No Free Lunch

PART I
Michael D. Vose

The University of Tennessee

PART II
Darrell Whitley

Colorado State University

Copyright is held by the author/owner(s).
GECCO’07, July 7-11, 2007, London, England, United Kingdom.
ACM 978-1-59593-698-1/07/0007.

3734



Vose Notes: from “NO FREE LUNCH...” (by Chris Schumacher)

Let f: X — Y be a function between finite sets, and let y; denote f(z;). The domain X and
co-domain Y are fixed for this discussion, but the function f may vary.

Definition A trace T is a sequence of pairs ((zo,%0),-- -, (Tm—1,Ym—1)) where the x components
are unique. The following notation will be used

e = () (the empty trace)
T, = (xo,%1,...,Tm—1) (sequence of & components)
T, = Wo,Y15--Ym-1) (sequence of y components)
{T}y = {(x0,90)s--+, (@m-1,Yym—-1)} (the set of components of T')

Definition A trace T is complete if T,, = X, and in that case {T'} = f. The set of all non-complete
traces corresponding to a function f is denoted by 7 (f). Define 7 by

T =T
f

Definition A search operator is a function g : 7 — X which maps a non-complete trace 1" to some
element not contained in 7.

Definition A deterministic non-repeating Black Box search algorithm A corresponds to a search
operator g, and will be referred to simply as a search algorithm. Algorithm A applied to function
f is denoted by Ay, it takes argument T' € 7(f) and returns

T || (9(T), fog(T))

where || is the concatenation operator.

Thus Ay is a function which extends non-complete traces. Search algorithms are thought of as
operating in discrete steps, beginning from the empty trace. The first two steps of A; are

T = Ag(e) = €l (g(e), foy(e))
T = ApT) = T (9(T), fog(T))

Multiple steps are abbreviated in the usual way,

A? = Afo---0Af
————

m times

(and A(} is the identity function). To streamline notation, the complete trace A‘fX‘ (e) generated by
search algorithm A applied to function f will be denoted by A(f). In particular, {A(f)} = f.

Search algorithms A and B are considered identical if and only if they generate the same complete
trace for all f,

3735



Definition A search path is a sequence of unique elements from X. The search path associated
with trace T is Ty.

Definition A performance vector is a sequence of values from ). The performance vector associated
with trace T is T),.

Search algorithm A applied to function f generates the search path A(f), and the performance
vector A(f),. The search operator g — to which A corresponds — determines how the space is
explored; it generates the x components of the trace A(f). The function f determines utility; it
produces the y components of the trace A(f).

Definition A trace table is a table whose rows are labeled by the algorithms and whose columns
are labeled by the functions; the element in row A and column f is A(f).

A trace table contains complete descriptions of all search algorithms applied to all functions. The
trace table for X = {0,1,2}, ¥ = {0, 1}, where trace ((a, ), (b,y), (¢, 2)) is represented as 2°¢, is

TYZ

| [ fo A fo fs fi s fo fr ]
Ap 012 012 012 012 012 012 012 012
000 100 010 110 o001 101 o011 111
Ay 021 021 021 021 021 021 021 021
000 100 001 101 010 110 O11 111
Aq 012 021 012 021 012 021 012 021
000 100 010 101 001 110 011 111
Az 021 012 021 012 021 012 021 012
000 100 001 110 010 101 o011 111
Ay 102 102 102 102 102 102 102 102
000 010 100 110 o001 011 101 111
As 120 120 120 120 120 120 120 120
000 001 100 101 010 011 110 111
Ag 120 120 102 102 120 120 102 102
000 001 100 110 010 011 101 111
A 102 102 120 120 102 102 120 120
000 010 100 101 o001 o011 110 111
Ag 201 201 201 201 201 201 201 201
000 010 001 011 100 110 101 111
Ag 210 210 210 210 210 210 210 210
000 o001 010 011 100 101 110 111
Aip | 210 210 210 210 201 201 201 201
000 001 010 O11 100 110 101 111
Aq; | 200 201 201 201 210 210 210 210
000 010 001 011 100 101 110 111

Definition A performance table is a table whose rows are labeled by the algorithms and whose
columns are labeled by the functions; the element in row A and column f is A(f),.

3736



Theorem 1 (Uniqueness) No row of a performance table contains any element more than once.

