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ABSTRACT
Forma analysis provides an approach to formally derive do-
main specific operators based on domain-independent op-
erator templates by manipulating a set of equivalence rela-
tions (i.e., the basis), which is used to describe the search
space. In the case of permutation problems, where the ba-
sis is highly constrained, the declarative nature of forma
analysis encounters some difficulties which give rise to some
additional issues, such as the interpretation of declarative
constraints and the complexity of the application of opera-
tor. This paper aims to address these issues by introducing
Enhanced Forma Analysis that explores a broader view of
forma analysis by using ideas from constraint satisfaction.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY—Nonnumeri-
cal Algorithms and Problems

General Terms
Theory

Keywords
Forma analysis, constraint satisfaction, permutation prob-
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1. INTRODUCTION
Forma analysis [7] has been introduced as a formalism

to rigorously utilize domain knowledge in evolutionary op-
erator design, in which case the domain knowledge can be
incorporated in a declarative manner by using equivalence
relations to describe the search space. This paper aims to
present a principled design methodology that extends forma
analysis to properly analyze and derive operators for per-
mutation problems: Enhanced Forma Analysis (EFA).

Permutation problems (e.g., the TSP) are a set of highly
constrained discrete problems, such that the basis is not
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orthogonal. In other words, not all combinations of equiv-
alence classes (formae) are valid permutations. Although
specialized operators for permutation problems have been
designed under various purposes [2, 1], a principled design
methodology can still be very beneficial in the sense that
effective operators can be obtained in a more accurate and
concrete manner.

Since permutation representations induce constraints on
the basis to guarantee feasibility, we propose that operators
can be understood as a process of constraint satisfaction. In
other words, concrete operators are obtained based on the
forma analysis operator specifications being operationalized
from a Constraint Satisfaction Problem (CSP) [10] solving
perspective1.

As the forma analysis is purely declarative, issues such as
time complexity are hard to analyze. The constraint satis-
faction perspective provides us with an enhanced approach
to analyze operators from a complementary point of view.
Most usefully it allows us to properly define both declarative
and procedural semantics to evolutionary operators.

In the following section 2 and 3, we briefly review the
previous work in forma analysis and formal descriptions for
permutations respectively. Section 4 discusses the difficul-
ties with forma analysis on permutation problems and sug-
gests a CSP approach to enhance our understanding of some
other aspects of forma analysis. In section 5 and 6, “con-
crete” operators for permutation problems are derived based
on some basic operator templates with our framework. Sec-
tion 7 clarifies the consistency of our framework, before sec-
tion 8 gives our conclusions and suggests some future work.

2. FORMA ANALYSIS
Forma analysis [7] is a formal but practical method that

allows the problem representation and its operators to be
specified in a formal manner by using equivalence relations.
Each equivalence relation Ψ divides the search space into
disjoint equivalence classes Ξψ (depending which value the
solutions match), with individual equivalence classes being
denoted by ξ, which gathers solutions that are equivalent
under a certain equivalence relation.

The initial aim of forma analysis [7] was to codify knowl-
edge of the problem domain using a set of equivalence classes
(or formae) which is assumed to be able to cluster solutions
with related performance in order to guide the search process

1Of course, these constraints only exist if we are only inter-
ested in searching feasible regions, while search techniques
making use of infeasible regions are out of the scope in this
discussion.
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more effectively, e.g. edges if we are considering TSP. Since
equivalence relations/classes have the ability to capture the
properties of solutions, the operators can thus be mathemat-
ically derived by manipulating these equivalence relations in
a formal way. Some of the characteristics and operator tem-
plates related to forma analysis [7, 9, 11] are given below to
facilitate our further discussion.

2.1 Describing the Search Space
The key concept is that of a basis: a set of equivalence re-

lations that allows us to properly describe the search space.

Definition 1. A subset Ψ of a set of equivalence relations
is termed as a basis for the set of equivalence relations, if Ψ
spans the set and Ψ is independent.

An encoding can thus be derived by taking the image of
the basis equivalence classes corresponding to a particular
solution in the search space.

2.2 Domain Independent Operator Templates
Forma analysis can derive operators that explicitly ma-

nipulate the given equivalence relations. This is achieved
by combining the basis with domain independent operators
which specify operator behavior in terms of basis. Two of
these templates are key to the work presented in this paper.

One such template corresponds to the k-change operator
template [11], formally as:

Ok(x, k,Ψ) = {y ∈ S | disΨ(x, y) ≤ k}. (1)

Furthermore, we can define a variant of the generalized k-
change operator, where revisiting or canceling of the pre-
vious moves is not allowed, termed as the strict k-change
operator, formally as:

O|k|(x, k,Ψ) = {y ∈ S | disΨ(x, y) = k}. (2)

Given a basis Ψ for a set of equivalence relations over a
search space S, the Random Transmitting Recombination
(RTR) [7] operator template is defined to select a child so-
lution z out of the dynastic potential of the parent solutions
x and y. RTR(x, y,Ψ) can be formally defined as:

{z ∈ S | ∀ψ ∈ Ψ : ψ(x, z) = 1 ∨ ψ(y, z) = 1}, (3)

where the actual child solution z is chosen from the set above
uniformly at random.

