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Standard Game
Theory

-

= A mathematical theory of decision under
conflicting situations

= A player’s decision depends on the other
players’ decisions and viceversa

= The theory postulates that the players are
intelligent rational agents
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-

Intelligent and
Rational Agents

Such an agent (player) must be able to:
m Determine the set of possible actions

= Know how consequences are related to a
given action

= Sort the consequences according to a value
scale

m Select the action that guarantees value
maximization
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Basic Terminology

m N-person games: games with N participants

B Two-person games: two participants, the case treated in
these lectures

m Cooperative games: in which players can collaborate and
form coalitions to mutual advantage

m Non-Cooperative games: players are egoistic utility
maximizers, the case treated in these lectures

B one-shot game: a game that is played only once, the case
treated here

B repeated or iterated game: a game that is played more than
once between the same players
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To Recap: Rational
Players

m Players are expected utility maximizers

m A fact is common knowledge if every player knows it,
every player knows that every player knows it ...

m Pre-play communication between players has no effect
on the outcome: everything works as if players played
the game simultaneously and independently

m This allows a rigorous mathematical treatment but
does not necessarily correspond to actual
decision-making processes
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Extended Form of a
Game

-

A simple two-person game: Each player puts a dollar in the
pot. Player 1 then takes a card at random from a deck (red
or black equally likely). Player 1 looks at the card privately,
and decides whether to raise or fold. If he folds, he shows
the card and wins a dollar if the card is red, otherwise player
2 wins. If player 1 raises then he puts another dollar in the
pot. Now player two must decide whether to meet or pass. If
she passes, then the game ends with 1 taking all the money.

If she meets, then she must add a dollar too.
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-

Extended Form of the
Game

Player 1 now shows the card, and he takes all the money if
the card is red, and player 2 takes the money if it is black

e . Meet 2,2
2.0
m. 1-1
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Normal or Strategic
Form

-

I'= (]\[,(:%,Tti), Vie N,

where N is the set of players,

C; is the ensemble of Strategies available to
player i,

and u; : x;en C; — R is the utility of player ¢
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Two-Person Games:
Normal Form

ol

For a two-person game (players A and B):
Cy ={ay,as,...,a,}: set of A’s strategies (lines)
Cp = {b1,bs,...,b,}: B’s strategies (columns)

by by ... b,
a | 911 912 --- Gin
az | 921 922 --- G2n
m | 9m1 Im,2 -+ Gmn

g;; is the result of the game when A plays strategy i and B

plays strategy j
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Equivalence of Ext.
and Normal Forms

ol

The normal form of a game is a static model that
ignores timing, i.e. the sequence of moves. It
treats players as if they choose their strategies
simultaneously.

Von Neumann and Morgenstern gave a
construction whereby any finite game in
extensive form I'® reduces uniquely to a
game in normal form I'
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The Previous Game
in Normal Form

ol

M P
Rr 0,0 1,-1
Rf | 0.5,-0.5 | 0,0
Fr |-0.5,0.5 | 1,1
Ff 0,0 0,0

Strategies of player 1 (rows) = {Rr,Rf, Fr,F [}

Rr: Raise on red card, raise on black card

Rf: Raise on red card, fold on black card

Fr: Fold on red card, raise on black

Ff: Fold on red card, fold on black

Strategies of player 2 (columns) = {M, P}; M= Meet, P=Pass
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Nash Equilibrium

ol

The most important concept in standard game theory:

“Every finite game I in strategic form has at least
one equilibrium in pure or mixed strategies”

John Nash, 1951; Nobel Prize in Economy in 1994
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Randomized
Strategies

A randomized (or mixed) strategy for player i is a
probability distribution A(C;) over the set of
“‘pure” strategies C;

o € X;eny A(C) is a randomized strategy profile
for each player and for each pure strategy ¢; € C;

o(c;) represents the probability that player i
chooses ¢; with ¥ .cc. o(¢;) = 1
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Nash Equilibrium

Calling u;(o) the expected payoff that player i would get when
the players choose their strategies independently according to
the strategy profile o, a Nash equilibrium is such that:

ui(o) > ui(o_i, 1), Vi e N, V1 € A(Cy)

with (o_;, ;) a randomized strategy profile equal to o except for
the i-th component ;.

