
No Free Lunch

PART I

Michael D. Vose

The University of Tennessee

PART II

Darrell Whitley

Colorado State University

Copyright is held by the author/owner(s).

GECCO’07, July 7-11, 2007, London, England, United Kingdom.

ACM 978-1-59593-698-1/07/0007.

3734

Vose Notes: from “NO FREE LUNCH...” (by Chris Schumacher)

Let f : X → Y be a function between finite sets, and let yi denote f(xi). The domain X and

co-domain Y are fixed for this discussion, but the function f may vary.

Definition A trace T is a sequence of pairs 〈(x0, y0), . . . , (xm−1, ym−1)〉 where the x components

are unique. The following notation will be used

ǫ = 〈 〉 (the empty trace)

Tx = 〈x0, x1, . . . , xm−1〉 (sequence of x components)

Ty = 〈y0, y1, . . . , ym−1〉 (sequence of y components)

{T} = {(x0, y0), . . . , (xm−1, ym−1)} (the set of components of T)

Definition A trace T is complete if Tx = X , and in that case {T} = f . The set of all non-complete

traces corresponding to a function f is denoted by T (f). Define T by

T =
⋃

f

T (f)

Definition A search operator is a function g : T → X which maps a non-complete trace T to some

element not contained in Tx.

Definition A deterministic non-repeating Black Box search algorithm A corresponds to a search

operator g, and will be referred to simply as a search algorithm. Algorithm A applied to function

f is denoted by Af , it takes argument T ∈ T (f) and returns

T ‖ (g(T), f◦g(T))

where ‖ is the concatenation operator.

Thus Af is a function which extends non-complete traces. Search algorithms are thought of as

operating in discrete steps, beginning from the empty trace. The first two steps of Af are

T = Af (ǫ) = ǫ ‖ (g(ǫ), f◦g(ǫ))

T ′ = Af (T) = T ‖ (g(T), f◦g(T))

Multiple steps are abbreviated in the usual way,

Am
f = Af ◦ · · · ◦ Af

︸ ︷︷ ︸

m times

(and A0
f is the identity function). To streamline notation, the complete trace A

|X |
f (ǫ) generated by

search algorithm A applied to function f will be denoted by A(f). In particular, {A(f)} = f .

Search algorithms A and B are considered identical if and only if they generate the same complete

trace for all f ,

A(f) = B(f)

3735

Definition A search path is a sequence of unique elements from X . The search path associated

with trace T is Tx.

Definition A performance vector is a sequence of values from Y. The performance vector associated

with trace T is Ty.

Search algorithm A applied to function f generates the search path A(f)x and the performance

vector A(f)y. The search operator g — to which A corresponds — determines how the space is

explored; it generates the x components of the trace A(f). The function f determines utility; it

produces the y components of the trace A(f).

Definition A trace table is a table whose rows are labeled by the algorithms and whose columns

are labeled by the functions; the element in row A and column f is A(f).

A trace table contains complete descriptions of all search algorithms applied to all functions. The
trace table for X = {0, 1, 2}, Y = {0, 1}, where trace 〈(a, x), (b, y), (c, z)〉 is represented as a

x
b
y
c
z , is

f0 f1 f2 f3 f4 f5 f6 f7

A0 012 012 012 012 012 012 012 012

000 100 010 110 001 101 011 111

A1 021 021 021 021 021 021 021 021

000 100 001 101 010 110 011 111

A2 012 021 012 021 012 021 012 021

000 100 010 101 001 110 011 111

A3 021 012 021 012 021 012 021 012

000 100 001 110 010 101 011 111

A4 102 102 102 102 102 102 102 102

000 010 100 110 001 011 101 111

A5 120 120 120 120 120 120 120 120

000 001 100 101 010 011 110 111

A6 120 120 102 102 120 120 102 102

000 001 100 110 010 011 101 111

A7 102 102 120 120 102 102 120 120

000 010 100 101 001 011 110 111

A8 201 201 201 201 201 201 201 201

000 010 001 011 100 110 101 111

A9 210 210 210 210 210 210 210 210

000 001 010 011 100 101 110 111

A10 210 210 210 210 201 201 201 201

000 001 010 011 100 110 101 111

A11 201 201 201 201 210 210 210 210

000 010 001 011 100 101 110 111

Definition A performance table is a table whose rows are labeled by the algorithms and whose

columns are labeled by the functions; the element in row A and column f is A(f)y.

