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ABSTRACT 
In order to solve nonstationary optimization problems efficiently, 
evolutionary algorithms need sufficient diversity to adapt to envi-
ronmental changes. The dual-population genetic algorithm 
(DPGA) is a novel evolutionary algorithm that uses an extra popu-
lation called the reserve population to provide additional diversity 
to the main population through crossbreeding. Preliminary ex-
perimental results on various periods and degrees of environ-
mental change have shown that the distance between the two 
populations of DPGA is one of the most important factors that 
affect its performance. However, it is very difficult to determine 
the best population distance without prior knowledge about the 
given problem. This paper proposes a new DPGA that uses two 
reserve populations (DPGA2). The reserve populations are at 
different distances from the main population. The information 
inflow from the reserve populations is controlled by survival se-
lection. Experimental results show that DPGA2 shows a better 
performance than other evolutionary algorithms for nonstationary 
optimization problems without relying on prior knowledge about 
the problem. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search 

General Terms 
Algorithms 

Keywords 
Genetic algorithm, multi-population GA, dual-population GA, 
nonstationary optimization, dynamic optimization 

1. INTRODUCTION 
Since the population of a genetic algorithm (GA) offers the advan-
tage of diversity, the GA adapts more easily to environmental 
changes, and consequently, shows a better performance for dy-

namic optimization as compared to other meta-heuristic algo-
rithms such as hill-climbing, simulated annealing, and tabu search. 
However, as the population evolves, the GA loses its diversity and 
it can no longer adapt easily to environmental changes. Many 
previous studies have proposed various methods to cope with this 
problem. Branke [2] has grouped these methods into four catego-
ries: increasing diversity after a change [3, 11], maintaining diver-
sity throughout the run [4], memory-based methods [5, 7] and 
multi-population approaches [1, 10]. 

The dual-population genetic algorithm (DPGA) was originally 
proposed for stationary optimization problems [8, 9]. It employs 
two distinct populations with different evolutionary objectives. 
The main population plays the same role as that of the population 
of an ordinary GA. It evolves to find a good solution with a high 
fitness value. The additional population called the reserve popula-
tion provides additional diversity to the main population. In order 
to allow the main population to use the diversity in the reserve 
population, there must be a method of exchanging information 
between the populations. The migration method used for most 
multi-population GAs (MPGAs), however, is not suitable for 
DPGA because the two populations have different evolutionary 
objectives. An individual of one population can hardly survive in 
the other because the methods for evaluating fitness are different 
for both populations. Therefore, DPGA uses crossbreeding as a 
means of information exchange. In DPGA, offspring are produced 
by mating not only the individuals of the same population but also 
the individuals of different populations. Since the crossbred off-
spring contain the genetic material of both populations, their fit-
ness values are not too low and thus they assimilate relatively 
easily into the new population. 

The population distance is a very important factor that affects the 
performance of DPGA. The distance between the populations of 
DPGA can be controlled by the fitness function parameter of the 
reserve population [9]. The best distance depends on the charac-
teristics of a given problem. For example, DPGA must maintain a 
rather small distance between the main population and the reserve 
populations for most stationary optimization problems. However, 
for problems that require high diversity, such as the deceptive 
problems, the algorithm must maintain a relatively large distance 
between the populations. For dynamic optimization problems, the 
best distance between the populations depends on the dynamic 
characteristics of the given problems, such as the period of change 
and the degree of change. In this study, we apply DPGA to dy-
namic optimization problems of various periods and degrees of 
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change in order to identify the relationship between the best popu-
lation distance and the dynamic characteristics. In addition, we 
propose a new DPGA with two reserve populations for dynamic 
optimization problems. The two reserve populations are at differ-
ent distances from the main population and the information inflow 
from the reserve populations is controlled by survival selection. 

The rest of the paper is organized as follows. Section 2 explains 
the DPGA in detail and section 3 describes the new version of 
DPGA that has two reserve populations. Section 4 reports the 
experimental results with various dynamic optimization problems 
and compares DPGA with other genetic algorithms. Finally, sec-
tion 5 provides conclusions. 