Thus a randomized strategy profile is a Nash equilibrium iff no
player could increase her expected payoff by unilaterally deviating

from this strategy profile
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-

Some Classical
Examples

Prisoner’s Dilemma
Invented by A. Tucker in 1950 (RAND Corporation, Santa
Monica, CA)

\ C D
clRR (5T
D | (T,S) (PP)

C = cooperate, D = defect, R = Reward, T = Temptation, P
= Punishment, S = Sucker’s payoff
with the constraints:

T>R>P>S,R>(T+9)2
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Prisoner’s Dilemma

An actual possible payoff bi-matrix for the game :
. C D
C| (3,3) (0,49
D | (*4,0)0 (*1,17)

A Nash equilibrium is a pair of strategies (pure or mixed)
such that any other choice would be a less good reply for
each player

+: best reply for player A

. best reply for player B

The (unique) Nash equilibrium of the game is (D,D)

- p.16/60
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Hawks and Doves

-

Also known as the “chicken” (J. Dean movie) or the
“snowdrift” game. It's a metaphor for “arm races” and other
“bullying” games, also in the animal kingdom

H D
H| -2,2 | +2,0°
D|+0,2° | 1,1

In this game there are two Nash equilibria in pure
strategies ((H,D) et (D,H)), and a third eq. in mixed
strategies (play H with probability 1/3 and D with 2/3)
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Can We Get out of
the Dilemma?

Can cooperation emerge and remain stable? The answer is
“yes” if the game is played an undefined number of times
between players that have a memory of past encounters

Robert Axelrod organized world-famous PD computer tourna-

ments; “The Evolution of Cooperation”, 1984

—p.18/60

Problems with Nash
Equilibria

-

®m Many games have more than one equilibrium. How to
choose, given that they are often non-equivalent?
Equilibrium selection problem

m Some “equilibrium refinements” may eliminate
“unstable” equilibria (trembling hands) but this does not
always work

m The common knowledge of rationality is a very
demanding assumption

m But: limited rationality concepts also have their
problems

—p.19/60

A Coordination Game

-

In the following game (sometimes called “battle of the sexes”):

T M
T +3,1°| 0,0
M| 0,0 |+1,3

A prefers to go to the theater (T); B prefers to go to the movie
(M). But both players would prefer to go out together, rather than
separately.

(T,T) et (M,M) are Nash equilibria in pure strategies but they are
not equivalent. There is a third Nash equilibrium in mixed
strategies, which is inefficient because the players behave in a
random and uncoordinated manner.

—p.20/60
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Evolutionary Game
Theory

-

John Maynard Smith (1974-1982)
“Evolution and the Theory of Games”, Cambridge
University Press, 1982

Selection and reproduction of the fittest is the key idea
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Evolutionary
Processes

-

An evolutionary system must possess the
following fundamental elements:

= A population of individuals

m a source of variation that provides diversity
through, say, mutations and recombinations
of genetic material, and

m a selection mechanism that favors fitter
variants over others that are less adapted to
the current environment

- p22/60

Evolutionary Games

-

= A very large population of players

m Randomly paired individuals play the game
and are replaced for the next run

= Players have no identity, they are anonymous

= A player is “programmed” to play a given
strategy

= A player need not be intelligent and rational

- p23/60

Evolutionarily Stable
Strategies (ESS)

-

ESS are strategies that cannot be invaded by a “mutant”
strategy. In the Hawk-Dove game, neither H nor D are
ESS, as they can be invaded by players playing the other
strategy

The only ESS is the mixed strategy equilibrium: this
corresponds to a population that stabilises itself with a
proportion of 1/3 hawks and 2/3 doves