3736

Theorem 1 (Uniqueness) No row of a performance table contains any element more than once.

Proof by contradiction: assume A(f)y = A(f ′)y and induct on i to prove Ai
f (ǫ) = Ai

f ′(ǫ). Thus

A(f) = A(f ′) and f = f ′.

The base case (i = 0) is trivial: A0
f (ǫ) = ǫ = A0

f ′(ǫ).

For the inductive case, note that

Ai+1
f (ǫ) = Af (Ai

f (ǫ)) = Ai
f (ǫ) ‖ (x, f(x))

Ai+1
f ′ (ǫ) = Af ′(Ai

f ′(ǫ)) = Ai
f ′(ǫ) ‖ (x′, f ′(x′))

where x = g(Ai
f (ǫ)) and x′ = g(Ai

f ′(ǫ)). It follows that x = x′, since Ai
f (ǫ) = Ai

f ′(ǫ) by the inductive

hypothesis. Moreover, f(x) = f ′(x′) since A(f)y = A(f ′)y by assumption. Hence Ai+1
f (ǫ) and

Ai+1
f ′ (ǫ) are constructed by extending the same trace with the same ordered pair (which completes

the inductive proof). �

Theorem 2 (Invariance) Any two rows in a performance table are permutations of each other.

Proof: The number of possible performance vectors is |Y||X | (there are |Y| ways to choose each of

the |X | elements of a performance vector), and this is also the number of entries in a row of the

table (there are |Y||X | functions). By the uniqueness theorem, no performance vector is repeated

in any row, and thus each possible performance vector occurs exactly once in each row. �

Definition A performance measure with respect to a set F of functions is any function µF which

is defined over the collection of all algorithms such that µF (A) is a function of {A(f)y : f ∈ F}.

Two algorithms perform equally well on F if they are evaluated identically by every performance

measure with respect to F .

Definition An overall performance measure is a performance measure with respect to the set of

all functions. Two algorithms perform on average equally well if they are evaluated identically by

every overall performance measure.

Theorem 3 (NFL) Each deterministic non-repeating Black Box search algorithm performs on

average equally well.

Proof: From the invariance theorem, each row in a performance table represents the same set of

performance vectors, and thus any two algorithms are evaluated based on the exact same data for

computing performance. �

3737

Sharpening NFL

Let f : X → Y be a function and let σ : X → X be a permutation (i.e., σ is one-to-one and onto).

Definition The permutation σf of f is the function σf : X → Y defined by σf(x) = f(σ−1(x)).

Theorem 4 If T and T ′ are complete traces, then Ty = T ′
y =⇒ {T ′} is a permutation of {T}.

Proof: Let σ map the i th component of Tx (call it k) to the i th component of T ′
x (call it j) . Then

σ−1(j) = k, and

σ{T}(j) = {T}(k) = (Ty)i = (T ′
y)i = {T ′}(j)

As i varies, j ranges over all of X . �

Definition Let A be an algorithm corresponding to search operator g. The permutation σA of A

is the algorithm with search operator σg defined by σg(T) = σ−1(g(σx(T))) where σx operates on

the x values of trace T by applying σ to each of them while leaving the y values untouched, and

where σx(ǫ) = ǫ.

Theorem 5 (Duality) (σA)(f)y = A(σf)y

Proof: Induct on i to show σx((σA)if (ǫ)) = Ai
σf (ǫ). Thus σx((σA)(f)) = A(σf) which proves the

theorem (σx does not change the y values in a trace).