Proof by contradiction: assume A(f), = A(f’), and induct on i to prove A’J}(e) = A’]},(e). Thus
A(f) = A(f') and f = f'.

The base case (i = 0) is trivial: A(}(e) =e= A?u(e).
For the inductive case, note that

A e) = Ap(A%(e) = A%(e) | (z, f(2))
Afe) = Ap(Af(e) = Ap(e) || (@', f'(@")

where 2 = g(Agc (6)) and 2’ = ¢( },(e)) It follows that = 2/, since A;(e) = A},(e) by the inductive
hypothesis. Moreover, f(z) = f/(z') since A(f), = A(f’), by assumption. Hence A?Fl(e) and
A?fl(e) are constructed by extending the same trace with the same ordered pair (which completes
the inductive proof). O

Theorem 2 (Invariance) Any two rows in a performance table are permutations of each other.

Proof: The number of possible performance vectors is |V|*! (there are | Y| ways to choose each of
the |X| elements of a performance vector), and this is also the number of entries in a row of the
table (there are |Y||*! functions). By the uniqueness theorem, no performance vector is repeated
in any row, and thus each possible performance vector occurs exactly once in each row. O

Definition A performance measure with respect to a set F of functions is any function pup which
is defined over the collection of all algorithms such that pp(A) is a function of {A(f), : f € F}.
Two algorithms perform equally well on F' if they are evaluated identically by every performance
measure with respect to F.

Definition An owverall performance measure is a performance measure with respect to the set of
all functions. Two algorithms perform on average equally well if they are evaluated identically by
every overall performance measure.

Theorem 3 (NFL) Fach deterministic non-repeating Black Box search algorithm performs on
average equally well.

Proof: From the invariance theorem, each row in a performance table represents the same set of
performance vectors, and thus any two algorithms are evaluated based on the exact same data for
computing performance. O

3737



Sharpening NFL

Let f: X — Y be a function and let o : X — X be a permutation (i.e., o is one-to-one and onto).

Definition The permutation of of f is the function of : X — Y defined by o f(x) = f(o~'(x)).

Theorem 4 If T and T' are complete traces, then T, =T, = {T'} is a permutation of {T}.
Proof: Let o map the ith component of T, (call it k) to the i th component of T, (call it j) . Then
o~1(j) =k, and

o{T}Hj) = {THk) = (Ty)i = (T,)i = {T"}())

As i varies, j ranges over all of X. O

Definition Let A be an algorithm corresponding to search operator g. The permutation cA of A
is the algorithm with search operator og defined by og(T) = 0~ (g(0,(T))) where o, operates on
the x values of trace T' by applying ¢ to each of them while leaving the y values untouched, and
where o, (€) = €.

Theorem 5 (Duality) (cA)(f)y = A(of)y
Proof: Induct on i to show Ux((O'A)éc(ﬁ)) = Af‘f(e). Thus o0, ((cA)(f)) = A(of) which proves the

theorem (o, does not change the y values in a trace).
The base case (i = 0) is 05(€) = €.
For the inductive case, note that
og((0A)y(e)) = o tog(ou((oA)y(e))
= o log(AGs(e)
foog((eA)y(e)) = flo™ og(Ags(e)))
= af(9(A5 ()

by the inductive hypothesis. Therefore

(@A) ) = (@A) || (99((aA)}(€)), foog((aA)}(e)))

= (aA)j(e) || (07 og(AGs(€)), a.f (9(AGs(€))))

a((0A)fH(e) = au((0A)y(€) || (9(AG(€)), o f (9(AGy (6))))
(

= ALi(e) || (g(ALs(€), o fog(Als(e)))
= Ao

)
)

(using the inductive hypothesis again). O

Definition A set F' of functions is closed under permutation if for every permutation o,

feEF = of €eF

Definition No free lunch holds over F if every algorithm performs equally well on F'.

3738



Theorem 6 (Sharpened NFL) No free lunch holds over a set F' of functions if and only if F' is
closed under permutation.

Proof: Suppose F is closed under permutation. If for arbitrary algorithms A and A’ the sets
S={A(f)y: f € F}and §' = {A'(h), : h € F} are equal, then any two algorithms are evaluated
based on the same data for computing performance, and no free lunch holds over F.

By the invariance theorem, given any f there exists h such that A(f), = A’(h),. It follows that
h is a permutation of f (Theorem 4). Therefore f € F = h € F. Hence S C S’. The reverse
containment follows by symmetry.

