
A Multimodal Particle Swarm Optimizer Based on Fitness
Euclidean-distance Ratio

Xiaodong Li
School of Computer Science and Information Technology

RMIT University
Melbourne, Australia

xiaodong@cs.rmit.edu.au

ABSTRACT
One of the most critical issues that remains to be fully ad-
dressed in existing multimodal evolutionary algorithms is
the difficulty in pre-specifying parameters used for estimat-
ing how far apart optima are. These parameters are typ-
ically represented as some sorts of niching parameters in
existing EAs. Without prior knowledge of a problem, it is
almost impossible to determine appropriate values for such
niching parameters. This paper proposes a PSO for multi-
modal optimization that removes the need of these niching
parameters. Our results show that the proposed algorithm,
Fitness Euclidean-distance Ratio based PSO (FER-PSO) is
able to reliably locate multiple global optima on the search
landscape over some widely used multimodal optimization
test functions, given that the population size is sufficiently
large.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Optimization; F.2.1 [Analysis
of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems

General Terms
Algorithms, Performance, Experimentation

Keywords
Evolutionary Computation, Swarm Intelligence, Particle Swarm
Optimization

1. INTRODUCTION
Evolutionary Algorithms, including more recently Swarm

Intelligence Algorithms such as Particle Swarm Optimiza-
tion (PSO), have shown to be effective and robust optimiza-
tion methods for solving difficult optimization problems.
Though a majority of the EAs and PSOs are specifically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

designed for locating a single global optimum, many real-
world problems demands an EA to search for more than one
global optima. The reasons are two folds - firstly many real-
world problems are multimodal by nature, which means the
search landscape is often characterized by multiple valleys
and peaks, where many peaks are all potentially good so-
lutions; secondly, by aiming to search for multiple peaks,
the chance of getting stuck on a local peaks is reduced (or
in other words, the chance of finding global peaks is in-
creased). Sometimes it is in fact of practical importance to
obtain multiple good (or good enough) solutions so that the
decision maker can choose the appropriate one according to
circumstances.

Many algorithms have been proposed in the EA literature
for tackling multimodal optimization problems where mul-
tiple optima exist. Some representative ones are crowding
methods [12, 17], fitness sharing[10], derating [1], restricted
tournament selection[11], parallelization [2] and speciation
[21, 15]. PSO variants were also developed to enhance their
ability to handle multimodal optimization problems such as
NichePSO [5] and SPSO [16, 20]. One of the key drawbacks
of these existing algorithms is that some kind of niching pa-
rameters have to be pre-specified. For example the sharing
parameter σshare in fitness sharing [10], the species distance
σs in SCGA [15], and the species radius rs in SPSO [16,
20]. The performance of these EAs depends on how these
parameters are specified. The main challenge is that differ-
ent problems would require different appropriate parameter
values in order to obtain satisfactory performance. Without
prior knowledge of a problem, this is almost an impossible
task. Some recent works in [3, 4] aimed to reduce the sen-
sitivity of a speciation-based PSO to the choice of niching
parameter values. However, this parameter remains, and
some value still needs to be specified.

This paper proposes a multimodal PSO that removes the
need to specify any niching parameter. The proposed PSO
based on Fitness Euclidean-distance Ratio (FER-PSO) is
inspired by FDR-PSO (Fitness-Distance-Ratio based PSO),
a previously developed PSO for locating a single global op-
timum. Though FER-PSO follows the basic idea of FDR-
PSO in encouraging the survival of fitter and closer parti-
cles, some significant changes have been made. More im-
portantly, FER-PSO is designed for multimodal optimiza-
tion (though it can also be used to locate just a single peak
if there is only one). In FER-PSO, personal bests of par-
ticles are used to form a memory-swarm to provide a sta-
ble network retaining the best points found so far by the
population, while the current positions of particles act as

78

parts of an explorer-swarm to explore broadly around the
search space. Instead of using a single global best, each par-
ticle is attracted towards a fittest-and-closest neighbourhood
point which is identified via computing its FER (Fitness and
Euclidean-distance Ratio) value (see section 4). FER-PSO
is able to reliably locate all existing global optima over iter-
ations, given that the population size is sufficiently large.