2. Dual-population Genetic Algorithm 
2.1 Fitness Function for Reserve Population 
DPGA manipulates two populations with different evolutionary 
objectives. The individuals of each population are evaluated by 
the fitness function of the population based on its evolutionary 
objective. The fitness function fm(x) of the main population is the 
same as the evaluation function given by the problem, as its evo-
lutionary objective is to find a good solution. The individuals of 
the reserve population are evaluated by their average distance to 
the individuals of the main population, because the evolutionary 
objective of the reserve population is to provide additional diver-
sity to the main population. Previous studies [9] have used equa-
tion (1) as the fitness function of the reserve population so that an 
individual has its maximum fitness value of 1 when its average 
distance to the individuals of the main population is equal to a 
given value δ: 

),(1)( xMx dfr −−= δδ  (1)

where 0 ≤ δ ≤ 1, and 0 ≤ d(M, x) ≤ 1 is the normalized average 
distance between the individuals of the main population M and an 
individual x of the reserve population. Assuming a binary repre-
sentation for a chromosome, d(M, x) is calculated using equation 
(2): 
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where |M| is the size of the main population M, l is the length of a 
chromosome, and dist(m, x) is the distance between two chromo-
some vectors m and x. dist(m, x) can be the Hamming distance in 
case of binary representation. fM,k represents the frequency of the 
kth gene value “1” of M. xk denotes the frequency of the kth gene 
value “1” of the chromosome vector x and is identical to the kth 
gene value of the chromosome. The details of this function can be 
found in previous studies [8, 9]. When δ = 0, individuals that are 
very similar to those of the main population have high fitness 
values. In contrast, when δ = 1, individuals that are very different 
from those of the main population have high fitness values. 

2.2 Algorithm for Evolution 
DPGA begins with two randomly generated populations. The 
individuals of each population are evaluated by the fitness func-
tion of the population to which they belong. Ordinary MPGAs 
generate new offspring only by inbreeding, i.e., a recombination 
between parents selected from the same population. However, 
DPGA generates offspring by both inbreeding and crossbreeding. 

The inbred offspring and crossbred offspring compete with each 
other through survival selection and only the winners are selected 
for the next generation. Figure 1 shows the pseudocode of DPGA. 

DPGA generates n offspring for each population and then the best 
m offspring are selected for the next generation of each population 
(n > m). First, the algorithm generates m inbred offspring IM 
through inbreeding between parents from the main population. 
Similarly, the algorithm generates m inbred offspring IR through 
inbreeding between parents from the reserve population. Next, the 
algorithm generates (n – m) crossbred offspring C through cross-
breeding. The inbred offspring IM of the main population and the 
crossbred offspring C constitute a candidate set OM for the next 
generation of the main population. Similarly, the inbred offspring 
IR of the reserve population and the crossbred offspring C consti-
tute a candidate set OR for the reserve population. 

The procedure GenerateInbredOffspring for generating inbred 
offspring is identical to the procedure of a standard GA for gener-
ating offspring. Two parents are selected from the given popula-
tion Mt or Rt according to their fitness values and new offspring 
are generated by using crossover and mutation. The procedure 
GenerateCrossbredOffspring for generating crossbred offspring 
selects the parents from different populations, one from the main 
population and the other from the reserve population. It should be 
noted that the fitness functions of the two populations are differ-
ent; hence, the basis for selection of the parents is different. After 
selecting the parents, new offspring are generated by crossover 
and mutation. Since the crossbred offspring contain genetic mate-
rials of both the parents, they can function as a medium of infor-
mation exchange. 

The next step is survival selection for the next generation of each 
population. First, the individuals in the candidate set OM are eva-
luated by the fitness function fr(x) of the main population. Then, 
the algorithm selects m individuals from OM for the next genera-

Figure 1. Pseudocode of DPGA. 

Procedure DPGA 
begin 

Initialize population M0
 and R0  (|M0| = |R0| = m) 

Evaluate M0 using fm(x) 
Evaluate R0

 using fr(x) 
t := 0 
repeat 

IM = GenerateInbredOffspring(Mt, m) 
IR = GenerateInbredOffspring(Rt, m) 
C = GenerateCrossbredOffspring(Mt, Rt, n - m) 
OM = IM ∪ C 
OR = IR ∪ C 
Evaluate OM using fm(x) 

Evaluate OR using frδ(x) 