The base case (i = 0) is σx(ǫ) = ǫ.

For the inductive case, note that

σg((σA)if (ǫ)) = σ−1◦g(σx((σA)if (ǫ)))

= σ−1◦g(Ai
σf (ǫ))

f◦σg((σA)if (ǫ)) = f(σ−1◦g(Ai
σf (ǫ)))

= σf(g(Ai
σf (ǫ)))

by the inductive hypothesis. Therefore

(σA)i+1
f (ǫ) = (σA)if (ǫ) || (σg((σA)if (ǫ)), f◦σg((σA)if (ǫ)))

= (σA)if (ǫ) || (σ−1◦g(Ai
σf (ǫ)), σf(g(Ai

σf (ǫ))))

σx((σA)i+1
f (ǫ)) = σx((σA)if (ǫ)) || (g(Ai

σf (ǫ)), σf(g(Ai
σf (ǫ))))

= Ai
σf (ǫ) || (g(Ai

σf (ǫ)), σf◦g(Ai
σf (ǫ)))

= Ai+1
σf (ǫ)

(using the inductive hypothesis again). �

Definition A set F of functions is closed under permutation if for every permutation σ,

f ∈ F =⇒ σf ∈ F

Definition No free lunch holds over F if every algorithm performs equally well on F .

3738

Theorem 6 (Sharpened NFL) No free lunch holds over a set F of functions if and only if F is

closed under permutation.

Proof: Suppose F is closed under permutation. If for arbitrary algorithms A and A′ the sets

S = {A(f)y : f ∈ F} and S′ = {A′(h)y : h ∈ F} are equal, then any two algorithms are evaluated

based on the same data for computing performance, and no free lunch holds over F .

By the invariance theorem, given any f there exists h such that A(f)y = A′(h)y. It follows that

h is a permutation of f (Theorem 4). Therefore f ∈ F =⇒ h ∈ F . Hence S ⊂ S′. The reverse

containment follows by symmetry.

Conversely, assume by way of contradiction that no free lunch holds over F , but that F is not

closed under permutation; let σ be such that f ∈ F and σf /∈ F .

Fix an algorithm A and consider the performance measure

µF (A) = [A(f)y ∈ {A(h)y : h ∈ F}]

where [expression] is 1 if expression is true, and 0 otherwise. Since µF (A) = 1 and no free lunch

holds over F , it must happen that µF (A) = 1 for the particular choice A = σ−1A. Therefore,

A(f)y ∈ {(σ−1A)(h)y : h ∈ F}

which leads to a contradiction as follows. Appealing to the duality theorem,

{(σ−1A)(h)y : h ∈ F} = {A(σ−1h)y : h ∈ F} = {A(h)y : σh ∈ F}

Appealing to the uniqueness theorem, A(f)y ∈ {A(h)y : σh ∈ F} =⇒ σf ∈ F �

Discussion

Some “real world algorithms” revisit points in the search space, and so a description of how they

explore X would not correspond to a trace. If R were such an algorithm, one could consider the

related non-repeating algorithm A which behaves exactly as does R with the exception that it

refrains from visiting any point of X more than once. If some version of NFL applies to A, then

one might use the close relationship between A and R to make inferences concerning R.

Some “real world algorithms” are stochastic, rather than deterministic. This is often a fiction,

however, since most random number generators are in fact deterministic. Hence a “stochastic

algorithm” R based on a deterministic random number generator with seed s is in reality a family

R(s) of deterministic algorithms parametrized by s. Some version of NFL may apply to every

member of that parametrized family of deterministic algorithms.

Given a deterministic non-repeating algorithm A, one might wonder whether it was in fact a

deterministic non-repeating Black Box search algorithm. The issue is whether it corresponds to a

search operator g as described on page one. The answer is yes, provided the manner in which A

explores X at step t is a function of the trace T describing its past exploration at previous steps

(defining g to map T to whatever point A explores at step t makes A correspond to g).