The paper is organized as follows. Section 2 provides a
general introduction PSO, including the concepts of memory-
swarm and explorer-swarm, which have direct relevance to
the proposed FER-PSO. Section 3 gives some backgrounds
on related works. Section 4 describes the proposed FER-
PSO, followed by numerical results in section 5. Finally
section 6 gives the concluding remarks.

2. PARTICLE SWARM
Particle Swarm Optimization (PSO) is a Swarm Intelli-

gence technique originally developed from studies of social
behaviours of animals or insects, eg., bird flocking or fish
schooling [14]. Since its inception in 1995 [14], PSO has
gained increasing popularity among researchers and practi-
tioners as a robust and efficient technique for solving com-
plex and difficult optimization problems.

Like an Evolutionary Algorithm (EA), PSO is population-
based. However, PSO differs from EAs in the way it manip-
ulates each particle (ie., a candidate solution) in the pop-
ulation. Instead of using evolutionary operators such as
crossover and mutation, PSO modifies each particle’s po-
sition in the search space, based on its velocity, some pre-
vious best positions it has found so far, and previous best
positions found by its neighbours.

In a canonical PSO, the velocity of each particle is modi-
fied iteratively by its personal best position (ie., the position
giving the best fitness value so far), and the position of best
particle from the entire swarm. As a result, each particle
searches around a region defined by its personal best posi-
tion and the position of the population best. Let’s use �vi

to denote the velocity of the i-th particle in the swarm, �xi

its position, �pi the best position it has found so far, and �pg

the best position found from the entire swarm. �vi and �xi of
the i-th particle in the swarm are updated according to the
following two equations [7]:

�vi ← χ(�vi + �R1[0,
ϕmax

2
]⊗ (�pi − �xi) +

�R2[0,
ϕmax

2
]⊗ (�pg − �xi)), (1)

�xi ← �xi + �vi, (2)

where �R1[0, ϕmax
2

] and �R2[0, ϕmax
2

] are two separate func-
tions each returning a vector comprising random values uni-
formly generated in the range [0, ϕmax

2
]. ϕmax is a positive

constant. The symbol ⊗ denotes point-wise vector multipli-
cation. A constriction coefficient χ is used to prevent each
particle from exploring too far away in the search space,
since χ applies a dampening effect to the oscillation size of
the particle over time [14]. This Type 1” constricted PSO
suggested by Clerc and Kennedy is often used with χ set to
0.7298, calculated according to χ = 2

˛
˛
˛2−ϕmax−

√
ϕ2

max−4ϕmax

˛
˛
˛

,

where ϕmax = 4.1 [7][9].
In [7], Clerc and Kennedy showed that the Type 1” con-

striction PSO is equivalent to the early PSO proposed by
Kennedy and Eberhart using an inertia weight [14]. Clerc

and Kennedy also showed that equation (1) can be simplified
to the following:

�vi ← χ(�vi + �ϕm ⊗ (�pm − �xi)), (3)

where on each dimension d of �pm, pmd =
ϕ1d·pid+ϕ2d·pgd

ϕ1d+ϕ2d
.

ϕ1d and ϕ2d are two random numbers uniformly and inde-
pendently chosen from the range [0, ϕmax

2
]. For �ϕm, on each

dimension d, ϕmd = ϕ1d + ϕ2d. Equation (3) indicates that
a particle tends to converge towards a point determined by
�pm, which is a weighted average of its previous best �pi and
the neighbourhood’s best �pg . �pm can be further generalized
to any number of terms:

�pm =

P
k∈N �R[0, ϕmax

|N|]⊗ �pkP
k∈N �ϕk

, (4)

where �pk denotes the best previous position found by the
k-th particle in N , which is a set of neighbours including
the current particle itself. Note again that the division is
a point-wise vector division operator here. Equation (3)
and (4) are essentially the same as the Fully Informed PSO
(FIPS) as proposed by Mendes [18]. If we set k = 2 and
�p1 = �pi, and �p2 = �pg, with both �pi, �pg ∈ N , then the Type
1” constriction PSO is just a special case of the more general
PSO defined in equation (3).

A significant implication of equation (4) is that it allows
us to think more freely about employing terms of influence
other than just �pi and �pg (see also remarks by Mendes on
FIPS [18] and Kennedy in [13]).