The evolutionary approach can thus (but not always)
reduce the number of Nash equilibria

- p24/60
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Evolutionarily Stable
Strategies

-

In a formal way, C' = {1,2,...,k} is the set of pure
strategies, A(C;) = {x € RF : Y ;ccw; = 1} is the
associated mixed strategy set, and the payoff to strategy
x € A(C;) when played against “mutant” strategy y € A(C))
is u(x,y)

Let € € (0,1) be the share of mutants in the population.
Given that pairs of players are drawn from the population
with uniform probability to play the game, the probability
that a player will play y is €, while the probability of playing
x is 1 — ¢; this is equivalent to playing the mixed strategy
w=ey+(1l—ex

- p25/60

Evolutionary Stability

the payoff of the “established” strategy x against
w is thus u(z,w) and that of the “mutant” strategy
y is u(y, w). Strategy = will be evolutionarily
stable if

ulz, ey + (1 — €)x] > uly, ey + (1 — €)x]

Yy € A(Cy),y # x, and granted that the share of
mutants e is “sufficiently small”

- p26/60

-

Evolutionary Stability

Evolutionary stability can also be stated as follows:
mu(y,z) <u(z,x) Vy,
®u(y, ) =u(z,z) = uly,y) <u(z,y) Yy#z

i.e., z is evolutionarily stable if either x is a strict best reply

to any y, or it is as good against itself as any other mutant,
and z is a better reply to any mutant y than y is to itself.

The important conclusion is that A”SS ¢ AM®, which
means that some Nash equilibria may not be an ESS

- p27/60

Prisoner’s Dilemma
Again

C D
C| (38,3) | (0,49
D | ("4,0) | (t1,1%)

The unique Nash equilibrium (D,D) is also the only ESS.
Thus, evolutionary game theory does not help to better

understand these situations. At least in the non-iterated
case

- p28/60
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Replicator Dynamics

We have seen that evolutionary processes have
two basic elements:

m a source of mutation that provides diversity,
and

m a selection mechanism that favors fitter
variants

Evolutionary stability emphasizes the role of
mutations, while replicator dynamics focuses on
selection, and does not include a mutation
mechanism
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Replicator Dynamics

Given an initial distribution of strategies among the agents,
the ensuing strategy share evolution in the population is
dictated by a system of linear differential equations of the

type:
dl’i

dt
where z; is the strategy of player i, u; is its expected payoff,

and @ is the mean payoff of the population. Thus, strategies
that are better than the average will increase their share in

the population, while inferior strategies will decrease in time

- p30/60

-

Replicator Dynamics
Main Results

m under replicator (or imitation) dynamics only selection
is active; there are no mutations

m players are only programmed to play pure strategies

m a mixed strategy is now represented by the equilibrium
share of pure strategies in the population

m stationary stable states of the replicator dynamics
correspond to ESS

(see Weibull’s book for details)

- p31/60

Simple Replicator
Dynamics Analysis

-

Let’s consider symmetric games (R” = C):

C1 c2

R1 | a1,a1 | as, a3

R2 as, @2 | 4,04

Assume that P{R1} = p, P{R2} = 1 — p (and, because of
symmetry, P{C1} = ¢=p, P{C2} =1 —qg=1—p). Thus:

E[R1] = E[C1] = pa1+(1—p)as, E[R2] = E[C2] = pag+(1—p)as

- p32/60
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Simple Replicator
Dynamics Analysis

o

Let's call o the net gain (or loss) arising from choosing the
first strategy R1 over the second R2:

0 = E[R1] — E[R2] = pa; + (1 — p)as — [pas + (1 — p)ay],
which is a straight line A + Bp, with

A:((Ig—a4), B:(a1+a4)—(a2—|—a3)

The replicator dynamics will favour the relatively more suc-

cessful strategy. We thus study the behavior of A§/Ap =
f(p)
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Replicator Dynamics:
Hawks-Doves