3739

No Free Lunch: 1995-2006

Darrell Whitley

Colorado State University

GECCO-2006 –1

NFL: No Free Lunch

All search algorithms are equivalent when compared

over all possible discrete functions.

Wolpert, Macready (1995)

No free lunch theorems for search. Santa Fe Institute.

Radcliffe, Surry (1995)

Fundamental Limitations on Search Algorithms: Springer Verlag LNCS 1000.

No Free Lunch for Gray and Binary

All search algorithms are equivalent when compared

over all possible representations.

GECCO-2006 –2
3740

Variations on No Free Lunch

For ANY measure of algorithm performance:

The aggregate behavior of any two search algorithms is equivalent when

compared all possible discrete functions.

The aggregate behavior of ALL possible search algorithms isequivalent when

compared over any two discrete functions.

At each distinct “iteration” of search

the aggregate behavior of all possible search algorithms isIDENTICAL at

each and every iteration.

GECCO-2006 –3

Variations on No Free Lunch

Consider any algorithmAi applied to functionfj .

On(Ai, fj) outputs the order in whichAi visits the elements in the codomain

of fj . For every pair of algorithmsAk andAi and for any functionfj, there

exist a functionfl such that

On(Ai, fj) ≡ On(Ak, fl)

Consider a “BestFirst” local search with restarts.

Consider a “WorstFirst” local search with restarts.

For everyj there exists anl such that

On(BestF irst, fj) ≡ On(WorstF irst, fl)

GECCO-2006 –4
3741

ENUMERATION is a search algorithm.

Thus, No Free Lunch implies that on average,

no search algorithm is better than enumeration.

Furthermore, because bias in search algorithms causes themto focus the

search, most are prone to resampling.

If resampling is considered,

“focused” search algorithms are WORSE than enumeration

NFL IGNORES RESAMPLING

GECCO-2006 –5

An algorithm is modeled as a permutation

representing the order in which new points are tested.

Behavior is defined in terms of the evaluation function output

which defines the co-domain of the function.

GECCO-2006 –6
3742

Assume that one is given a fixed set of co-domain values.

Set of Functions = Set of Permutations.

BEHAVIORS FUNCTIONS

A1: 1 2 3 F1: A B C

A2: 1 3 2 F2: A C B

A3: 2 1 3 F3: B A C

A4: 2 3 1 F4: B C A

A5: 3 1 2 F5: C A B

A6: 3 2 1 F6: C B A

GECCO-2006 –7

Assume(A > B)&(B > C).

Take 2 steps, return the maximum found.

| F1 F2 F3 F4 F5 F6

___|_______________________

A1 | A A A B A B

|

A2 | A A B A B A

|

A3 | A A A B A B

|

A4 | B B A A A A

|

A5 | A A B A B A

|

A6 | B B A A A A

GECCO-2006 –8
3743

5
2

4

4 2 5

2 4 5

5 2 4 5 4 2

4 5 2

2 5 4

NFL is just like sampling
from a grab bag.

3 6 1
Values sampled so far:

Co−Domain: 1 2 3 4 5 6

GECCO-2006 –9

Theorem:
NFL holds for a set of functions IFF

the set of functions form a permutation set.

The “Permutation Set” is the closure of a set
of functions with respect to a permutation operator.

(Schmacher, Vose and Whitley–GECCO 2001;
also, see Rawlins 1991, Radcliffe and Surry 1995)

F1: 0 0 1 2 F7: 0 2 0 1

F2: 0 1 0 2 F8: 0 2 1 0

F3: 1 0 0 2 F9: 1 2 0 0

F4: 0 0 2 1 F10: 2 0 0 1

F5: 0 1 2 0 F11: 2 0 1 0

F6: 1 0 2 0 F12: 2 1 0 0

GECCO-2006 –10
3744

OBSERVATION: The Union of Permutation Sets is also a Permutation Set.