Conversely, assume by way of contradiction that no free lunch holds over F, but that F is not
closed under permutation; let o be such that f € F and of ¢ F.

Fix an algorithm A and consider the performance measure
pr(A) = [A(f)y € {A(h)y : h e F}]

where [expression] is 1 if expression is true, and 0 otherwise. Since pup(A) = 1 and no free lunch
holds over F, it must happen that pp(A) = 1 for the particular choice A = 0~!.A. Therefore,

A(f)y € {(UilA)(h)y theF}
which leads to a contradiction as follows. Appealing to the duality theorem,
{(c7rA)(h), : he F} = {A(c7'h), : he F} = {A(h), : ch € F}

Appealing to the uniqueness theorem, A(f), € {A(h), : ch€ F} = of € F O

Discussion

Some “real world algorithms” revisit points in the search space, and so a description of how they
explore X would not correspond to a trace. If R were such an algorithm, one could consider the
related non-repeating algorithm A which behaves exactly as does R with the exception that it
refrains from visiting any point of X more than once. If some version of NFL applies to A, then
one might use the close relationship between A and R to make inferences concerning R.

Some “real world algorithms” are stochastic, rather than deterministic. This is often a fiction,
however, since most random number generators are in fact deterministic. Hence a “stochastic
algorithm” R based on a deterministic random number generator with seed s is in reality a family
R(s) of deterministic algorithms parametrized by s. Some version of NFL may apply to every
member of that parametrized family of deterministic algorithms.

Given a deterministic non-repeating algorithm A, one might wonder whether it was in fact a
deterministic non-repeating Black Box search algorithm. The issue is whether it corresponds to a
search operator g as described on page one. The answer is yes, provided the manner in which A
explores X at step t is a function of the trace T' describing its past exploration at previous steps
(defining g to map T to whatever point A explores at step ¢ makes A correspond to g).

3739



No Free Lunch: 1995-2006

Darrell Whitley
Colorado State University

GECCO0-2006 -1

NFL: No Free Lunch

All search algorithms are equivalent when compared
over all possible discrete functions.

Wolpert, Macready (1995)
No free lunch theorems for search. Santa Fe Institute.

Radcliffe, Surry (1995)

Fundamental Limitations on Search Algorithms: SpringetagLNCS 1000.

No Free Lunch for Gray and Binary

All search algorithms are equivalent when compared
over all possible representations.

GECCO0-2006 -2

3740



Variationson No Free Lunch

For ANY measure of algorithm performance:

The aggregate behavior of any two search algorithms is atgntvwhen
compared all possible discrete functions.

The aggregate behavior of ALL possible search algorithregisvalent when
compared over any two discrete functions.

At each distinct “iteration” of search
the aggregate behavior of all possible search algorithiiBESNTICAL at
each and every iteration.

GECCO-2006 -3

Variationson No Free Lunch

Consider any algorithm; applied to functiory;.

On(4;, f;) outputs the order in whicH; visits the elements in the codomain
of f;. For every pair of algorithmd,, and A; and for any functiory;, there
exist a functionf; such that

On(A;, fj) = On(Ag, f1)

Consider a “BestFirst” local search with restarts.

Consider a “WorstFirst” local search with restarts.
For everyj there exists ahsuch that

On(BestFirst, f;) = On(WorstFirst, f)

GECCO-2006 -4 3741



ENUMERATION is a search algorithm.

Thus, No Free Lunch implies that on average,
no search algorithm is better than enumeration.

Furthermore, because bias in search algorithms causegahenus the
search, most are prone to resampling.

If resampling is considered,
“focused” search algorithms are WORSE than enumeration

NFL IGNORES RESAMPLING

GECCO0-2006 -5

An algorithm is modeled as a permutation
representing the order in which new points are tested.

Behavior is defined in terms of the evaluation function otitpu
which defines the co-domain of the function.

GECCO-2006 -6 3742



Assume that one is given a fixed set of co-domain values.
Set of Functions = Set of Permutations.

BEHAVI ORS
Al:
A2:
A3:
Ad:
A5:

AB:

Assume(A > B)&(B > C).