H D
H| -2,2 | +2,0°
D|+0,2* | 1,1

A:ag—a4:2—1:1, B=(a1+a4)—(a2+a3):
(—24+1)— (240) = —3

0 > 0= p> —A/B (first strategy more successful)

0 < 0= p < —A/B (second strategy more successful)
0=0=p=p*"—A/B=(-1)/(-3) =1/3 (Nash
equilibrium)
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Replicator Dynamics:
Hawks-Doves

o

0 p*=1/3 . 1 b

0(0) = A=1>0,B < 0: Positive intercept, negative slope

evolutionary equilibrium = nash equilibrium
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Replicator Dynamics:
Stag Hunt

o

R )
R|+1,1- | 2,0
S| 02 |*3,3

A:ag—a4:—1, B:(a1+a4)—(a2+a3):
(14+3)—(240) =2

0 > 0= p> —A/B (first strategy more successful)
0 < 0= p < —A/B (second strategy more successful)
0=0=p=p*— A/B = 1/2 (Nash equilibrium)

- p36/60
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Replicator Dynamics:
Stag Hunt

-

0 pr=1/2 g 1 b

0(0) = A= -1<0,B > 0: Negative intercept, positive slope
Evolutionary equilibriaare p=1andp =10

- p37/60

Replicator Dynamics:
PD

-

[Cl=3p+0x(1—p)=3pED]=4p+1x(1—p)=3p+1;
E[D] — E[C] = 1, independent of p

Defection always predominates; it is the dominant strategy, the
unique Nash equilibrium, and the unique evolutionary equilibrium
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Spatially Structured
Populations

Standard evolutionary game theory is valid for large,
“mixing” populations in which any two players have the
same probability of being selected to play the game

In 1992, Nowak et May showed by extensive numerical
simulation that a regular structure with local interactions
only can support a certain amount of cooperation, thanks
to the formation of robust local cooperator clusters
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Relational Graphs

Neither random populations nor regularly
structured ones are faithful descriptions of the
relational structures that one finds in society

Regular Lattices ? Random Graphs

Does cooperation emerge in social networks?

- p40/60
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Some Graph
Statistics

m The average path length (L) of a graph G is the mean
of all the shortest paths from all vertices to all other
vertices

m The clustering coefficient C of G is (informally) the
likelihood, averaged over all nodes in G, that nodes
that are connected to a given node are also connected
between them.

m The average degree (k) of G is the average number of
neighbors of each node

m The degree distribution function P(k) of G is the
probability that a given node has exactly k£ neighbors

~ p41/60

Small-World
Networks |

J

m Small-world graphs are networks in which the average
path length is short ((L) = O(logN), where N is the
number of vertices). Thus, one can travel from any
vertex to any other vertex in comparatively few steps,
even in large graphs.

m This is also the case for standard random graphs.
However, small worlds with the same number of
vertices have a larger clustering coefficient. In other
words, while random graphs are homogeneous in the
average (C' = p = (k)/N), small-world networks have
more local structure.

- p42/60

Small-World
Networks i

= two important kinds of small-world networks
are the Watts-Strogatz model and the
Scale-Free model

= the latter is much more typical of real
networks, while the former is an algorithmic
construction that can be used in artificial
systems, where there are no hard constraints
on the topology

~ p43/60

Small-World
Networks llI

The Scale-Free Model
Scale-Free graphs are also small-world (high clustering,
low average path length) but they are characterized by a
degree distribution function P(k) of the power-law form:
P(k) = ck™, with ¢ and  positive constants, whereas
random graphs and, to some extent, the Watts-Strogatz
small-world model have a binomial P(k)

This form has been found in many real-world networks such
as the Internet, the WWW, some biological networks, cita-

tion and collaboration networks and several others

—~ pA44/60

3685



Degree Distribution
:| Functions

:| A Scale-Free Network

P(k)
P(k)

K k

“Poissonian” DDF; Power law DDF.
Actual distributions would be discrete (finite graphs), and would

show a maximum degree (cutoff for the power law)