2.1 Memory-swarm vs. Explorer-swarm
We can never underestimate the significance of using “mem-

ory” in PSO. As remarked by Clerc in [6], a swarm can
be viewed as comprising of two sub-swarms according to
their differences in functionality. The first group, explorer-
swarm, is composed of particles moving around in large step
sizes and more frequently, each strongly influenced by its ve-
locity and its previous position (see equation (1) and (2)).
The explorer-swarm is more effective in exploring the search
space. The second group, memory-swarm, made up of by
personal bests of all particles. This memory-swarm is more
stable than the explorer-swarm because personal bests rep-
resent positions of only best positions found so far by in-
dividual particles. The memory-swarm is more effective in
retaining better positions found so far by the swarm as a
whole.

As shown in Fig. 4 (in section 5), during a typical FER-
PSO run, memory-swarm comprising of ‘pBest’ points (ie.,
personal bests) is successfully used to ‘memorize’ better po-
sitions, while explorer-swarm comprising of ‘current’ points
(ie., positions of current particles) is more effective in ex-
ploring the search space. Note a ‘pBest’ is always better
than (or equal to) its associated ‘current’ point.

3. RELATED WORKS
As discussed in the Introduction section, numerous EAs

have been developed in the past to handle multimodal op-
timization problems [12, 17, 10, 1, 11, 2, 21, 15, 5, 16, 20].
A comprehensive review of these niching algorithms is be-
yond the scope of this paper. One observation is that most
of these algorithms require a user to pre-determine some

79

sorts of niching parameters in order to achieve satisfactory
performance. Since setting these parameters requires prior
knowledge about a specific problem domain, it poses a se-
rious challenge to practitioners. It would be desirable if we
can remove the need of pre-specifying niching parameters.

An existing algorithm that inspires us to tackle this is-
sue is FDR-PSO (Fitness-Distance-Ratio based PSO) [22].
FDR-PSO was originally designed as a global optimizer aim-
ing at locating a single global optimum. However, the idea of
attracting each particle towards a fitter-and-closer point in
its neighbourhood can be used effectively to locate multiple
equally good global optima.

We will first describe how FDR-PSO works, and identify
problems associated with it with respect to multimodal op-
timization. We will then demonstrate how these problems
can be addressed by proposing a multimodal PSO modifying
FDR-PSO in a number of significant ways.

3.1 FDR-PSO
In FDR-PSO [22], a new term called �pn (which is a neigh-

bourhood best based on FDR values) was added to the
canonical PSO velocity update equation in order to increase
the influence from other fitter and nearer particles:

�vi ← χ(�vi + �R1[0, ϕ1]⊗ (�pi − �xi) +

�R2[0, ϕ2]⊗ (�pg − �xi)) + �R3[0, ϕ3]⊗ (�pn − �xi)). (5)

Basically the d-th dimension of the i-th particle’s velocity
is updated using a vector �pn, which is determined by max-
imizing a FDR (Fitness-Distance-Ratio) value for the d-th
dimension (assuming maximization):

FDR(j,i,d) =
f(�pj)− f(�xi)

|pjd − xid| . (6)

The d-th dimension of the �pn vector is set to the value
of the d-th dimension from the j-th particle’s personal best
�pj , whose FDR(j,i,d) is the largest among all particles. For
the i-th particle in the population, Algorithm 1 shows the
pseudocode of calculating its �pn vector which collects useful
information about good points that are both fit and closer,
from all personal bests.

In FDR-PSO, {ϕ1, ϕ2, ϕ3} were set to various combina-
tions of values, e.g., {1,1,1}, {1,1,2}, {1,0,2}, {0,1,2}, and
{0,0,2}. FDR-PSO has shown competitive performance for
locating a single global optimum [22].