3. FORMA ANALYSIS: PERMUTATIONS
According to the literature [11], there are mainly three dif-

ferent representations for permutation that we can adopt to
describe the permutation problems: the position-based rep-
resentation which decides the absolute position of an item,
the precedence-based representation which decides whether
one task is performed before another, and the adjacency-
based representation which decides whether two items are
next to each other.

In the following sections, formal descriptions [11] for per-
mutation with a set of n elements N = {e1, . . . , en} will be
reviewed in form of equivalence relations, followed by some
further definitions of the induced constraints and distance
measurements.

3.1 Position-based Description
For position-based description, each position i in the per-

mutation is defined as a equivalence relation ψi (for i =
1, . . . , n) to form the basis of position equivalence relations
such that Ψpos = {ψi | i ∈ n}. The equivalence classes (for-
mae) for each position i will be the set of n elements Ξψi =
{ξe1i , . . . , ξen

i }. For example, the permutation (1, 4, 3, 2) can
be described by the set of equivalence classes {ξ11 , ξ42 , ξ33 , ξ24}.

In addition, an induced feasibility constraint for this de-
scription Cpos needs to be added to ensure that different
elements do not occupy the same position and no two differ-
ent positions can take the same element, formally as follows.

Definition 2. For any two equivalence relations ψi and ψj
in a permutation, the position-based feasibility constraint
Cpos can be defined as:

∀i, j (i �= j) : ψi �= ψj . (4)

A direct implication of this constraint is that the 1-change
neighborhood structure is an empty set as this would involve
placing two elements in the same position.

The distance metric for this formal description is simply
the number of positions in the permutation that have differ-
ent elements (i.e., the hamming distance) according to the
our definition of forma distance [5]. For example, the dis-
tance between (1, 4, 3, 2) and (1, 4, 2, 3) is 2, since they are
different in two positions.

3.2 Precedence-based Description
For precedence-based description, a set of basis prece-

dence equivalence relations Ψprec between any two different
elements in the permutation will be considered, formally as:

Ψprec = {ψprec(ei,ej) | ei, ej ∈ N ∧ ei �= ej}.
However, by considering the fact (or feasibility constraint)
that ψprec(ei,ej) and ψprec(ej ,ei) are reverse relations

∀ei, ej ∈ N (ei �= ej) : ψprec(ei,ej) ⇔ ¬ψprec(ej ,ei),

we can remove unnecessary relations by enforcing a sequence
(e.g., e1 < e2 < . . . < en) in the definition of the relation,
such that

Ψprec = {ψprec(ei,ej) | ei, ej ∈ N ∧ ei < ej}.
Obviously, the equivalence classes are simply true/false for
whether element ei precedes element ej in the permutation,
formally as:

Ξψprec(ei,ej) = {ξ0prec(ei,ej), ξ
1
prec(ei,ej )}.

In addition, the feasibility constraint Cprec needs to be added
that a valid permutation exists if and only if the relationship
among the precedences is consistent (in that the transitivity
condition is preserved), as shown below.

Definition 3. Given any two equivalence relations in a
permutation, say ψprec(ei,ej) and ψprec(ej ,ek), the precedence-
based feasibility constraint Cprec can be defined as:

∀ei, ej , ek ∈ N (ei �= ej �= ek) :
(ψprec(ei,ej) ∧ ψprec(ej ,ek) ⇒ ψprec(ei,ek)).

(5)

The distance metric can thus be specified as the number
of different precedence relations between two solutions. For
example, the distance between permutation (1, 2, 3, 4) and
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(1, 4, 2, 3) can be obtained by comparing the following two
sets (with the differences underlined):

{ξ1prec(1,2), ξ1prec(1,3), ξ1prec(1,4), ξ1prec(2,3), ξ1prec(2,4), ξ1prec(3,4)},

{ξ1prec(1,2), ξ1prec(1,3), ξ1prec(1,4), ξ1prec(2,3), ξ0prec(2,4), ξ0prec(3,4)}.
In practice, bubble sort will be sufficient to calculate the
distance from one permutation towards another. This can
be achieved by sorting one permutation towards another,
when setting one as the initial permutation and the other
as the goal permutation which represents the right “order”.
If looking at the previous example with two permutations,
to calculate the distance from (1, 2, 3, 4) (i.e. the initial per-
mutation) to (1, 4, 2, 3) (i.e. the goal permutation) the “pri-
ority” information can be obtained from (1, 4, 2, 3):

order(1) = 1, order(4) = 2, order(2) = 3, order(3) = 4.

Thus, the initial permutation can be represented (or more
closely, implemented) in terms of (ei, order(ei)):

((1, 1), (2, 3), (3, 4), (4, 2)),

and it should be sorted according to the values of order(ei)
in order to “transform” to the goal permutation.