Mt+1 = SurvivalSelection(OM, m) 
Rt+1

 = SurvivalSelection(OR, m) 
t := t + 1 

until terminated = true 
end
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tion Mt+1 of the main population through survival selection. Simi-
larly, the individuals in the candidate set OR are evaluated by the 
fitness function frδ(x), and m individuals are selected from OR for 
the next generation Rt+1 of the reserve population. For survival 
selection, individuals in the given candidate set are sorted by their 
fitness values and the best m individuals are selected. Since m is 
equal to the number of generated inbred offspring, the crossbred 
offspring can survive only if they are better than at least one of the 
inbred offspring. If too much genetic materials are imported 
through crossbred offspring, the convergence of the population 
can be disturbed and it could be difficult for the population to 
evolve into a good solution. Therefore the influx of the crossbred 
offspring is controlled by survival selection. 

3.  DPGA with two reserve populations 
The fitness function frδ(x) drives the individuals of the reserve 
population to evolve to ones whose distance to the main popula-
tion is δ. When δ is too small, the individuals of the reserve popu-
lation become very similar to those of the main population and 
therefore do not provide sufficient diversity. On the contrary, 
when δ is too large, the parents for crossbreeding are too different 
from each other and therefore do not give birth to good offspring. 
When the parents for crossbreeding are genetically very different 
from each other, the probability that the offspring will be much 
worse than their parents is high. Accordingly, as the populations 
converge and their average population fitness attains high values, 
it becomes difficult for the crossbred offspring to win the survival 
selection. In such cases, the reserve population also cannot pro-
vide sufficient diversity to the main population because genetic 
materials are rarely exchanged between the populations. 

A previous study [9] shows that the performance of DPGA is 
highly dependent on the value of δ, and the best value of δ differs 
for each problem. In general, DPGA shows a good performance 
for stationary problems when the value of δ is rather small (e.g., 
0.1). Exceptionally, a large value of δ is required for the deceptive 
problems because they demand high diversity to be solved effi-
ciently. Due to the difficulty in determining the best value of δ, 
the previous study proposed a method for adjusting the value of δ 
by using the information obtained through evolution. 

For nonstationary optimization problems, the best value of δ is 
affected by the dynamic characteristics of a problem such as the 
speed of change and degree of change. According to our prelimi-
nary experiments, DPGA shows a good performance for a dy-
namic optimization problem with a small degree of change when 
the value of δ is small. However, a larger value of δ is required for 
a problem with a higher degree of change. The method for adjust-
ing the value of δ proposed in the previous study is not suitable 
for nonstationary optimization problems. Since the method is 
devised for stationary problems, it tends to maintain a low average 
value of δ even when it is applied to nonstationary problems. 
Consequently, the reserve population cannot maintain sufficient 
diversity for a problem with a high degree of change. 

In this paper, we propose a new algorithm called DPGA2 in which 
the reserve population is split into two independent subpopula-
tions R1 and R2, with R1 having a small value δ1 and R2 a large 
value δ2. Crossbred offspring are generated only between the main 
population and each of the reserve populations. Since it is not 
necessary to exchange information between the reserve popula-
tions, no crossbred offspring are generated between them. Each 

crossbred offspring competes with both inbred offspring and other 
crossbred offspring, and thus, the inflow of genetic material from 
each reserve population is automatically adjusted by survival se-
lection. We expect a good amount of information flow into the 
main population from R1 for problems with a low degree of 
change or from R2 for problems with a high degree of change. 

The algorithm of DPGA2 is shown in Figure 2. DPGA2 generates 
n offspring and selects the best m offspring for the main popula-
tion. However, it generates n/2 offspring and selects the best m/2 
offspring for each reserve population. The main population M 
generates m inbred offspring IM, and the reserve population R1 
and R2 generate m/2 inbred offspring IR1 and IR2, respectively. 
Then, (n – m)/2 offspring C1 are generated by crossbreeding be-
tween M and R1. Similarly (n – m)/2 offspring C2 are generated 
by crossbreeding between M and R2. The inbred offspring IM of 
the main population and both the crossbred offspring C1 and C2 
become candidates OM for the next generation of the main popula-
tion. The inbred offspring IR1 and the crossbred offspring C1 be-
come candidate OR1 for the reserve population R1, and the inbred 
offspring IR2 and the crossbred offspring C2 become candidates 
OR2 for the reserve population R2. Finally, the candidate set of 
each population is evaluated by its fitness function and the best m 
or m/2 individuals are selected for the next generation through 
survival selection. 