4. FER-PSO
As described in the section 2.1, the memory-swarm con-

tains all personal bests, therefore it can be seen as a way of
retaining better and more stable points found in the search
space so far. In contrast, the explorer-swarm can be seen
as a means of exploring new points. If a particle finds a
better point, it will update its corresponding personal best.
At the swarm level, this results in updating all personal
bests of the memory-swarm. With the aim to locate mul-
tiple optima, these personal bests retained in the memory-
swarm can be used as “anchor” points for the swarm to
keep track of the multiple better points found so far. In
addition, each of these points can be further improved, by
moving towards its “fittest-and-closest” neighbours, which
can be identified via computing a particle’s FDR value (see

input : A list of all particles in the population

output: Neighbourhood best �pn based on the i-th par-
ticle’s FDR values

for d = 1 to Dimensions do
FDR← 0, tmp← 0 ;
for j = 1 to Population Size do

if (pjd not equal to xid) then

FDR← f(�pj)−f(�xi)

|pjd−xid| ;

if (j equal to 1) then tmp← FDR;
if (FDR > tmp) then

tmp← FDR ;
pnd ← pjd ;

return �pn

Algorithm 1: The pseudocode of calculating �pn for the
i-th particle (�xi) under consideration, according to maxi-
mizing its FDR values. To obtain �pn for all particles, this
algorithm needs to be iterated over the population.

Figure 1: An example of computing �pn vector (for
�x1) in a 2-dimensional search space. Only 3 particles
are in the population. Personal best �p2 is equally fit
as �p3. f(�p2)−f(�x1) = f(�p3)−f(�x1) = 1. Maximization
is assumed.

equation (6)). Over iterations, particles would form niches
naturally around multiple optima, given that there are suf-
ficient numbers of particles.

FDR calculation in equation (6) however has some seri-
ous drawbacks when used for handling multimodal prob-
lems. Firstly using a particle’s current position often leads
to unstable convergence behaviours since it changes more
frequently than its corresponding personal best. Secondly,
calculating FDR according to the difference between other
particles’ personal bests and the current position of the par-
ticle under consideration does not always lead to a desirable
convergent behaviour. Fig. 1 provides a simple example
of calculating �pn in FDR-PSO, in a 2-dimensional search
space. �pn is obtained from dimensions of 2 known personal
bests �p2 and �p3. In this case, we want to calculate �pn

for �x1. On dimension 1, we have FDR(2,1,1) = 1
|1−4| = 1/3,

and FDR(3,1,1) = 1
|6−4| = 1/2. Similarly on dimension 2, we

have FDR(2,1,2) = 1
|4−6| = 1/2, and FDR(3,1,2) = 1

|2−6| =

1/4. Since we need to maximize FDR values in each dimen-
sion, we obtain �pn(6,4) as a result. Noticeable from Fig. 1
is that �pn (6, 4) is not a desirable attraction point. In this

80

example, since both �p2 and �p3 are equally fit, the computed
�pn for �x1 is always a different point than �p2 and �p3. �x1 will
eventually converge onto �pn (6,4), rather than any of the
two promising equally fit points �p2 or �p3.

To rectify this problem and propose a PSO that is better
suited to multimodal optimization, FDR calculation in equa-
tion (6) has to be modified in a number of significant ways.
Since Euclidean distance is used in the calculation of fitness-
and-distance ratio, we name it FER (Fitness-Euclidean dis-
tance Ratio):

FER(j,i) = α · f(�pj)− f(�pi)

||�pj − �pi|| , (7)

where α = ||s||
f(�pg)−f(�pw)

is a scaling factor, to ensure that nei-

ther fitness nor Euclidean distance becomes too dominated
over one another. ||s|| is the size of the search space, which

can be estimated by its diagonal distance
qPDim

k=1 (xu
k − xl

k)2

(where xu
k and xl

k are the upper and lower bounds of the k-th
dimension of the search space). �pw is the worst-fit particle
in the current population. Compared with equation (6),
several changes have been made:

• Instead of �xi, its corresponding �pi is used. This is
because �pi represents an equal or better point, and is
much more stable than �xi, thereby producing a more
reliable FER value;

• Instead of measuring the absolute value of difference
from the j-th particle’s personal best �pj to �xi in each
dimension, Euclidean distance ||�pj −�pi|| is used. This
will eliminate the issue of having undesirable attrac-
tion points. As again shown in Fig. 1, �pn based on
FER values will get assigned to be �p2, therefore �x1

will be attracted towards this better point;

• In the proposed FER-PSO, instead of having a single
�pg for the entire population, each particle is allocated
with its own distinct �pn, as determined by its FER
value (see Algorithm 2). This will allow each parti-
cle to move towards its fittest-and-closest neighbour-
ing point. Since each particle must be compared with
every other particle in order to calculate its FER, the
complexity of calculating FER values for all particles
is O(N2), where N is the population size.