3.3 Adjacency-based Description
For adjacency-based description, a set of basis adjacency

equivalence relations Ψadj is considered for any two elements
to decide whether they are adjacent, formally as:

Ψadj = {ψadj(ei,ej) | ei, ej ∈ N ∧ ei �= ej}.
Due to the fact that ψadj(ei,ej) and ψadj(ej ,ei) are equivalent

relations for some symmetric problems2 (as adjacency rela-
tion is more meaningful for symmetric permutation prob-
lems)

∀ei, ej ∈ N(ei �= ej) : ψadj(ei,ej) ⇔ ψadj(ej ,ei),

we can remove redundant relations by enforcing a sequence
(e.g., e1 < e2 < . . . < en) in the definition of the relation:

Ψadj = {ψadj(ei,ej) | ei, ej ∈ N ∧ ei < ej}.
As undirected edges are considered for adjacency-based de-
scription, the equivalence classes are simply true/false for
whether there exists an edge between element ei and ele-
ment ej , formally as:

Ξψadj(ei,ej) = {ξ0adj(ei,ej), ξ
1
adj(ei,ej)}.

In this case, ξ1adj(ei,ej) represents a positive edge so that

edge (ei, ej) must exists in the solution (e.g., a tour), while
ξ0adj(ei,ej) stands for a negative edge so that edge (ei, ej) can

not be included into the solution.
In addition, the feasibility constraint Cadj needs to be

added so that each vertex of the undirected graph corre-
sponding to the permutation can only participate in two
edges and still be a valid permutation, as follows.

Definition 4. Given any equivalence relations ψadj(ei,ej )

in a permutation, the adjacency-based feasibility constraint
Cadj can be defined as:

∀ei, ej , ek, el ∈ N : ψadj(ei,ej) ∧ ψadj(ei,ek) ⇒ ¬ψadj(ei,el).
(6)

2Surry presented an extensive study about directed edge rep-
resentation for permutation in his work [9].

The distance between any two solutions in the search
space under adjacency basis is thus calculated as the num-
ber of different edge relations they possess. For example, the
distance between permutation (1, 2, 3, 4) and (1, 2, 4, 3) can
be obtained by calculating the number of different adjacency
relations between the following two sets:

{ξ1adj(1,2), ξ0adj(1,3), ξ1adj(1,4), ξ1adj(2,3), ξ0adj(2,4), ξ1adj(3,4)},

{ξ1adj(1,2), ξ1adj(1,3), ξ0adj(1,4), ξ0adj(2,3), ξ1adj(2,4), ξ1adj(3,4)}.
However, on the “phenotypical” level this forma distance
reduces to the number of different positive edges (n minus
common positive edges), which should be 2 in this case. This
is mainly because negative edges do not directly affect the
quality of solution, although they implicitly affect the selec-
tion of positive edges through the feasibility constraints.

4. ENHANCED FORMA ANALYSIS
As noted in the introduction, the formal descriptions (i.e.,

bases) for permutation all involve some feasibility constraints
to guarantee a valid permutation, which is different from the
fully-orthogonal case (e.g., the binary case). Since forma
analysis advocates specifying operators in a purely declar-
ative manner to manipulate domain knowledge (including
feasibility constraints), it hardly reveals anything about the
underlying implementation from the computational aspect,
which prevents it from being used to analyze some additional
issues about the operator design.

In fact, constraint handling plays a very important role in
the application of constraint-preservative operators, which
usually incurs additional computational costs. For example,
Surry [9] introduced the “patching” method to handle the
incompatible formae. However it failed to address the issue
of feasibility constraints properly from the forma analysis
viewpoint as it did not fully integrate constraints into the
formalization, nor provided an efficient mechanism by which
these operators may be operationalized.

Because the application of search operators for permuta-
tion inevitably requires satisfying the feasibility constraints,
it would be appropriate that we regard the application of
search operators as a process of constraints satisfaction. So,
any declarative operator with a specified basis and feasibil-
ity constraints following the forma analysis formalism cor-
responds to a constraint satisfaction problem (CSP) [10],
such that the computational aspects of forma analysis can
be evaluated from the CSP perspective. Since this CSP ap-
proach enhances our understanding of some additional (but
important) aspects of forma analysis formalism, we call it
Enhanced Forma Analysis (EFA). In the next section, we
will apply our enhanced forma analysis to permutation prob-
lems.

5. EFA OF PERMUTATION MUTATION
According to the k-change (mutation) operator template,

a distance of k should be applied under a certain basis to
generate a new permutation, formally as:

disΨ(P1, P2) ≤ k.

Now, we are in a position to analyze what operators can
be obtained with regard to the aforementioned three formal
descriptions of permutation, which should give rise to three
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different k-change operators: position-based k-change oper-
ator (Opos k), precedence-based k-change operator (Oprec k),
and adjacency-based k-change operator (Oadj k).