Procedure DPGA2 
begin 

Initialize population M0, R1
0, and R2

0 
(|M0| = m, |R1

0| = |R2
0| = m/2) 

Evaluate M0 using fm() 
Evaluate R1

0
 using frδ1() 

Evaluate R2
0
 using frδ2() 

t := 0 
repeat 

IM := GenerateInbredOffspring(Mt, m) 
IR1 := GenerateInbredOffspring(R1

t, m/2) 
IR2 := GenerateInbredOffspring(R2

t, m/2) 
C1 := GenerateCrossbredOffspring(Mt, R1

t, (n – m)/2) 
C2 := GenerateCrossbredOffspring(Mt, R2

t, (n – m)/2) 
OM := IM ∪ C1 ∪ C2 

OR1 := IR1 ∪ C1 
OR2 := IR2 ∪ C2 
Evaluate OM using fm(x); 
Evaluate OR1 using frδ1(x) 
Evaluate OR2 using frδ2(x) 
Mt+1 := SurvivalSelection(OM, m) 
R1

t+1
 := SurvivalSelection(OR1, m/2) 

R2
t+1

 := SurvivalSelection(OR2, m/2) 
t := t + 1 

until terminated = true 
end 

Figure 2. Pseudocode of DPGA with two reserve populations 
(DPGA2). 
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4. Experimental results 
We have used the dynamic problem generator that was proposed 
by [14, 15]. This generator can create various dynamic problems 
using two parameters: the period of change τ and the degree of 
change ρ. Given a binary-encoded stationary optimization prob-
lem f(x), the dynamic problem f(x, t) is defined as follows. 

f(x, t) = f(x ⊕ m(k))  (3)

where t is the generation count, k = ⎣t/τ⎦ is the period index, τ is 
the length of the period, and m(k) is a binary mask for the kth 
period. In order to evaluate an individual x, we first perform the 
operation x ⊕ m(k), where “⊕” is the bitwise exclusive-or (XOR) 
operator, and then evaluate the resulting individual. The first mask 
m(0) is randomly generated, and the mask m(k) of the kth period 
is generated incrementally using the mask m(k – 1) of the previ-
ous period, as shown below. 

m(k) = m(k – 1) ⊕ t(k) (4)

where t(k) is an intermediate binary template randomly generated 
for the period k containing ρ × l ones. When ρ = 0.0, the problem 
stays stationary, and a larger ρ causes a severer change. Also, 
m(k) changes more frequently as τ gets smaller. 

This paper uses three well-known problems as the base problem 
f(x): binary knapsack problem, royal road function [6], and decep-
tive function [12]. A knapsack problem with 50 items is randomly 
generated using the method described in [15]. To see the effects of 
the dynamic parameters, the period of change τ is set to 10, 100, 
and 200 generations, and the degree of change ρ is set to 0.05, 
0.25, 0.5, 0.75, and 0.95. In total, a series of 15 dynamic problems 
is constructed from each base problem. 

First, we compare DPGA2 with DPGA using various values of δ. 
For DPGA2, we set δ1 to 0.1 and δ2 to 0.9. For DPGA, δ is set to 
0.1, 0.5, and 0.9. The parent size m is set to 80 and the offspring 
size n is set to 100. We use a two-point crossover with a crossover 
rate of 1.0 and bitwise mutation with a mutation rate of 1/l, where 
l is the length of a chromosome. Tournament selection together 
with elitism is used for selection. 

For each experiment, 100 independent runs are executed and each 
algorithm is run for 1,000 generations. For each run of the various 
algorithms on each problem, the best-of-generation fitness is re-
corded for every generation. Figure 3 shows the best-of-
generation fitness of the algorithms on the stationary problems. 
The best value of δ is 0.1 for the knapsack problem and 0.9 for the 
royal road and deceptive functions. The best value of δ differs for 
each problem; however, DPGA2 shows curves similar to those of 
DPGA with the best values of δ for all the stationary problems. 

For the dynamic problems, the overall performance is measured 
by the mean best-of-generation fitness BGF . It is defined as the 
best-of-generation fitness averaged across all the different runs 
and then averaged over all the generations. 
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where G is the number of generations, N is the total number of 
runs, and BGFij is the best-of-generation fitness of generation i of 
run j. 