Equation (1) is now rewritten as follows:

�vi ← χ(�vi + �R1[0,
ϕmax

2
]⊗ (�pi − �xi) +

�R2[0,
ϕmax

2
]⊗ (�pn − �xi)). (8)

Note that we do not need to pre-specify how far apart
optima are in equation (7) and (8). The calculation of α
would require some knowledge of xu

k and xl
k, but this infor-

mation is readily available in most situations. Equation (8)
can be seen as a special case of the more generalized FIPS
(see equation (4)) where each particle’s neighbourhood best
is chosen based on its computed FER value.

5. NUMERICAL RESULTS
Table 1 provides a set of test functions to assess FER-

PSO’s performance in locating multiple known global op-
tima. All test functions have more than one global optima,

input : A list of all particles in the population

output: Neighbourhood best �pn based on the i-th par-
ticle’s FER value

FER← 0, tmp← 0, euDist← 0 ;
for j = 1 to Population Size do

Calculate the Euclidean distance euDist from �pi

to the j-th particle’s personal best �pj ;
if (euDist not equal to 0) then

Calculate FER according to equation (7) ;
if (j equal to 1) then tmp← FER;
if (FER > tmp) then

tmp← FER ;
�pn ← �pj ;

return �pn

Algorithm 2: The pseudocode of calculating �pn for the
i-th particle under consideration, according to its FER
value. To obtain �pn for all particles, this algorithm needs
to be iterated over the population.

-25

-20

-15

-10

-5

 0

 5

-1.5
-1

-0.5
 0

 0.5
 1

 1.5 -1

-0.5

 0

 0.5

 1

-25

-20

-15

-10

-5

 0

 5

Sixhump Camel

 0
 -5
 -10
 -15
 -20

Figure 2: f3 Six-Hump Camel Back function.

hence the objective is to locate as many as possible these
global optima. f1, f2, f3 and f4 are relatively simple mul-
timodal test functions. However, f5 Shubert 2D is a much
more challenging function because it has a large number of
global and local optima (760 optima including 18 global op-
tima). Especially, the 18 global peaks form 9 pairs, with
2 very close global peaks in each pair. This function would
pose a serious challenge to any niching algorithm whose per-
formance relies on its setting of the niching parameters. Fig.
2 and 3 show the search landscape of f3 and f5 respectively.

Performance measurement is carried out by using an al-
gorithm for identifying species seeds in SPSO [20]. For each
test function, the species radius is set to a value not greater
than the distance between 2 closest global peaks (so that
particles on two found peaks can be treated as from differ-
ent species). The species seeds identification algorithm will
be able to produce a list of best as well as different personal
bests based on the preset species radius and a given list
of all personal bests from the entire swarm. Since the exact
number of global optima is known a priori, and also roughly
how far apart between 2 closest global optima, a multimodal
optimization algorithm’s performance can be measured in

81

Table 1: Multimodal test functions.
Function Range Comments
Deb’s 1st function [8]: f1(x) = sin6(5πx) 0 ≤ x ≤ 1 5 equally spaced global optima

Himmelblau [1]: f2(x, y) = 200− (x2 +y−
11)2 − (x + y2 − 7)2

−6 ≤ x, y ≤ 6 4 global optima

Six-Hump Camel Back [19]: f3(x, y) =

−4[(4−2.1x2 + x4

3
)x2 +xy+(−4+4y2)y2]

−1.9 ≤ x ≤ 1.9;
−1.1 ≤ y ≤ 1.1

2 global optima and 4 local optima

Branin RCOS [19]: f4(x, y) = (y− 5.1
4π2 x2+

5
π
x− 6)2 + 10(1− 1

8π
)cos(x) + 10

−5 ≤ x ≤ −10;
0 ≤ y ≤ 15

3 global optima

Shubert 2D [15]: f5(x, y) =
P5

i=1 icos[(i +

1)x + i]
P5

i=1 icos[(i + 1)y + i]