5.1 Position-based k-change Operator
For position-based description, since each position in the

permutation is defined as an equivalence relation, the dis-
tance between two permutations disΨpos(P1, P2) is the num-
ber of positions where they are different (or the hamming
distance under Ψpos). Thus, we only need to apply a dis-
tance of k based on P1 to generate P2 such that

disΨpos(P1, P2) ≤ k.

For example, given permutation P1 = (1, 2, 3, 4) such that

P1 = {ξ11 , ξ22 , ξ33 , ξ44},
what would be the possible solution P2 so that they have a
distance of k?

The most straightforward thought would be to randomly
select k equivalence relations and change the equivalence
classes they fall into. However, it must not be neglected that
the feasibility constraint Cpos induced by position-based de-
scription should be satisfied to produce a valid permutation.
Thus, Opos k will involve a constraint satisfaction subprob-
lem, where Cpos must be satisfied to guarantee valid permu-
tation. The CSP we consider corresponds to the operator
template Ok with Cpos satisfied. Classical CSP techniques
can be directly utilized to implement Opos k. Now, we will
illustrate how CSP techniques can be effectively used in the
design of Opos k.

Given P1 ({ξ11 , ξ22 , ξ33 , ξ44}), we can first un-instantiate k
(e.g., k = 2) equivalence relations to produce a partial per-
mutation for a potential distance of 2. This gives us C2

4

options from which we can uniformly select one to serve as
the base (partial permutation) of P2 (e.g., {ξ−1 , ξ22 , ξ−3 , ξ44}).

Then, what we need to do is simply to re-instantiate these
2 equivalence relations to suitable classes such that Cpos is
satisfied. Figure 1 illustrates briefly how to re-instantiate
the partial permutation to a complete permutation.

In Figure 1, the first position ξ−1 of the partial permuta-
tion (−, 2,−, 4) is considered first. The domain of the first
position is {1, 3}, while the domain of the third position is
{1, 3} as well. After an equivalence class (1 or 3) is chosen
for the first position, the domain is reduced for the third
position through constraint propagation. After instantiat-
ing all the possible solutions, P2 can be randomly selected
among the whole set of feasible solutions to the CSP3.

However, it is obvious from Figure 1 that “revisit” is not
forbidden for each of the un-instantiated positions, which
effectively produces a distance no larger than k. To impose
“strictness” on the operator where revisit is not allow, we
can simply tighten the restriction on the domain available
for each position by removing the value taken by P1 for the
corresponding position. Thus, the left branch in Figure 1
where the first position takes the element 1 must be cut off
to enforce “strictness”, because element 1 has already been
removed from the domain of the first position for P2 (as
element 1 has been taken for the first position of P1).

In addition, it is straightforward to realize that the CSP
induced by Opos k can be solved in a backtrack-free manner,

3It is of course not necessary that all the feasible solutions
to the CSP should be generated to get a potential candidate
for P2.
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un-instantiate

(_, 2, _, 4)

(1, 2, _, 4) (3, 2, _, 4)

(1, 2, 3, 4)

(1, 2, 3, 4) (3, 2, 1, 4)

Domain for pos1 {1,3}

Domain for pos3 {3} Domain for pos3 {1}

Figure 1: Illustration of the re-instantiation of a par-
tial permutation based on position-based descrip-
tion.

since the domain of the un-instantiated relations will not
be empty until the valid permutation is generated and the
constraint Cpos can be satisfied automatically during the re-
instantiation. This is very important if we want to consider
some complexity issues of the operator through the CSP we
solve.

In fact, the working mechanism of Opos k has a rather sim-
ilar effect as the scramble mutation [2], which re-arranges a
certain number (i.e., k) of positions. The only difference is
that the selection of these positions should be purely ran-
dom, other than inside a continuous block. Moreover, a
“strict” 2-change in the positional basis reduces to the tradi-
tional swap mutation [2], which simply selects two elements
and swaps their positions.

5.2 Precedence-based k-change Operator
For precedence-based description of permutation, prece-

dence relations between the elements are considered. The
distance between two permutations is the number of dif-
ferent precedence relations disΨprec(P1, P2). For example,
given two permutation (1, 2, 3, 4) and (3, 2, 1, 4) with the
equivalence classes:

{ξ1prec(1,2), ξ1prec(1,3), ξ1prec(1,4), ξ1prec(2,3), ξ1prec(2,4), ξ1prec(3,4)}

{ξ0prec(1,2), ξ0prec(1,3), ξ1prec(1,4), ξ0prec(2,3), ξ1prec(2,4), ξ1prec(3,4)}
the distance is 3, because they are different in 3 precedence
relations (as underlined).

Assuming that a k-change (e.g., k = 3) is applied to a per-
mutation P1 = (2, 3, 4, 1), the product P2 can be obtained
by solving a CSP as shown in Figure 2.

