size programs

In the last few years the
formidable

Today we understand a lot more about the
nature of the GP search space and the
distribution of fitness in it.

Also, and
syntactic behaviour of GAs and GP.

We know much more as to
, and

3583

GECCO 2007 Tutorial / Genetic Programming Theory

Theory primarily provides explanations,
but many recipes for practice have also
been derived (initialisation, sizing,
parameters, primitives, ...)

So, theory can

Theory is hard and slow: empirical studies
are important to direct theory and to
corroborate it.

3584