The sampling probability can be different across Permutation Sets.

Sampling Need not be Uniform

F1: A B C 12/100 F1: 0 0 0 1 7/100

F2: A C B 12/100 F2: 0 0 1 0 7/100

F3: B A C 12/100 F3: 0 1 0 0 7/100

F4: B C A 12/100 F4: 1 0 0 0 7/100

F5: C A B 12/100

F6: C B A 12/100

GECCO-2006 –11

Machine Learning and NFL

1 1 1
11

1

0
0000

0

L1 ALL HD L2 ALL HD

== ======== == ========

00 0 00 1

00 01 1 10 01 2

10 1 10 0

11 2 11 1

GECCO-2006 –12
3745

Theorem:
Given a finite set of N unique co-domain values, NFL hold over aset of N!

functions where the average description length is O(N log N).

Sketch of Proof:
Construction a Binary Tree with N! leaves. Each leaf represents one of the N!

functions. To just label each function requires log(N!) bits. Each label has

average length log(N!) = O(N log N).

Note enumeration also has cost O(N log N).

Corollary:
If a fixed fraction of the co-domain values are unique, the setof N! functions

where NFL holds has average description length O(N log N).

GECCO-2006 –13

NFL holds over sets with 1 member.

F = 0 0 0 0

NFL holds over needle-in-a-haystack functions.

F1 = 0 0 0 1

F2 = 0 0 1 0

F3 = 0 1 0 0

F4 = 1 0 0 0

GECCO-2006 –14
3746

The set of Binary strings is a permutation set

0 0 0 0 1 1 1 1

0 0 0 1 0 0 1 1 1 1 1 0

0 0 1 0 0 1 0 1 1 1 0 1

0 1 0 0 1 0 0 1 1 0 1 1

1 0 0 0 0 1 1 0 0 1 1 1

1 0 1 0

1 1 0 0

GECCO-2006 –15

Let P (F) compute the permutation closure ofF , whereF is a set of

functions.

Let K = |P (F)|.

Then the average description length needed to distinguish the members of that

set islg(K).

If lg(K) is exponential, then the permutation set isuncompressible.

If lg(K) is polynomial, then the permutation set iscompressible.

GECCO-2006 –16
3747

QUESTION:

How should we evaluate search algorithms?

Let β represent a set of benchmarks.P (β) is the permutation closure overβ.

If algorithmS is better than algorithmT onβ

THEN T is better thanS onP (β) − β.

GECCO-2006 –17

Algorithm 1 Algorithm 2

F1: 1 2 3 f(1) --> 1 f(3) --> 3

Set A F2: 1 3 2 f(1) --> 1 f(3) --> 2

F3: 2 1 3 f(1) --> 2 f(3) --> 3

F4: 2 3 1 f(1) --> 2 f(3) --> 1

F5: 3 1 2 f(1) --> 3 f(3) --> 2

Set B F6: 3 2 1 f(1) --> 3 f(3) --> 1

Algorithm 1 Algorithm 2 Difference

Set A 2 5 3

Set B 10 7 3

The cumulative difference must be the same

GECCO-2006 –18
3748

Algorithm 1 Algorithm 2

F1: 1 2 3 f(1) --> 1 f(3) --> 3

Set A F2: 1 3 2 f(1) --> 1 f(3) --> 2

F3: 2 1 3 f(1) --> 2 f(3) --> 3

F4: 2 3 1 f(1) --> 2 f(3) --> 1

F5: 3 1 2 f(1) --> 3 f(3) --> 2

Set B F6: 3 2 1 f(1) --> 3 f(3) --> 1

Algorithm 1 Algorithm 2 Difference

Set A 1 2.5 1.5

Set B 2.5 1.75 0.75

Average difference is not the same

GECCO-2006 –19

B

P(B)

B’

Given algorithmsS andT we know

On(S, fj ∈ β) ≡ On(T, fl)

thus we can construct another test setβ′ such that

fj ∈ β → fl ∈ β′

The behavior ofT onβ′ is IDENTICAL to the behavior ofS onβ.