Table 1. The mean best-of-generation fitness of the DPGA with δ = 0.1, 0.5, and 0.9 and DPGA2 on the dynamic problems. 

Knapsack Problem Royal Road function Deceptive function Param. 
Setting 
Index 

Parameters 
Setting 
(τ, ρ) δ = 0.1 δ = 0.5 δ = 0.9 DPGA2 δ = 0.1 δ = 0.5 δ = 0.9 DPGA2 δ = 0.1 δ = 0.5 δ = 0.9 DPGA2

1 (10, 0.05) 933.4 930.8 930.5 934.0 39.0 37.8 37.3 38.9 279.0 276.3 275.3 277.7 
2 (10, 0.25) 926.2 927.6 927.2 927.7 12.3 16.1 15.8 15.4 236.6 238.7 238.0 237.9 
3 (10, 0.50) 922.3 925.6 925.7 925.3 8.8 12.7 12.8 11.9 220.2 225.6 225.2 223.8 
4 (10, 0.75) 918.5 923.7 924.4 923.4 9.4 12.7 13.1 12.2 232.4 234.6 234.5 234.0 
5 (10, 0.95) 913.3 921.3 922.6 920.3 18.5 16.8 17.3 18.3 278.3 273.8 269.8 275.3 
6 (100, 0.05) 946.2 938.5 938.5 944.5 57.1 56.7 56.4 57.4 290.3 292.8 293.2 295.5 
7 (100, 0.25) 939.7 936.8 936.6 939.8 41.9 43.4 43.0 43.1 283.1 284.5 286.2 286.2 
8 (100, 0.50) 934.9 936.0 935.8 937.2 26.8 37.4 37.5 35.9 280.1 281.6 283.2 282.0 
9 (100, 0.75) 931.6 935.6 936.3 937.2 23.7 35.8 41.7 39.8 283.4 283.8 285.5 284.5 

10 (100, 0.95) 929.7 935.3 937.5 939.7 28.0 35.1 53.0 51.8 288.7 288.4 291.0 290.3 
11 (200, 0.05) 947.6 940.7 940.4 946.4 57.7 58.2 57.7 58.2 290.9 293.9 295.2 296.8 
12 (200, 0.25) 943.4 939.2 939.1 943.0 49.6 49.9 49.7 50.0 287.6 289.0 291.5 291.7 
13 (200, 0.50) 939.5 938.8 938.7 941.3 36.2 45.8 46.0 44.7 285.1 286.3 290.4 289.2 
14 (200, 0.75) 936.6 938.3 938.9 941.6 29.1 45.0 49.1 47.5 286.8 287.2 291.4 290.1 
15 (200, 0.95) 934.7 938.4 939.9 943.3 32.4 44.6 56.4 56.0 289.0 289.1 294.2 293.4 
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Table 1 and Figure 4 show the results obtained for the dynamic 
problems. For the dynamic knapsack problems, DPGA with a 
small value of δ shows the best performance when the degree of 
change (ρ) is small. As ρ gets larger, however, the algorithm 
shows the best performance with a larger value of δ. When the 
period of change (τ) is 10, we can see from Table 1 that the best 

value of δ for DPGA is 0.1 for ρ = 0.05, but the best δ becomes 
0.9 for ρ = 0.95. In fact, similar observations can be made with 
the other values of τ. A more careful examination of the data re-
veals that there is a tendency that DPGA shows its best perform-
ance at a smaller value of δ as the period of change (τ) gets longer. 
For example, when ρ = 0.5, the best values of δ are 0.9, 0.5, and 
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Figure 3. The best-of-generation fitness of the algorithms on 
the stationary problems: (a) knapsack, (b) royal road, and 

(c) deceptive problem. 

Figure 4. The mean best-of-generation fitness of the DPGA 
with δ = 0.1, 0.5, and 0.9 and DPGA2 on the dynamic 

problems: (a) knapsack, (b) royal road, and (c) deceptive 
problem. 
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0.1 for τ = 10, 100, and 200, respectively. This seems to imply 
that DPGA demands more diversity as the period of change τ gets 
shorter. Note that DPGA2 shows performances close to those of 
DPGA using its best values of δ for every setting of dynamic pa-
rameters τ and ρ. For some cases, e.g., (200, 0.75) and (200, 0.95), 
the performance of DPGA2 is even significantly better than that 
of DPGA with its best δ. 