FUNCTI ONS
F1: A BC
F2: ACB
F3: B AC
F4: B CA
F5: CAB
F6: CBA

GECCO-2006 -7

Take 2 steps, return the maximum found.

| F1 F2 F3 F4 F5 F6
I

Al | A A B A B
|

A2 | A B A B A
I

A3 | A A B A B
|

AL | B A A A A
|

A5 | A B A B A
I

A6 | B A A A A

GECCO0-2006 -8

3743



NFL is just like sampling
from a grab bag.

Co-Domain: 123456

Values sampled so far:
361...

GECCO0-2006 -9

Theorem:
NFL holds for a set of functions IFF
the set of functions form a permutation set.

The “Permutation Set” is the closure of a set
of functions with respect to a permutation operator.
(Schmacher, Vose and Whitley—-GECCO 2001,
also, see Rawlins 1991, Radcliffe and Surry 1995)

F1:. 001 2 F7: 0201
F2: 010 2 F8: 0210
F3: 100 2 F9: 1200
F4: 0021 F10: 2 00 1
F5: 0120 F11: 2 010
F6: 1020 F12: 2 100

GECCO0-2006 -10

3744



OBSERVATION: The Union of Permutation Sets is also a PertuieSet.

The sampling probability can be different across Permanafets.

Sampling Need not be Uniform

F1:
F2:
F3:
F4.
F5:
F6:

ABC
ACB
BAC
BCA
CAB
CBA

L1

00

12/ 100
12/ 100
12/ 100
12/ 100
12/ 100
12/ 100

F1:
F2:
F3:
F4.

GECCO-2006 -11

O O O
O O O
o O+ O

Machine Learning and NFL

1/1111|1
1 1
0 0
0/0/0|0
HD L2
___8_ ==
1 10
1
2

GECCO-2006 -12

o O O -

7/ 100
7/ 100
7/ 100
7/ 100

3745



Theorem:

Given a finite set of N unique co-domain values, NFL hold oveeteof N!
functions where the average description length is O(N log N)

Sketch of Proof:

Construction a Binary Tree with N! leaves. Each leaf repmesene of the N!
functions. To just label each function requires log(N!sbiEach label has

average length log(N!) = O(N log N).
Note enumeration also has cost O(N log N).

Corollary:

If a fixed fraction of the co-domain values are unique, theo$ét! functions
where NFL holds has average description length O(N log N).

GECCO-2006 -13

NFL holds over sets with 1 member.

F

NFL holds over needle-in-a-haystack functions.

F1

F2 =

F3
F4

=0000O0

0001

0010
=0100
1000

GECCO-2006 -14

3746



The set of Binary strings is a permutation set

00O0O 1111
0001 0011 1110
0010 0101 1101
0100 1001 1011
1000 0110 0111
1010
1100

GECCO-2006 -15

Let P(F") compute the permutation closure Bf whereF' is a set of
functions.

Let K = |P(F)|.

Then the average description length needed to distinghesmembers of that
setislg(K).

If lg(K) is exponential, then the permutation setis:ompressible.

If lg(K) is polynomial, then the permutation setignpressible.

GECCO-2006 -16 3747



QUESTION:
How should we evaluate search algorithms?

Let 5 represent a set of benchmarlfy(3) is the permutation closure ovgr

If algorithm Sis better than algorithnT on 3
THEN T is better tharSon P(3) — 3.

GECCO-2006 -17

Algorithm1 Al gorithm2

F1: 12 3 f(1l) -->1 f(3) --> 3
Set A F2: 132 f(l) -->1 f(3) -->2

F3: 213 f(l) -->2 f(3) -->3

F4: 2 31 f(1) -->2 f(3) -->1

F5: 312 f(1) --> 3 f(3) --> 2
Set B F6: 321 f(1) --> 3 f(3) -->1

Algorithm 1 | Algorithm 2 | Difference
Set A 2 5 3
SetB 10 7 3

The cumulative difference must be the same

GECCO-2006 -18 3748



Algorithm1 Al gorithm 2

F1. 1 2 3 f(1) -->1 f(3) --> 3
Set A F2: 132 f(1l) -->1 f(3) -->2

F3: 213 f(1l) -->2 f(3) --> 3

F4: 2 31 f(l) -->2 f(3) -->1

F5: 312 f(1) -->3 f(3) --> 2
Set B F6: 3 21 f(1) --> 3 f(3) -->1

Algorithm 1 | Algorithm 2 | Difference
Set A 1 2.5 15
SetB 2.5 1.75 0.75

Average difference is not the same

GECCO-2006 -19

Given algorithmsSandT we know
On(S, f; € B) = On(T, fi)
thus we can construct another test/8esuch that
fieB—fiep
The behavior off on ' is IDENTICAL to the behavior & on 5.