Given that P1 can be represented as

{ξ0prec(1,2), ξ0prec(1,3), ξ0prec(1,4), ξ1prec(2,3), ξ1prec(2,4), ξ1prec(3,4)},
applying a 3-change will be a re-instantiation of 3 equiva-
lence relations. This gives us C3

C2
n

options from which we can

uniformly select one as the partial permutation to generate
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(3, 4, >)

(1, 2, _)

(1, 3, _)

(1, 4, _)

(2, 3, >)

(2, 4, >)

(3, 4, >)(1, 2, <)

(1, 3, _)

(1, 4, _)

(2, 3, >)

(2, 4, >)

(3, 4, >)

(1, 2, >)

(1, 3, _)

(1, 4, _)

(2, 3, >)

(2, 4, >)

(3, 4, >)

(1, 2, <)

(1, 3, <)

(1, 4, _)

(2, 3, >)

(2, 4, >)

(3, 4, >)

(1, 2, <)

(1, 3, >)

(1, 4, _)

(2, 3, >)

(2, 4, >)

(3, 4, >)

(1, 2, >)

(1, 3, <)

(1, 4, _)

(2, 3, >)

(2, 4, >)

(3, 4, >)

(1, 2, >)

(1, 3, >)

(1, 4, _)

(2, 3, >)

(2, 4, >)

(3, 4, >)

BT

(2, 3, 4, 1) (2, 3, 1, 4) (2, 1, 3, 4)

(1, 2, <)

(1, 3, <)

(1, 4, <)

(2, 3, >)

(2, 4, >)

(3, 4, >)

(1, 2, <)

(1, 3, <)

(1, 4, >)

(2, 3, >)

(2, 4, >)

(3, 4, >)

(1, 2, <)

(1, 3, >)

(1, 4, >)

(2, 3, >)

(2, 4, >)

(3, 4, >)

BT BT BT (1, 2, >)

(1, 3, >)

(1, 4, >)

(2, 3, >)

(2, 4, >)

(3, 4, >)

(1, 2, 3, 4)

Figure 2: Illustration of the re-instantiation of a per-
mutation with precedence-based description. Sym-
bol “(i, j, >)” means element i is before element j,
while “(i, j, <)” means otherwise. The framed per-
mutation has a “strict” distance of 3 to the initial
permutation.

P2. For example, the partial permutation can be

{ξ−prec(1,2), ξ−prec(1,3), ξ−prec(1,4), ξ1prec(2,3), ξ1prec(2,4), ξ1prec(3,4)}.
Re-instantiating these relations to suitable classes such that
Cprec is satisfied can give us potential candidates for P2.

As shown in Figure 2, the re-instantiation of precedence
relations is carried out one after another. The domain of
each relation is simply {0, 1}. Alternatively we use “<” and
“>” to represent the precedence such that symbol “(i, j, >)”
means element i is before element j while “(i, j, <)” means
otherwise. P2 can be randomly selected among the set of
feasible solutions to the CSP for Oprec k.

Again, “revisit” can be forbidden by imposing restriction
on the domains of those un-instantiated relations. Due to
the fact that precedence relation only takes binary values
({0, 1}) and the value taken for that relation of P1 must be
removed from the domain of the corresponding relation of
P2, the operator effectively reduces to a “flip” based on the
binary values for each of those un-instantiated relations. For
example, if 0 is taken by P1 for ψprec(i,j), the only possibility
for P2 for ψprec(i,j) will be 1. Thus, there can be at most
one P2 such that the distance is “strict”.

However, there are cases that imposing “strictness” on the

Figure 3: Illustration of edge-difference between two
permutations (the dashed lines represent the com-
mon edges, while the solid lines represent the differ-
ent edges).

re-instantiation of P2 does not give us any feasible solution
such that Cprec is satisfied. In these cases, back-tracking
may have to return to the un-instantiation level to seek
for other options to re-instantiate. This is because, the k
un-instantiated relations effectively define the structure of
the CSP used to generate P2. Alternatively, relaxation of
“strictness” may also be considered to complete a valid per-
mutation to reduce the computational costs.

By observing the effect of changing a single precedence
equivalence class, it is not difficult to find that a 1-change
(minimal mutation) reduces to the adjacent swap muta-
tion [2], which swaps two contiguous elements without vi-
olating the feasibility constraint Cprec. Thus, Oprec k can
be approximately regarded as equivalent to a k-iterated ad-
jacent swap mutation. In addition, the shift mutation [2],
which removes an element from a position and re-inserts
it in another position, can be considered as a constrained
version of Oprec k with linkage specialization, such that the
k-iterated adjacent swaps are in a fixed sequence.

5.3 Adjacency-based k-change Operator
Since each potential edge is defined as an equivalence re-

lation for adjacency-based description of permutation, the
distance of two permutations disΨadj (P1, P2) corresponds to
the number of different adjacency relations between them.
For example, given permutations (1, 2, 4, 3) and (1, 3, 2, 4)
(as shown in Figure 3), with the equivalence classes:

{ξ1adj(1,2), ξ1adj(1,3), ξ0adj(1,4), ξ0adj(2,3), ξ1adj(2,4), ξ1adj(3,4)}

{ξ0adj(1,2), ξ1adj(1,3), ξ1adj(1,4), ξ1adj(2,3), ξ1adj(2,4), ξ0adj(3,4)}
the distance (more specifically, the “edge-difference”) is 4
because there are 4 different edge relations (as underlined)
involved in these two permutations.