For the dynamic royal road functions, all the algorithms show 
similar performances when ρ is small. When ρ is large, δ = 0.9 is 
the best for DPGA in most cases, and DPGA2 gives results close 
to those of DPGA with δ = 0.9.  

In case of the dynamic deceptive problems, DPGA with δ = 0.9 
shows the best performance for most dynamic settings, except 
when τ is very short. Note that for the deceptive problems, even 
when they are stationary, DPGA requires large diversity and thus 
its performance with δ = 0.9 is much better than those with δ = 0.1 
and 0.5. The best value of δ for a dynamic problem seems to be 
highly dependent on the characteristics of its stationary version 
problem as well as on its dynamic parameter setting. Therefore, it 

is very difficult to determine the best value of δ without prior 
knowledge about the given problem or careful experiments. How-
ever, DPGA2 shows good performances close to those of DPGA 
with its best value of δ for almost all the problems and dynamic 
parameter settings. 

Figure 5 shows the dynamic behavior of DPGA with various δ 
values and that of DPGA2 on dynamic knapsack problems for the 
dynamic parameter settings of τ = 200 and ρ = 0.05, 0.25, 0.75, 
and 0.95. When ρ is 0.05 and 0.25, DPGA with δ = 0.1 shows the 
best performance by converging fast during the first period and 
adapting easily to environmental changes from then on through 
the following periods. However, when ρ = 0.75 and 0.95, DPGA 
with δ = 0.1 shows the worst performance. Although it converges 
fast during the first period, it does not adapt easily to severe envi-
ronmental changes. Perhaps its reserve population may not main-
tain sufficient diversity to adapt to such extreme environmental 
changes. As a result, DPGA with δ = 0.1 shows much worse per-
formance from the second period. On the other hand, although 
DPGA with δ = 0.9 converges slowly, it shows more robust per-
formance against environmental changes. We can see that the 
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Figure 5. Dynamic behavior of the DPGA with various δ and DPGA2 on dynamic knapsack problems when τ = 200.  ρ is set to 
(a) 0.05, (b) 0.25, (c) 0.75, and (d) 0.95. 
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performance with δ = 0.9 is worse than that with δ = 0.1 when ρ = 
0.05 and 0.25, but it converges steadily all through the periods, 
even when ρ = 0.75 and 0.95. DPGA2 shows fast convergence 
and adaptability to a small degree of change, as does DPGA with 
δ = 0.1. DPGA2 also shows robustness to a high degree of envi-
ronmental changes, as does DPGA with δ = 0.9. Having the 
strengths of both DPGAs, DPGA2 performs better than all the 
DPGAs when ρ = 0.75 and 0.95. 

Finally, we compare DPGA2 with a standard GA (SGA), a pri-
mal-dual GA (PDGA), and an island-model GA (IMGA). SGA is 
a general generative-model GA. PDGA adopts a complementary 
and dominance mechanism and uses a complementary chromo-

some—dual chromosome—to provide additional diversity to the 
population. Further details on PDGA can be found in [14]. IMGA 
is a typical multi-population GA that employs two distinct popula-
tions, evolves them separately, and exchanges some of their indi-
viduals regularly [13]. In our experiment, the best solution of each 
population is exchanged in every five generations. The population 
size is set to 100 for SGA and PDGA and to 50 + 50 for IMGA. 
Other genetic operators and parameters are set identical to those 
of DPGA and DPGA2. 

Table 2 and Figure 6 compare the experimental results obtained 
by running these genetic algorithms. For most problems and most 
dynamic parameter settings, DPGA2 shows the best performance. 

Table 2. The mean best-of-generation fitness of SGA, PDGA, IMGA, and DPGA2 on dynamic problems. 