−10 ≤ x, y ≤ 10 760 optima including 18 global op-
tima

-200
-150
-100
-50
 0
 50
 100
 150
 200
 250

-10
-5

 0
 5

 10-10

-5

 0

 5

 10

-200
-150
-100

-50
 0

 50
 100
 150
 200
 250

Shubert 2D

 200
 100

 0
 -100

Figure 3: f5 Shubert 2D function.

terms of the number of evaluations required to achieve a
pre-specified accuracy for a run. In this case, we can check
species seeds, which are the dominant particles sufficiently
different from each other. We can determine if a global op-
timum is found by checking each species seed to see if it is
close enough to a known different global optimum. An ex-
pected accuracy acceptance threshold (typically 0 < ε ≤ 1)
is defined to determine if a solution is close enough to a
global optimum. Note that this species seeds identification
algorithm is only used for performance measurement in de-
termining if a sufficient number of global peaks has been
found, but not in any part of the FER-PSO optimization
procedure.

The performance can be also measured in terms of success
rate, which is the percentage of runs in which all global
optima are successfully located.

To study the effect of population sizes on FER-PSO’s per-
formance, population sizes ranging from 50 up to 200 are
used for f1 to f4. For f5, due to a larger number of global
optima, population sizes ranging from 200 to 500 are used.

5.1 Neighbourhood Best �pn

Fig. 4 shows snapshots of 4 iteration steps of a typical
FER-PSO run on f3. Note that a ‘pBest’ (ie., personal
best) is always better than (or equal to) its corresponding
‘current’ position (they are connected via a line in Fig. 4). A
few ‘nBest’ (ie., �pn) positions are identified from among all
current and past ‘pBest’ positions. Within 50 iterations, 2
global optima are located by FER-PSO. Note that even with

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

N
u

m
b

e
r

o
f

n
B

e
s
ts

Iteration

no. of nBests

Figure 5: The number of �pn decreases over a simu-
lation run, on the f5 Shubert 2D function.

the presence of 2 local peaks on the top-left and bottom-right
corners, the 2 global peaks would eventually dominate over
the 2 local peaks as better points for �pn for the population.

The total number of �pn generally decreases to a number
close to the actually number of global peaks on the search
landscape, as these points are most likely to be the best
candidates for �pn. Fig. 5 shows that on f5 where 18 global
peaks are present, the number of different �pn identified from
the population decreases over iterations, until it reaches to
a number close to 18.

5.2 Acceptance Threshold
Fig. 6 shows that for most test functions the success rates

can vary with respect to different expected accuracy accep-
tance thresholds. As expected, the smaller the threshold
value is set to, the lower the success rates will be.

5.3 Effect of Population Size
Fig. 7 shows the success rates increase when larger pop-

ulation sizes are used for f1 to f4. The only exception is
Himmelblau function, where the success rate is decreased
to just below 0.9 when a population size of 200 is used. A
closer look at the results reveals that this is largely because
the smaller acceptance threshold used (0.0001). FER-PSO
in fact almost always find all 4 global peaks. If this thresh-
old value were set higher, then a better success rate can be
obtained.

For the more challenging f5, since there are in total 9 clus-
ters, with each cluster containing 2 very close global peaks
(Fig. 3), instead of using success rate, we measure the av-
erage number of global peaks found over 50 runs, as shown

82

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

from pBest to current
current
pBest
nBest

(a) Iteration 1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

from pBest to current
current
pBest
nBest

(b) Iteration 2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

from pBest to current
current
pBest
nBest

(c) Iteration 5

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

from pBest to current
current
pBest
nBest

(d) Iteration 50

Figure 4: Snapshots of the entire population at 4 different iteration steps, on the fitness landscape of f3 the
Six Hump-Camel Back.

in Fig. 8. This allows us to see more accurately how well
FER-PSO performs in terms of locating the percentage of
all 18 global peaks.

Fig. 8 shows that FER-PSO becomes increasingly capable
of finding more global optima as a larger population size is
used. In Fig. 9, with a population size of 20, 50, 100, and
200, the number of global peaks found is 5, 13, 17 and 18
respectively. With just a population size of 200 or more, and
without the need of using any niching parameter, FER-PSO
can reliably find all 18 global peaks. Although most of the
time, global peaks are captured by �pn, this is not always
the case. Sometimes a global optimum was captured by a
personal best, instead of �pn (see Fig. 9 c) and d)). However,
since all �pn must be either current or past personal bests
in the population, we can simply check if existing personal
bests have located all 18 global peaks.