Suppose we have a permutation (1, 2, 3, 4)

P1 = {ξ1adj(1,2), ξ0adj(1,3), ξ1adj(1,4), ξ1adj(2,3), ξ0adj(2,4), ξ1adj(3,4)},
to apply a k-change to P1 such that disΨadj (P1, P2) ≤ k, we
can first un-instantiate k (e.g. k = 4) relations (randomly
chosen from C4

C2
n

options) to produce the partial permuta-

tion for P2. One of such partial permutations can be:

P2 = {ξ−adj(1,2), ξ−adj(1,3), ξ1adj(1,4), ξ1adj(2,3), ξ−adj(2,4), ξ−adj(3,4)}.
By solving the CSP to generate P2 such that Cadj is satisfied,
we can get all the candidate solutions, including the solution
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permutation (1, 3, 2, 4) with a “strict” distance of 4 to P1:

{ξ0adj(1,2), ξ1adj(1,3), ξ1adj(1,4), ξ1adj(2,3), ξ1adj(2,4), ξ0adj(3,4)}.
However, observant readers should have realized that not

all un-instantiation of adjacency relations can lead to a P2

with a “strict k” distance to P1, such as:

P2 = {ξ−adj(1,2), ξ−adj(1,3), ξ−adj(1,4), ξ−adj(2,3), ξ0adj(2,4), ξ1adj(3,4)}.
In this case, we have to sacrifice either accuracy or complex-
ity. In another word, seeking for a feasible un-instantiation
to achieve accuracy may increase the complexity of the algo-
rithm, while relaxation of “strictness” which allows“revisit”
(so that accuracy is sacrificed) can highly reduce the com-
plexity.

It is also worthy of mentioning that some value for k (e.g.
1) may not be valid to be applied due to the nature of Cadj
that adjacency relations are highly linked. This eventually
makes the CSP not “strictly” solvable when revisit is for-
bidden, so that no feasible permutation can be produced.
In this case, we may either consider that the k is too in-
significant (e.g. k = 1) to make any difference to the raw
permutation P1 which results in P2 = P1, or seek for a near-
est valid distance as an approximation.

The minimal mutation implied by the adjacency-based de-
scription is an edge 2-change mutation4, because 1-change
automatically violates the feasibility constraint Cadj. This
operator is equivalent to the edge-reverse mutation [2] in
literature, which reverses the positions of a segment in the
permutation in such a manner that the feasibility constraint
Cadj can be satisfied automatically. In a general sense,
an edge k-change mutation can be approximated by a k′-
iterated edge-reverse mutation with

k′ = round(k/2), 5

as any edge-reverse mutation involves the change of 2 edges.

6. EFA OF PERMUTATION CROSSOVER
As transmission [7] is a desirable property that we want

to achieve during crossover in order to exploit child solu-
tions with parental material, we will use the RTR operator
template to illustrate how enhance forma analysis can be uti-
lized to obtain crossover operators for permutations with the
aforementioned formal descriptions, which should give rise
to three different RTR operators: position-based RTR oper-
ator (RTRpos), precedence-based RTR operator (RTRprec),
and adjacency-based RTR operator (RTRadj).

From the CSP perspective, RTR indicates that equiva-
lence classes should be randomly chosen from the parental
permutations (e.g. Pp1 and Pp2) to construct (or instanti-
ate) the child permutation Pc such that the the feasibility
constraint(s) (Cpos/Cprec/Cadj) can be satisfied. In other
words, the product of RTR is effectively a random valid per-
mutation chosen from the “constrained” dynastic potential
of the parents. Given a fully un-instantiated permutation as

4A standard edge 2-change mutation involves the “replace-
ment” of 2 edges which in turn results in the change of 4
adjacency equivalence relations, since there are also changes
involving negative edges. However, from the implementa-
tion perspective only phenotypical (or positive) edges are
considered.
5In this equation, any function that rounds k/2 to its nearest
integer is sufficient.

111 14 4 4 4

3332 22 23

3232

41

XXXX (4, 3, 2, 1)

XXXX

(_, _, _, _)

(1, _, _, _) (4, _, _, _)

(1, 2, _, _) (1, 3, _, _) (4, 2, _, _) (4, 3, _, _)

(1, 3, 2, _) (4, 2, 3, _) (4, 3, 2, _)(1, 2, 3, _)

(1, 2, 3, 4) (1, 3, 2, 4) (4, 2, 3, 1)

Figure 4: The re-instantiation of Pc for RTRpos.

the partial permutation to generate the child permutation
Pc, RTR effectively decides which equivalence class should
be taken from which parental permutation to re-instantiate
Pc for each relation.