GECCO0-2006 -20 3749



NO FREE LUNCH does not hold over the class of problems in N&y tre
not black box optimization problems.

For example, some problems in NP that have ratio bounds vdaictbe
exploited by branch and bound algorithms.

Even, so claims about which algorithms apply to which protsés a concern.

GECCO-2006 -21

AAAAAA

o =
Machine Correlated Jobs

AR [
o~
R

Job Correlated Jobs

2224 30b 1 LR 0 Jobs

The PERMUTATION FLOWSHOP SCHEDULING PROBLEM.

Benchmark are typically generated randomly. Real-wortibfams may have
correlated structure. Job could eachine correlatedr job correlated

GECCO-2006 —22

3750



4000 T 4850 T T
° “ta0g2.plot’ o “alpha0.1.plot" ©
o oomo eomces000 000
© 4840 4
3950 - —
4830 [ . R
°
4820 [ 1
3900 |- | oaw coom oo dmemee 000 O
g S 4810 - o 4
2 2 o @ w0000 o
g g
] ]
= = 4800 - |
3850 | q & -
So0 memimi—eo
4790 o B°% 5 g 4
° 0 c0amw000 0 o
0000 oucmmm————gw RGO
a0 | o s T e ]
3800 - 1 D COEOREPEIIID) O O
oo g
z B
sl . LRSS o 1
e N
3750 . . . . 4760 . . . . . . . . .
350 400 450 500 550 600 460 480 500 520 540 560 580 600 620 640 660
Average Distance to Other Local Optiima Average Distance to Other Local Optima

GECCO-2006 —-23

0.09
—#— Alg1l
0.084 —>—  Alg2 A
—e— Alg3
—— Alg4
0.07} y Alg 5 B
—=— Alg6
0.061 —&—  PATHRELINK| |
3
8
3
3 0.05 B
Qo
©
S
£0.04/ B
g
<
0.03 B
0.02 B
0.01 B
0 &
0.1 . } } 0.5 0.6 . . . 1

alpha

JOB CORRELATED PROBLEMS. Performance of optimization aitns.
The degree of randomness is indicated along the x-axise\lind deviation
from the best-known solution is indicated along the y-axis.

GECCO-2006 —24 3751



—*— Alg1l
—>—  Alg2
—e— Alg3
—— Alg4
03| —<— Alg5
—=— Alg6
——&—  PATHRELINK

Average % above best
o
=

o7

o
-
T

o
o
a

0 ‘ ‘ = a 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
alpha

MACHINE CORRELATED PROBLEMS. Performance of optimization
algorithms. The degree of randomness is indicated along-thas, while the
deviation from the best-known solution is indicated aldme y-axis.

GECCO-2006 —-25

S. Christensen and F. Oppacher
What can we learn from No Free LunciGECCO 2001

A SUBMEDIAN-SEEKER Type Algorithm

1. Evaluate a sample of points and estimate median(f).

2. If f(z;) < median(f) then sample a neighbor of.
Else sample a new random point.

3. Repeat step 2 until half of space is explored.

Assumef is 1-dimensional, a bijection, and we knemedian(f).

GECCO-2006 —-26 3750



Let M (f) measures the number of submedian valueg of
that havesupermedian successors

There exists\/..;; such that whed/ (f) < M,
SubMedian-Seeker is better than random search.
SUBMEDIAN-SEEKER beats random enumeration when:

1. fis a uniformly sample polynomial of degree at mbstndM,.;; > k/2

2. fis atruncated Fourier series of at médtarmonics uniformly sampled
over [0,1) atn locations andV/..,.;; > k/2

3. Each extremum of is represented by at least 6 points on average

GECCO-2006 -27

GECCO-2006 —-28 3753



Structure is Important

Random Number Generators produce functions that are in sestrécted
sense compressible. But they are designed to have minimatste.

Consider “WorstFirst” local search again.
For everyj there exists ahsuch that

On(BestFirst, f;) = On(WorstFirst, f)

There are “structured functions” that do not fit our usualambf being
“searchable.”