5.4 Comparison
f5 Shubert 2D function was also used in SCGA [15], where

a niching parameter, i.e., species distance σs specifying the
distance between two closest global optima, was assumed

known a priori. SCGA with its σs set to 1.6 and a popula-
tion size of 1000 was shown to be successful in locating all
18 global peaks. In comparison, FER-PSO did not require
pre-specifying any niching parameter. Furthermore, FER-
PSO was able to locate all 18 global peaks with a smaller
population size of 200, rather than 1000.

Two more recent speciation-based PSO variants, ANPSO
and ESPSO, which were specifically designed to reduce the
sensitivity of its species radius parameter (though not re-
moving it) also suggested a minimal population size of 200
in order to locate all 18 global peasks for f5 Shubert 2D
function [3, 4]. FER-PSO again compares well with these
results.

6. CONCLUSIONS
This paper has proposed a multimodal PSO, FER-PSO,

which makes use of the concepts of memory-swarm and
explorer-swarm. To encourage particles to locate multiple
global optima, FER (Fitness and Euclidean distance Ra-
tio) is calculated based on the fitness difference and the

83

-10

-5

 0

 5

 10

-10 -5 0 5 10

from pBest to current
current
pBest
nBest

(a) popsize = 20

-10

-5

 0

 5

 10

-10 -5 0 5 10

from pBest to current
current
pBest
nBest

(b) popsize = 50

-10

-5

 0

 5

 10

-10 -5 0 5 10

from pBest to current
current
pBest
nBest

(c) popsize = 100

-10

-5

 0

 5

 10

-10 -5 0 5 10

from pBest to current
current
pBest
nBest

(d) popsize = 200

Figure 9: The number of global optima found by FER-PSO increases as a larger population size is used,
ranging from 20 to 200. All snapshots are after 500 iterations.

Euclidean distance between a particle’s personal best and
other personal bests of the particles in the population. The
key advantage is that FER-PSO removes the need of pre-
specifying niching parameters that are commonly required in
existing niching EAs for multimodal optimization. Our re-
sults show that FER-PSO provides comparable performance
to existing EAs on some widely-used simple multimodal test
functions. And more importantly, without using any nich-
ing parameter, FER-PSO can give superior performance on
a more challenging multimodal function f5, which proves to
be difficult to many existing niching EAs.

Future works will be carried out on evaluating FER-PSO’s
performance on multimodal functions with higher dimen-
sions. Another aim is to further improve the efficiency of
FER-PSO. Since population size plays an important role in
FER-PSO, a self-adaptive population sizing strategy would
be desirable. More specifically strategies that can adjust
FER-PSO’s population size according to different problems
will be studied.

7. ACKNOWLEDGMENTS
The author would like to thank Stefan Bird for interesting

discussions which further contributed to the improvement of
FER-PSO.

8. REFERENCES
[1] D. Beasley, D. R. Bull, and R. R. Martin. A sequential

niche technique for multimodal function optimization.
Evolutionary Computation, 1(2):101–125, 1993.

[2] M. Bessaou, A. Pétrowski, and P. Siarry. Island model
cooperating with speciation for multimodal
optimization. In Parallel Problem Solving from Nature
- PPSN VI. Springer Verlag, 16-20.

[3] S. Bird and X. Li. Adaptively choosing niching
parameters in a PSO. In M. Cattolico, editor, Genetic
and Evolutionary Computation Conference, GECCO
2006, Proceedings, Seattle, Washington, USA, July
8-12, 2006, pages 3–10. ACM, 2006.

[4] S. Bird and X. Li. Enhancing the robustness of a
speciation-based PSO. In e. a. Gary G. Yen, editor,

84

 1

 0.8

 0.6

 0.4

 0.2

 0.1 0.01 0.001 0.0001 1e-005

S
u

c
c
e

s
s
 R

a
te

Accuracy Threshold

Deb1
Himmeblau

Six-Hump Camel Back
Branin RCOS

Figure 6: Success rates vary depending on the cho-
sen accuracy acceptance threshold.