6.1 Position-based RTR
For position-based description, feasibility constraint Cpos

has to be satisfied so that no two positions share the same el-
ement. This largely reduces the number of feasible solutions
to the basic CSP where RTR is interpreted as recombination
of parental equivalence classes, because not all combinations
of them lead to valid permutations. By satisfying Cpos while
instantiating Pc, we can obtained all potential candidates for
RTRpos as a result of solving the CSP.

For example, given Pp1 = (1, 2, 3, 4) and Pp2 = (4, 3, 2, 1),
RTRpos can produce potential candidate(s) for Pc by re-
instantiating it (as shown in Figure 4) with corresponding
equivalence classes, as shown in Equation 7.

Pp1 = {ξ11 , ξ22 , ξ33 , ξ44}
Pp2 = {ξ41 , ξ32 , ξ23 , ξ14}
Pc = {ξ11 , ξ32 , ξ23 , ξ44}

(7)

To transmit position features from parents to children and
interpret the feasibility constraint Cpos in a more natural
way, we produce a fully-transmitting crossover for permu-
tation, namely Position Transmitting Crossover (PTX), by
identifying the constraint satisfaction process of operator as
a CSP.

In PTX, both Cpos and transmitting6 Ct has to be satis-
fied as an interpretation of its CSP. In this sense, constrained
positions are clustered to function separately. For example,
given two permutations

(3, 6, 5, 4, 2, 7, 8, 1),

(3, 6, 2, 5, 4, 8, 7, 1),

we are able to construct the constraint graphs implied by
both Cpos and transmitting Ct, as shown in Figure 5 with
constrained positions linked together.

The construction of the constraint graphs is straightfor-
ward to understand–a value that has been taken for one
position must be forbidden (constrained) for another posi-
tion. For example, for position 3 (P3 in Figure 5) either 5 or
2 should be chosen to achieve transmitting. However, choos-
ing either of them will forbid another position (e.g. P4 or P5

6Transmitting can be regarded as an additional constraint
imposed by operator.

928



in Figure 5) from taking the same value, which effectively
reduces the domain for another position.

The only possibility that the value taken by one position
does not constrain the value taken by another is that the
parents both take the same value for that position (e.g. P1

in Figure 5), where taking (the only) one value automatically
satisfies the constraint.

Thus, as long as the constrained positions are transmitted
all-together to the child, PTX always satisfies both Cpos
and Ct and the child solution is always a valid permutation.
Following the above example, the child produced by PTX
could be:

(3, 6, 5, 4, 2, 8, 7, 1).

It should also be mentioned that, in the extreme case when
all the positions are constrained in the same constraint graph
(e.g. (1, 2, 3, 4) and (4, 1, 2, 3)), the child after PTX will have
to take all the equivalence classes for either of its parents.
The constrained graph in this case is shown in Figure 6.

In fact, PTX works in a very similar manner as the cycle
crossover [6] in literature, which preserves absolute positions
in parents. However, it should be mentioned that in litera-
ture [2] there are also different kinds of crossovers that does
not strictly transmitting absolute positional information to
perform well in some cases. In those cases, we argue that
different “requirements” or characteristics, other than strict
transmission, may be expected from the crossover operator
for different problem instances. Additionally, there may also
be some positive “side effects” by incorporating a mixture
of different characteristics apart from pure transmission to
enhance the exploration power in search.

6.2 Precedence-based RTR
To achieve transmitting in precedence-based crossover,

both transmitting Ct and Cprec should be satisfied from the
CSP viewpoint. It is easy to verify that this CSP is solvable,
since (in the worst case) taking all the equivalence classes
for either parent to produce child always gives one possible
solution such that constraints (Ct and Cprec) are satisfied.

Furthermore, precedence relation is special in that its
equivalence class is either 1 or 0. This means in the case
when two parents are different for a certain equivalence re-
lation ψprec(ei,ej ), the domain of ψprec(ei,ej) for the child is
always {0, 1}, which implicitly means ψprec(ei,ej ) can take
any value for the child. In the case when two parents are
the same for ψprec(ei,ej), the corresponding equivalence class
is fixed for the child to achieve transmitting.

For example, given permutations (3, 1, 2, 4) and (4, 2, 3, 1)

P6P3

P4

P2P1

P5 P7

P8

Figure 5: Illustration of the constraint graph of
PTX.

P3P4

P2P1

Figure 6: Constraint graph of PTX–an extreme
case.

such that

{ξ1prec(1,2), ξ0prec(1,3), ξ1prec(1,4), ξ0prec(2,3), ξ1prec(2,4), ξ1prec(3,4)}

{ξ0prec(1,2), ξ0prec(1,3), ξ0prec(1,4), ξ1prec(2,3), ξ0prec(2,4), ξ0prec(3,4)}
the partial permutation as a child to achieve transmitting
can be:

{ξ−prec(1,2), ξ0prec(1,3), ξ−prec(1,4), ξ−prec(2,3), ξ−prec(2,4), ξ−prec(3,4)},
while the un-instantiated relations can be re-instantiated
randomly to produce the child permutation, by solving a
CSP such that simply Cprec should be satisfied.