GECCO-2006 —29

NO FREE LUNCH and REPRESENTATION

Radcliffe, Surry (1995) Fundamental Limitations on Seaktdorithms:
Springer Verlag LNCS 1000.

The behavior of any two algorithms are identical over allgole
representations of a single function.

"NO-FREE-LUNCH-like” results

The behavior of any two algorithms are identical over overgéat of Gray and
the set of Binary representations over all possible funstio

GECCO0-2006 -30 3754



Counting Local Optima

The probability that string is a local minimun under an arbitrary
transformation of a k-neighborhood search space is:

GECCO-2006 -31

Ri 4.

» (N-i) choose k
L] //’
L] «/
RN l e

GECCO0-2006 —-32

(1)

3755



The average number of local optima over all possible reptasens using a
k-neighbor search:

P(i) (@)

u(N. k) = N/ (k + 1) 3)

GECCO-2006 -33

GECCO-2006 -34

3756



BINARY GRAY
000 0 000
001 1 001
010 2 011
011 3 010
100 4 110
101 5 111
110 6 101
111 7 100
Gray Matrix Degray Matrix
110 111
3-bits 011 011
001 00
11000 11111
01100 01111
S5-bits 100110 00111
00011 00011
00001 00001

GECCO-2006 -35

4-bit Binary Encoding

4-bit Gray Encoding

[1111 ] — (1110 [1010 | — 1011 | [1111] — 1110 — 1010 | — 1011 |
[15] |14 [10] |11 [0 |11 ] [12] [13]

( )
[1101 ] —[1200]  [1000 | — [1001 ] [1201 ] —[1200]  [1000 ] — [1001]
(i3] [12] [8] [ 9] L9 ] \?\ L1s ] [14a]
[0101 ] — Jo100]  [0000 ] — [0001 ] [o101 | — Jo100]  [0000 ] — [0001 ]
Ls] [a] [o] [1] Lel [7]1 [o] [1]
[o111 | — Jo110|  [o010 | — [0011] [0111 | — [o110 | — [0010 | — [0011 |
L7 ] [l [2] [8] (s ] [« [ [2]

GECCO-2006 -36

3757



"NO-FREE-LUNCH-like” results hold over
very small sets of functions for Gray and Binary represéorat

F1  F2  F3 F(N-1)  FN
A A A A A

BN B1 B2 B3 B(N-l) BN
A A A A A
AU A NEAN NG

GI G2 G3 G4 GN-1) GN

The length of this “chain” is at most 2L.

GECCO-2006 -37

000 001 010 011 100 101 110 111
000 001 011 010 110 111 101 100
000 001 010 011 101 100 111 110
000 001 011 010 111 110 100 101
000 001 010 011 100 101 110 111

G238 4

GECCO-2006 -38

3758



Consider the integer-adjacency neighborhood.

1,2,3,4,5,6,7,8, ... N-3,N-2,N-1, N

We consider a WRAPPING Neighborhood
where 1 and N are neighbors.

(We can also consider a NON-WRAPPED Neighborhood,
where 1 and N are not neighbors).

GECCO-2006 -39

FOR WRAPPING FUNCTIONS

#F #of Min | # of Min
KMin | Gray Binary
512 512 1,024

14,592 | 23,040 | 27,776
23,040| 49,152 | 48,896
2,176 | 7,936 2,944

Sum | 40,320| 80,640 | 80,640

A W N |X

GECCO-2006 -40

3759



MINI-MAX: WRAPPING

K Gray Wins | Binary Wins | Ties

1 | 448 0 64

2 | 6752 2288 5552

3 | 6720 6592 9728

4 |0 2160 16
Sum | 13,920 11,040 15,360

GECCO-2006 —-41

Generating the Set of All Functions

‘\l@U‘IhC\JI\)}-‘O‘

Ry

Choose
Encoding

Fy

Count the Minima in the Set of All Functions

GECCO-2006 —-42




GECCO-2006 —-43

A SubThreshold-Seeker

1. Evaluate a sample of points and estimat&rashold( f).
2. Pick pointr < threshold(f).

3. If f(z) < threshold(f)thensett =z + 1 andy = = — 1;
Else sample a new random point.

4. While f(x) < threshold(f) setx = x + 1;
5. While f(y) < threshold(f) sety =y — 1,

6. If stopping-conditions not met, goto 2.

GECCO-2006 —44 3761



Define aquasi-basims a contiguous set of points below threshold. d-et
define a threshold presenting some fraction of the searadesfaippose there
are B quasi-basins each containing at lea&ipoints.