GECCO-2006 –20
3749

NO FREE LUNCH does not hold over the class of problems in NP; they are

not black box optimization problems.

For example, some problems in NP that have ratio bounds whichcan be

exploited by branch and bound algorithms.

Even, so claims about which algorithms apply to which problems is a concern.

GECCO-2006 –21

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Machine Correlated Jobs

Job Correlated Jobs

Job 1 Job2 Job3

The PERMUTATION FLOWSHOP SCHEDULING PROBLEM.

Benchmark are typically generated randomly. Real-world problems may have

correlated structure. Job could bemachine correlatedor job correlated.

GECCO-2006 –22
3750

3750

3800

3850

3900

3950

4000

350 400 450 500 550 600

M
ak

es
pa

n

Average Distance to Other Local Optiima

"ta052.plot"

4760

4770

4780

4790

4800

4810

4820

4830

4840

4850

460 480 500 520 540 560 580 600 620 640 660

M
ak

es
pa

n

Average Distance to Other Local Optima

"alpha0.1.plot"

GECCO-2006 –23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

alpha

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t

Alg 1
Alg 2
Alg 3
Alg 4
Alg 5
Alg 6
PATHRELINK

JOB CORRELATED PROBLEMS. Performance of optimization algorithms.

The degree of randomness is indicated along the x-axis, while the deviation
from the best-known solution is indicated along the y-axis.

GECCO-2006 –24
3751

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

alpha

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t

Alg 1
Alg 2
Alg 3
Alg 4
Alg 5
Alg 6
PATHRELINK

MACHINE CORRELATED PROBLEMS. Performance of optimization

algorithms. The degree of randomness is indicated along thex-axis, while the
deviation from the best-known solution is indicated along the y-axis.

GECCO-2006 –25

S. Christensen and F. Oppacher

What can we learn from No Free Lunch?GECCO 2001

A SUBMEDIAN-SEEKER Type Algorithm

1. Evaluate a sample of points and estimate median(f).

2. If f(xi) < median(f) then sample a neighbor ofxi.

Else sample a new random point.

3. Repeat step 2 until half of space is explored.

Assumef is 1-dimensional, a bijection, and we knowmedian(f).

GECCO-2006 –26
3752

Let M(f) measures the number of submedian values off

that havesupermedian successors.

There existsMcrit such that whenM(f) < Mcrit

SubMedian-Seeker is better than random search.

SUBMEDIAN-SEEKER beats random enumeration when:

1. f is a uniformly sample polynomial of degree at mostk andMcrit > k/2

2. f is a truncated Fourier series of at mostk harmonics uniformly sampled

over [0,1) atn locations andMcrit > k/2

3. Each extremum off is represented by at least 6 points on average

GECCO-2006 –27

GECCO-2006 –28
3753

Structure is Important

Random Number Generators produce functions that are in somerestricted

sense compressible. But they are designed to have minimal structure.

Consider “WorstFirst” local search again.

For everyj there exists anl such that

On(BestF irst, fj) ≡ On(WorstF irst, fl)

There are “structured functions” that do not fit our usual notion of being

“searchable.”

GECCO-2006 –29

NO FREE LUNCH and REPRESENTATION

Radcliffe, Surry (1995) Fundamental Limitations on SearchAlgorithms:

Springer Verlag LNCS 1000.

The behavior of any two algorithms are identical over all possible

representations of a single function.

”NO-FREE-LUNCH-like” results

The behavior of any two algorithms are identical over over the set of Gray and

the set of Binary representations over all possible functions.