Knapsack problem Royal Road function Deceptive problem Param. 
Setting 
Index 

Parameters 
Setting 
(τ, ρ) SGA PDGA IMGA DPGA2 SGA PDGA IMGA DPGA2 SGA PDGA IMGA DPGA2

1 (10, 0.05) 933.1 933.0 934.4 934.0 37.4 37.7 36.7 38.9 275.4 275.6 276.4 277.7 
2 (10, 0.25) 927.3 927.4 927.7 927.7 13.7 13.9 13.1 15.4 234.3 234.4 233.9 237.9 
3 (10, 0.50) 924.3 924.4 924.2 925.3 10.3 10.4 10.0 11.9 218.9 218.8 218.0 223.8 
4 (10, 0.75) 921.7 921.8 921.1 923.4 10.7 11.0 10.4 12.2 229.8 229.7 229.0 234.0 
5 (10, 0.95) 917.7 918.0 916.4 920.3 17.7 18.3 17.3 18.3 273.5 273.3 274.3 275.3 
6 (100, 0.05) 941.6 941.4 943.8 944.5 56.8 56.5 55.6 57.4 291.3 292.9 292.1 295.5 
7 (100, 0.25) 938.7 938.7 939.9 939.8 42.6 42.5 40.9 43.1 283.2 284.2 283.9 286.2 
8 (100, 0.50) 936.2 936.3 937.0 937.2 31.8 32.0 29.8 35.9 279.6 280.1 279.5 282.0 
9 (100, 0.75) 934.3 934.3 934.5 937.2 26.6 31.9 25.0 39.8 282.7 283.0 282.9 284.5 
10 (100, 0.95) 932.7 933.0 932.4 939.7 25.7 49.1 25.4 51.8 288.2 288.7 288.4 290.3 
11 (200, 0.05) 943.0 943.1 945.3 946.4 57.9 57.9 56.6 58.2 292.2 294.5 292.6 296.8 
12 (200, 0.25) 941.2 941.3 943.1 943.0 50.1 49.9 47.3 50.0 287.7 289.5 288.5 291.7 
13 (200, 0.50) 939.6 939.7 941.0 941.3 41.8 42.2 39.6 44.7 285.2 286.9 285.4 289.2 
14 (200, 0.75) 938.7 938.7 939.4 941.6 36.7 43.1 34.2 47.5 286.3 288.3 286.5 290.1 
15 (200, 0.95) 937.8 938.2 938.5 943.3 33.8 54.1 31.5 56.0 288.7 291.1 289.2 293.4 
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Figure 6. The mean best-of-generation fitness of SGA, PDGA, IMGA, and DPGA2 with different combinations of dynamic 
parameters on dynamic problems: (a) knapsack, (b) royal road, and (c) deceptive problem. 
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For knapsack problems, the curves of the other three algorithms 
are similar to each other, and their performances degrade as the 
degree of change increases. When τ = 10, the curve of DPGA2 is 
not very different from the curves of the other algorithms. When τ 
= 100 and 200, however, the curve of DPGA2 shows a different 
“U” shape due to the performance upgrades after ρ = 0.5. On dy-
namic royal road functions, PDGA also displays a similar “U” 
curve although not as good as that of DPGA2. On dynamic decep-
tive problems, all the algorithms show quite similar performance 
curves, although DPGA2 again shows the best performance for all 
the dynamic parameter settings.  

5. Conclusions 
DPGA is a novel evolutionary algorithm that uses a reserve popu-
lation to provide additional diversity to the main population. The 
distance between the two populations is a very important factor 
that affects the performance of the algorithm and can be con-
trolled by using the parameter δ of the fitness function for the 
reserve population. In this study, we extended DPGA to solve 
dynamic optimization problems. We first investigated the rela-
tionship between the value of δ and the dynamic characteristics 
such as the period and degree of change. Our experiments re-
vealed that DPGA with a relatively small value of δ shows the 
best performance for a low degree of change by converging fast 
and adapting well to moderate environmental changes. However, 
DPGA with a larger value of δ shows a better performance for a 
high degree of change by providing enough diversity to cope with 
extreme environmental changes. The problem is that the best val-
ue of δ differs for each problem and each dynamic environmental 
characteristic; hence, it is difficult to decide the best value of δ 
without prior knowledge or intensive experiments on the given 
problem.  

In this paper, we proposed a new algorithm called DPGA2 having 
its reserve population split into two. One of the reserve popula-
tions uses a small δ for the fitness function and the other uses a 
large δ. Since the inflow of genetic material from each reserve 
population to the main population is automatically adjusted by 
crossbreeding and survival selection, an appropriate amount of 
diversity can always be provided regardless of the problem char-
acteristics. Experiments showed that the performance of DPGA2 
is close to that of DPGA with small δ for a low degree of change 
and DPGA with large δ for a high degree of change. Additional 
experiments showed that DPGA2 is better than other evolutionary 
algorithms based on similar concepts. 
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