Theorem: Suppose that Subthreshold-Seeker is used tddigdasi-basins
each containing at least/ points. Foralla < 1/2 subtheshold-seeker beats

random search i/ > |/ XH5=1).

/ HUEZL does not reference becauseV is derived fromo.

GECCO-2006 —-45

What about a simple bit climber using Gray Code?

Theorem: Given a quasi-basin that spang() of a search space of siZé

and a reference poink inside the quasi-basin, the expected number of
neighbors ofR that fall inside the quasi-basin under a reflected Gray cade i
greater than

[(log(N/@Q))] =1

Corollary: Given a quasi-basin below theshaldhat spansdl /@ of the

search space and a reference poltithat fall in the quasi-basin, the majority
of the neighbors ok under a reflected Gray code representation of a search
space of sizé&V will also be subthreshold in expectation when

[(log(N/Q))] — 1> 1og(Q) +1

GECCO-2006 -46 3762



This means that a simple “local search” bit climber can baatiom
enumeration when restarted from a subthreshold pointswgsde on average

[(log(N/Q))] =1 > 1og(Q) +1

Let N = 2'%0 and assume we want to largely sample a quasi-basin that spans
1/billon'" of the space.

[(log(21%/2°))| =1 > log(2*) + 1

69 > 31

NOTE: An increase in precision increagétog(N/Q))| — 1
but does not increadeg (@) + 1.

GECCO-2006 —-47

GECCO-2006 -48

3763



10 bit Precision 20 bit Precision
Func | ALG | Mean | Sub | Evals Mean | Sub | Evals

ackley | R-LS | 0.18 | 62.4 | 19371 0.0001| 75.1| 77835
SubT | 0.18 | 79.7 | 16214 0.0001| 89.9| 73212

grie- | R-LS | 0.010 | 59.5 | 13412 0.0045| 80.3 | 66609
wangk | SubT | 0.005| 80.1 | 9692 0.0049 | 90.0 | 59935

rana | R-LS | -49.6 | 49.5| 22575 -49.76 | 74.2 | 3x10°
SubT | -49.4 | 57.6 | 19453 -49.83 | 85.0 | 3x10°

Table 1: Local Search Results averaged over 30 runs. THroesH® percent.
Thet denotes statistical significance.

GECCO-2006 -49

References

[1]
[2]
[3]
[4]

5]
6]
[7]
[8]

19

S. Christensen and F. Oppach#rhat can we learn from No Free LuncBECCO 2002.
J. Culberson. On the Futility of Blind SearcBvolutionary Computatiors(2):109-127, 1999.
S. Droste and T. Jansen and |. Wegener. Perhaps not aifrele but at least a free appetiz&ECCQ 1999.

S. Droste and T. Jansen and |. Wegener. Optimization saitidlomized search heuristics; the (A)NFL theorem, réatstenarios and difficult
functions.Theoretical Computer Scienc2002 (In Press).

T. English. Practical implications of new results in gersation of optimizer performancParallel Problem Solving from Natur000.
T. English. Information is Conserved in OptimizatidEEE Trans Evolutionary Computation
G. Rawlins. Introduction to "Fondations of Genetic Afigams”, 1991.

N.J. Radcliffe and P.D. Surry. Fundamental limitatimmssearch algorithms: Evolutionary computing in perspectiecture Notes in Computer
Science 1000Springef\Verlag, 1995.

C. Schumacherfundamental Limitations of SearcRhD thesis, University of Tennessee, Department of Coeng&tiences, Knoxville, TN, 2000.

[10] C. Schumacher and M. Vose and D. Whitl@he No Free Lunch and Problem Description Leng#ECCO2001.

[11] D. Whitley. Functions as permutations: regarding reeflunch, walsh analysis and summary statisfzsallel Problem Solving from Nature, 6

2000.

[12] D.H. Wolpert and W.G. Macready. No free lunch theoreorsskarch. Technical Report SFI-TR-95-02-010, Santa Reutes July 1995.

[13] D.H. Wolpertand W.G. Macready. No free lunch theoreorsoptimization.|EEE Trans Evolutionary Computatipa:67—-82, 1997.

GECCO0-2006 -50 3764