GECCO-2006 –30
3754

Counting Local Optima

The probability that stringi is a local minimun under an arbitrary

transformation of a k-neighborhood search space is:

P (i) =

(

N−i

k

)

(

N−1
k

) [1 ≤ i ≤ (N − k)] (1)

GECCO-2006 –31

R1

Ri

Rn

(N-i) choose k

GECCO-2006 –32
3755

The average number of local optima over all possible representations using a

k-neighbor search:

µ(N, k) =
N−k
∑

i=1

P (i) (2)

µ(N, k) = N/(k + 1) (3)

GECCO-2006 –33

GECCO-2006 –34
3756

0
0

01 1
1
0

1
1

Gray Matrix Degray Matrix

0
0
1 1

1
0

1
1

1

1 1
0
0 0
0 0 0

00 0 0

1 1
1 1

1 1
1

1
11

11 11 1 0 0 0
0 00

00 0
0 0 0

00 0 0

1 1
1 1

1 1
1

5-bits

3-bits

000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7

000
001
011
010
110
111
101
100

BINARY GRAY

GECCO-2006 –35

0001

0011001001100111

1001

10111010

1000

0100

1100

11101111

1101

0101

345

6 7

89

12

15 14

1

2

10 11 13

0000

0

4−bit Gray Encoding

0001

0011001001100111

1001

10111010

1000

0100

1100

11101111

1101

0101

1

2 367

9

1014

12

15

4

11

5

13 8

0000

0

4−bit Binary Encoding

GECCO-2006 –36
3757

”NO-FREE-LUNCH-like” results hold over

very small sets of functions for Gray and Binary representations.

BN B1 B2 B3 B(N-1) BN

G1 G2 G3 G4 G(N-1) GN

F1 F2 F3 F(N-1) FN

The length of this “chain” is at most 2L.

GECCO-2006 –37

R1: 000 001 010 011 100 101 110 111

R2: 000 001 011 010 110 111 101 100

R3: 000 001 010 011 101 100 111 110

R4: 000 001 011 010 111 110 100 101

R5: 000 001 010 011 100 101 110 111

GECCO-2006 –38
3758

Consider the integer-adjacency neighborhood.

1, 2, 3, 4, 5, 6, 7, 8, ... N-3, N-2, N-1, N

We consider a WRAPPING Neighborhood

where 1 and N are neighbors.

(We can also consider a NON-WRAPPED Neighborhood,

where 1 and N are not neighbors).

GECCO-2006 –39

FOR WRAPPING FUNCTIONS

#F # of Min # of Min

K K Min Gray Binary

1 512 512 1,024

2 14,592 23,040 27,776

3 23,040 49,152 48,896

4 2,176 7,936 2,944

Sum 40,320 80,640 80,640

GECCO-2006 –40
3759

MINI-MAX: WRAPPING

K Gray Wins Binary Wins Ties

1 448 0 64

2 6752 2288 5552

3 6720 6592 9728

4 0 2160 16

Sum 13,920 11,040 15,360

GECCO-2006 –41

0
1
2
3
4
5
6
7

Generating the Set of All Functions

Count the Minima in the Set of All Functions

Choose
Encoding

110

000

100

101

111

001

010 011

3RF3

0

7

2

3
4

6

1

5

FN

1 2 3 ... N/2RN

N/22 3 ...1

GECCO-2006 –42
3760

GECCO-2006 –43

A SubThreshold-Seeker

1. Evaluate a sample of points and estimate athreshold(f).

2. Pick pointx < threshold(f).

3. If f(x) < threshold(f) then setx = x + 1 andy = x − 1;

Else sample a new random point.

4. Whilef(x) < threshold(f) setx = x + 1;

5. Whilef(y) < threshold(f) sety = y − 1;

6. If stopping-conditions not met, goto 2.

GECCO-2006 –44
3761

Define aquasi-basinas a contiguous set of points below threshold. Letα

define a threshold presenting some fraction of the search space. Suppose there

areB quasi-basins each containing at leastM points.