 1

 0.8

 0.6

 0.4

 0.2

 200 180 160 140 120 100 80 60 40 20

S
u

c
c
e

s
s
 R

a
te

Population Size

Deb1
Himmeblau

Six-Hump Camel Back
Branin RCOS

Figure 7: Success rates in terms of different popula-
tion sizes for f1 to f4 (averaged over 50 runs). The
acceptance threshold is 0.0001. FER-PSO is run for
a maximum of 200000 iterations.

Proceedings of the 2006 IEEE Congress on
Evolutionary Computation, pages 843–850, Vancouver,
BC, Canada, 16-21 July 2006. IEEE Press.

[5] R. Brits, A. Engelbrecht, and F. van den Bergh. A
niching particle swarm optimizer. In Proceedings of the
4th Asia-Pacific Conference on Simulated Evolution
and Learning 2002(SEAL 2002), pages 692–696, 2002.

[6] M. Clerc. Particle Swarm Optimization. ISTE Ltd,
London, UK, 2006.

[7] M. Clerc and J. Kennedy. The particle swarm -
explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. Evol.
Comput., 6:58–73, Feb. 2002.

[8] K. Deb and D. Goldberg. An investigation of niche
and species formation in genetic function
optimization. In J. Schaffer, editor, Proceedings of the
Third International Conference on Genetic
Algorithms, pages 42–50, 1989.

[9] R. Eberhart and Y. Shi. Comparing inertia weights
and constriction factors in particle swarm
optimization. In Proc. of IEEE Int. Conf.
Evolutionary Computation, pages 84–88, 2000.

[10] D. E. Goldberg and J. Richardson. Genetic algorithms
with sharing for multimodal function optimization. In
J. Grefenstette, editor, Proceedings of the Second
International Conference on Genetic Algorithms,
pages 41–49, 1987.

 20

 18

 16

 14

 12

 10

 8

 6

 4

 2

 0
 0 50 100 150 200 250 300 350 400

N
o

.
o

f
P

e
a

k
s
 F

o
u

n
d

Population Size

Shubert2D

Figure 8: Number of peaks found (mean and one
standard error over 50 independent runs) with in-
creasing population sizes.

[11] G. R. Harik. Finding multimodal solutions using
restricted tournament selection. In Proceedings of the
Sixth International Conference on Genetic Algorithms.
Morgan Kaufmann.

[12] K. A. D. Jong. An analysis of the behavior of a class
of genetic adaptive systems. PhD thesis, University of
Michigan, 1975.

[13] J. Kennedy. In search of the essential particle swarm.
In Proc. of 2006 IEEE Congress on Evolutionary
Computation, pages 6158–6165, 2006.

[14] J. Kennedy and R. Eberhart. Swarm Intelligence.
Morgan Kaufmann, 2001.

[15] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J.
Clarkson. A species conserving genetic algorithm for
multimodal function optimization. Evol. Comput.,
10(3):207–234, 2002.

[16] X. Li. Adaptively choosing neighbourhood bests using
species in a particle swarm optimizer for multimodal
function optimization. In K. Deb, editor, Proc. of
Genetic and Evolutionary Computation Conference
2004(LNCS 3102), pages 105–116, 2004.

[17] S. W. Mahfoud. Crowding and preselection revisited.
In R. Männer and B. Manderick, editors, Parallel
problem solving from nature 2, pages 27–36,
Amsterdam, 1992. North-Holland.

[18] R. Mendes, J. Kennedy, and J. Neves. The fully
informed particle swarm: simpler, maybe better. IEEE
Trans. Evol. Comput., 8:204–210, Jun. 2004.

[19] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, New York,
New York, 1996.

[20] D. Parrott and X. Li. Locating and tracking multiple
dynamic optima by a particle swarm model using
speciation. IEEE Transactions on Evolutionary
Computation, 10(4):440–458, August 2006.

[21] A. Pétrowski. A clearing procedure as a niching
method for genetic algorithms. In Proceedings of the
3rd IEEE International Conference on Evolutionary
Computation, pages 798–803, 1996.

[22] K. Veeramachaneni, T. Peram, C. Mohan, and
L. Osadciw. Optimization using particle swarm with
near neighbor interactions. In Proc. of Genetic and
Evolutionary Computation Conference, pages 110 –
121, Chicago, Illinois, 2003.

85

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