In fact, strictly transmitting crossover is also possible for
precedence-based description. Due to the fact that the re-
instantiation process of precedence relations is equivalent
to the Topological Sorting Problems [3], where a partial or-
der7 needs to be completed to a linear order (in a directed
acyclic graph (DAG) based on precedence) with a complex-
ity of O(edges+vertices), we argue that the re-instantiation
of precedence relations in the considered CSP can be solved
in a deterministic polynomial-time in terms of Topological
Sorting Problems.

In literature, Precedence Preservative Crossover (PPX) [2]
was found to be strictly transmitting. The underlining prin-
ciple in PPX is that the precedence equivalence classes of
parents are passed to the child in such an order (from left to
right or more specifically from the node with no incoming
edges in the precedence graph) that both Ct and Cprec are
satisfied automatically.

Many readers may find that this is rather similar to the
most popular algorithm used for topological sorting where
the order can be completed by starting from the node(s) with
no incoming edges. Switching between two parents simply
aims to recombine the precedence equivalence classes of the
two parents.

It is also easy to find that the set of all possible solutions
produced by PPX is in fact a subset of the set of solutions
produced by the above CSP approach. In other words, for
each of the solution produced by PPX, there is always a cor-
responding re-instantiation of the partial child permutation.

6.3 Adjacency-based RTR
Regarding the adjacency-based description of permuta-

tion which has been proved to be non g-separable [7], lit-
erature [11, 9] pointed out that transmission can not be
achieved without sacrificing assortment. From the CSP view-
point, this implies that Cadj and Ct all together may make

7The partial order is defined by the equivalence relations
where the parents are equivalent–the order that must be
enforced for the child.
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the corresponding CSP not strictly solvable (if the original
parental permutations are not allowed to be repeated as a
child permutation). Through investigation, we can also find
that it is the case when two parents are the same for some
equivalence relations that makes the CSP NP-complete in
“strict” sense. For those adjacency relations that two par-
ents are different, no restriction will be applied to the child
solution for that relation (as both {1, 0} are allowed).

Furthermore, for those edges which are absent in both
parents (“negative edges” ξ0adj(i,j)), transmitting automati-
cally forbids them from being included in the children. In
this sense, the induced CSP is equivalent to the Hamil-
tonian Cycle Problem [4] in an incomplete graph, which is
NP-complete8. Those edges which are common for both
parents (“positive edges” ξ1adj(i,j)) effectively enforce that
some edges must be included in the Hamiltonian cycles (so-
lutions). This is actually a constrained version of the original
Hamiltonian Cycle Problem induced by “negative edges”,
which is also NP-complete.

Thus, approximation through relaxation of Ct may be re-
quired to produce a valid new child permutation. In litera-
ture, Enhanced Edge Recombination devised by [8] has been
noticed as an effective “edge-aware” recombination operator
which has a high rate (98%) of adjacency transmission.

7. EXTENSION TO OTHER DOMAINS
In principle, our enhanced forma analysis framework is

consistent across different problem domains (e.g., binary or
real-parameter optimization), given appropriate description
of problem in terms of equivalence relations, and any re-
quired feasibility constraints.

For example, the binary case automatically fits in our
framework, as there is no feasibility constraint due to the
orthogonality of binary description. For real-parameter op-
timization, with the formal descriptions introduced by Surry
(dedekind cut and isodedekind cut) in [9] and the address-
ing of the feasibility constraints they induce [5], our pro-
posed enhanced forma analysis framework is simply ready-
to-adopt. However, we will not discuss this in detail here as
it lies outside of the scope of this paper.

8. CONCLUSIONS
In this paper, we proposed the enhanced forma analy-

sis framework where feasibility constraints implied by basis
are handled from a CSP perspective. This facilitated our
analysis of operators for those non-orthogonal descriptions
(in this case, the permutation descriptions) where feasibility
constraints exist, and allows an efficient default operational-
ization by using CSP solution algorithms.

In addition, the CSP viewpoint explores some further is-
sues which were impossible to analyze with classical forma
analysis, e.g. complexity issues. This is very beneficial as
classical forma analysis is purely declarative which tells lit-
tle about computational aspects of operator design. This
framework bridges the gap between the formal formalism
and our further demands for computational analysis.

8It should be pointed out that this Hamiltonian cycle prob-
lem is NP-complete only if the parental permutations are
forbidden for the child, since the parents automatically gives
2 possible solutions. However, finding the third solution is
still NP-complete.

Search operators for permutation problem have been stud-
ied following k-change and RTR operator templates to il-
lustrate the basic approach of our enhance forma analysis,
which gives a broader view of operator design for permuta-
tion with some further insights.

Applying our enhanced forma analysis to some other prob-
lem domain to obtain suitable operators would be a recom-
mended future work. Further utilization of CSP techniques
such as backjumping [10] to facilitate efficient operator im-
plementation is also a good direction for research.
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