Theorem: Suppose that Subthreshold-Seeker is used to findB quasi-basins

each containing at leastM points. Forallα < 1/2 subtheshold-seeker beats

random search ifM >
√

NH(B−1)
B

.

√

NH(B−1)
B

does not referenceα becauseM is derived fromα.

GECCO-2006 –45

What about a simple bit climber using Gray Code?

Theorem: Given a quasi-basin that spans1/Q of a search space of sizeN

and a reference pointR inside the quasi-basin, the expected number of

neighbors ofR that fall inside the quasi-basin under a reflected Gray code is

greater than

⌊(log(N/Q))⌋ − 1

Corollary: Given a quasi-basin below thesholdα that spans1/Q of the

search space and a reference pointR that fall in the quasi-basin, the majority

of the neighbors ofR under a reflected Gray code representation of a search

space of sizeN will also be subthreshold in expectation when

⌊(log(N/Q))⌋ − 1 > log(Q) + 1

GECCO-2006 –46
3762

This means that a simple “local search” bit climber can beat random

enumeration when restarted from a subthreshold points as long as on average

⌊(log(N/Q))⌋ − 1 > log(Q) + 1

Let N = 2100 and assume we want to largely sample a quasi-basin that spans

1/billonth of the space.

⌊(log(2100/230))⌋ − 1 > log(230) + 1

69 > 31

NOTE: An increase in precision increases⌊(log(N/Q))⌋ − 1

but does not increaselog(Q) + 1.

GECCO-2006 –47

GECCO-2006 –48
3763

10 bit Precision 20 bit Precision

Func ALG Mean Sub Evals Mean Sub Evals

ackley R-LS 0.18 62.4 19371 0.0001 75.1 77835

SubT 0.18 79.7 16214† 0.0001 89.9 73212†

grie- R-LS 0.010 59.5 13412 0.0045 80.3 66609

wangk SubT 0.005 80.1 9692† 0.0049 90.0 59935†

rana R-LS -49.6 49.5 22575 -49.76 74.2 3×106

SubT -49.4 57.6 19453† -49.83 85.0 3×106

Table 1: Local Search Results averaged over 30 runs. Threshold = 10 percent.

The† denotes statistical significance.

GECCO-2006 –49

References
[1] S. Christensen and F. Oppacher.What can we learn from No Free Lunch. GECCO 2002.

[2] J. Culberson. On the Futility of Blind Search.Evolutionary Computation, 6(2):109–127, 1999.

[3] S. Droste and T. Jansen and I. Wegener. Perhaps not a free lunch but at least a free appetizer.GECCO, 1999.

[4] S. Droste and T. Jansen and I. Wegener. Optimization withrandomized search heuristics; the (A)NFL theorem, realistic scenarios and difficult

functions.Theoretical Computer Science, 2002 (In Press).

[5] T. English. Practical implications of new results in conversation of optimizer performance.Parallel Problem Solving from Nature, 2000.

[6] T. English. Information is Conserved in Optimization.IEEE Trans Evolutionary Computation.

[7] G. Rawlins. Introduction to ”Fondations of Genetic Algorithms”, 1991.

[8] N.J. Radcliffe and P.D. Surry. Fundamental limitationson search algorithms: Evolutionary computing in perspective. Lecture Notes in Computer

Science 1000. Springer-Verlag, 1995.

[9] C. Schumacher.Fundamental Limitations of Search. PhD thesis, University of Tennessee, Department of Computer Sciences, Knoxville, TN, 2000.

[10] C. Schumacher and M. Vose and D. Whitley.The No Free Lunch and Problem Description Length. GECCO2001.

[11] D. Whitley. Functions as permutations: regarding no free lunch, walsh analysis and summary statistics.Parallel Problem Solving from Nature, 6,

2000.

[12] D.H. Wolpert and W.G. Macready. No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute, July 1995.

[13] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization.IEEE Trans Evolutionary Computation, 4:67–82, 1997.

GECCO-2006 –50
3764