—p45/60

Scale-Free Network _
:| Construction :| Social Networks

Social networks are often of the small-world type but usually do

They hav&; been ];Ou?d In nature ar.1d society, thus they not belong to the pure scale-free family. The following is an
must be the result of some dynam'lcal .proce.ss. example of an school acquaintance network, with cultural
They can also be generated algorithmically in several ways communities outlined:

for example:

m The Barabasi—Albert dynamical preferential
attachment method

m the static configuration model, and
m several other ways (see Newman and Barabasi—Albert
for details)
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Cooperation on
Scale-Free Graphs

-

On pure scale-free networks a high level of cooperation can be
attained, both for the PD as well as the HD games:

prisonner’s dilemma snowdrift

1

o
o

0.8

o
>

0.6

cooperation

o
~

0.4

e
N

0.2

%92 14 18 18 2 0 02 04 06 08 1

Fraction of cooperators in SF BA networks of size 10* with
average degree k = 4 using a discrete analogue of replicator
dynamics. Averages over 50 runs
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Cooperation on
Scale-Free Graphs

But social networks have a less extreme (fat-tailed) degree
distribution. So hubs cannot play such a fundamental role. When
averaging a player’s payoff over the number of links it has,
results are strikingly different:

prisonner’s dilemma snowdrift

1 1

08 0.8

c

)

0.6 0.6

[0]

g

§04 0.4

0.2 0.2

o~ : : 0 : : :
112 14 16 18 2 02 04 06 08 1
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Stability of
Cooperation on SFG

After a transient period, equilibrium is attained and it appears to
be rather stable with respect to small rate strategy errors,
although a fraction of defection avalanches can propagate
through the system (errors appear in the highly connected
players; errors in the strategy of low-connected players are
almost unnoticeable)

prisonner’s dilemma snowdrift

cooperation

1 1.2 1.4 1.6 1 1.2 14 16 p51/60

Evolving Networks

-

Actual social network structures are dynamic, not static. In
fact, actors can join or leave the network and make new
acquaintances, or abandon old ones at any time. This
means that one should study evolving networks

In these networks, the rules of the game not only influence
the player’s strategy but also its propension to make new
links or to cut them

The network self-organises according to these collective
individual choices

- p52/60
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Evolving Networks

For the PD game, strategy switching rules are the same as
before, but now the agent i can also decide to cut an
unsatisfying relationship with a neighbor; this can be either

m a D-D link, and/or
m a C-D link (seen from the cooperator’s end)

m obviously, a C-C link is good for both players and they
will tend to keep it

m the severed link can be re-established either with a
random player, or with a player in the neighborhood of i

—p53/60

Evolving Networks

The system collective behavior at equilibrium will depend on the
particular link-changing strategy adopted:
m if only D-D links are dismissed, cooperators chain will form
that are rather stable against small perturbations

m if both D-D and C-D links are redirected, cooperation can
still survive with cooperators having a tendency to cluster
together; the resulting network has an exponential or
Poisson degree distribution

m if the link redirection is biased toward a player in the
immediate or second-order neighborhood, then cooperation
tend to be stable at relatively high levels, and the emerging
network tends to have a structure similar to that of other
social networks

Some Conclusions
and ldeas

m After more that 50 years, game theory has still not
settled down!

m There have been many successful applications but
also a lot of criticism of standard game theory and of
its founding assumptions

m Evolutionary game theory has provided a good
framework and some answers to the previous
criticisms but not to all of them

m There is a tendency toward models of games where
the players can progressively learn much as in
standard machine learning
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But...

J

Game theory is one of the few frameworks that is both
mathematically rigorous and that can be applied to
complex socio-economical, engineering, and biological
problems when there are conflicting requirements

In this sense, it is more general than, say, multiobjective
and constrained optimization as it is based on the
aggregate result of individual decisions, and not on an
externally assumed objective function

—p56/60
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