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ABSTRACT
Based in part on observations about the incremental nature of most
state changes in biological systems, we introduce the idea of Mem-
ory with Memory in Genetic Programming (GP), where we use
“soft” assignments to registers instead of the “hard” assignments
used in most computer science (including traditional GP). Instead
of having the new value completely overwrite the old value of the
register, these soft assignments combine the old and new values.

We then report on extensive empirical tests (a total of 12,800
runs) on symbolic regression problems where Memory with Mem-
ory GP almost always does as well as traditional GP, while signifi-
cantly outperforming it in several cases. Memory with Memory GP
also tends to be far more consistent, having much less variation in
its best-of-run fitnesses than traditional GP. The data suggest that
Memory with Memory GP works by successively refining an ap-
proximate solution to the target problem. This means it can con-
tinue to improve (if slowly) over time, but that it is less likely to get
the sort of exact solution that one might find with traditional GP.
The use of soft assignment also means that Memory with Memory
GP is much less likely to have truly ineffective code, but the action
of successive refinement of approximations means that the average
program size is often larger than with traditional GP.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—program
synthesis; I.2.6 [Artificial Intelligence]: Learning—induction

General Terms
Algorithms

Keywords
Genetic Programming, Linear GP, Soft assignment, Memory with
memory, Symbolic regression
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1. INTRODUCTION
In the vast majority of programming models, dating back to the

Turing machine [17] and the earliest electronic computer architec-
tures (e.g., [18]), assignments are entirely destructive in the sense
that an instruction of the form x:=y or LOAD R2 R1 completely
overwrites the previous value of a memory location or register. That
earlier value is lost forever, and has no impact on the future be-
havior of the system (unless it was copied elsewhere before it was
overwritten). This overwriting model of assignment was carried
over to most versions of genetic programming (GP) that had state
and assignments. This includes linear GP [2], which evolves se-
quences of (virtual or real) machine code instructions that usually
act by destructively writing to registers or memory locations.

This is in contrast to most biological systems, where the state of
such a system is rarely if ever completely replaced with a new state
with no regard for or “memory” of the previous state. Changes in
protein concentrations in the cell, for example, can happen quickly,
but are still typically incremental in nature, with each new state
being constructed via modification of the previous state rather than
complete replacement of it. Even dramatic state changes such as
the transformation of a caterpillar into a butterfly take time and
involve large numbers of small, local changes.

This difference with biology might be sufficient reason on its
own to explore other models of assignment in GP. There are, how-
ever, practical concerns that also suggest that there might be value
in alternative approaches. Linear GP systems with hard assign-
ments, for example, can be quite fragile with respect to certain
changes. A program that works by incrementally building up a
result in a register can have its behavior radically altered by some-
thing like a point mutation that writes a 0 to the accumulating reg-
ister late in the process. These hard assignments can also act as
powerful intron creation mechanisms, as overwriting registers can
render whole sequences of preceding instructions irrelevant to the
final output of the evolved program.

Here we propose an alternative Memory with Memory model,
with “soft” assignments that merge new values with previous val-
ues instead of overwriting them. We show that including this new
type of assignment in a linear GP system can significantly improve
performance on a variety of symbolic regression problems. We also
find that Memory with Memory changes the nature of bloat, reduc-
ing the amount of ineffective code while at the same time tending
to increase the mean program sizes as GP continues to refine the
evolved approximations.

We begin by reviewing related work in the next section. We then
define our linear GP system and our particular approach to Memory
with Memory in Section 3. Our empirical results are presented in
Section 4. Finally, we summarize our findings in Section 5.
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2. RELATED IDEAS
While many GP systems are expression based, numerous GP sys-

tems have used some kind of memory or state. An obvious instance
is linear GP [2], but other examples include indexed memory [16, 4,
1], and work on evolving data structures (such as stacks) that have
internal state [9, 5]. Similarly, systems such as PushGP [15, 13]
that use (rather than evolve) data structures such as stacks in their
computational model are manipulating internal state in an impor-
tant way. We are unaware, however, of any memory or (internal)
state-based GP system that uses a soft assignment of the type pro-
posed here.

Probably more similar to this work are systems where evolved
agents rely primarily on external state (known as stigmergy). Here
the state of an individual is rarely if ever completely replaced with
a new state with no regard to the previous one. In swarm intelli-
gence [3] and ant colony optimization [6], for example, changes in
state such as pheromone levels are typically incremental, basing the
new levels on the old. Similarly, the position of agents in particle
swarm optimization systems [11] are almost always adjustments of
the previous position rather than arbitrary jumps. This connection
would also hold for many traditional GP systems used to evolve
agents whose behavior is driven primarily by external state. In the
classic artificial ant problem using the function set given in [8], for
example, the new state of the ant following the trail is always a
minor alteration of the previous state as the ant either turns 90◦ or
moves forward one square. Similarly, many systems that evolve
strategies for games like RoboCup Soccer [10] rely largely or en-
tirely on external state which updates in an incremental fashion.
[14] extends the idea of indexed memory by allowing multiple in-
dividuals in the population to read from and write to a shared mem-
ory space, which allows them to have both internal and external
(shared) state; the write instructions in this system were traditional
hard assignments, however, so the state was not constrained to in-
cremental changes.

3. LINEAR GP WITH SOFT ASSIGNMENT
In this section we describe our basic linear GP system (Sec-

tion 3.1), the details of our soft assignment mechanism (Sec-
tion 3.2), the target polynomials we used in our experiments (Sec-
tion 3.3), and how we computed the fitness of our evolved individ-
uals (Section 3.4).

3.1 Linear GP
In this work we use a simple, register based linear GP system

similar to that described in [2]. Table 1 lists the parameter settings
used for our experiments; these values have proven useful in prior
work, and no effort was made to optimize them for any of the sys-
tems used here.

The evolved programs are variable length linear sequences of
“machine instructions” acting on a set of up to six registers
(R1-R6); the full instruction set is given in Table 2. Note that when
using traditional, hard assignment, R3-R6 can only be used to store
temporary results; all arithmetic is performed using just R1 and R2.
When using soft assignment, however, instructions like R4:=R1 im-
plicitly perform whatever calculations are used to implement soft
assignments.

While there has been some study of function selection in GP
(e.g., [7]), this remains more art than science. No particular at-
tempt was made to fine tune our instruction set for the target func-
tions used in this study. To see how soft assignment would perform
with different instructions, however, we did use four progressively
larger instruction sets F1 (group A from Table 2), F2 (groups A and
B), F3 (groups A,B,C), and F4 (groups A,B,C,D). F1 is a basic

Parameter Value
Independent runs 50
Max initial length 50
Max length after XO 500
Point mutation rate (per primitive) 1/`
Population size 1000
Generations 40
Fitness evaluations per run (pop. size × gens) 40,000
Crossover rate (per individual) 0.9
Mutation rate (per individual) 0.1
Tournament size 2
Assignment hardness (γ) 1.0, 0.7, 0.5, 0.3

Table 1: Parameter settings used in these experiments (see Sec-
tion 3.2 for further explanations on γ). These are fairly generic
parameter choices and were not optimized for any of the sys-
tems used in these experiments.

two register system with just addition, multiplication, and swap.
F2 adds the constants 0 and 1, subtraction and division, instruc-
tions to copy data to/from R1 and R2, and swaps with R3. F3 adds
hard assignment from the input variable x and the constants 0 and
1. F4 adds hard and soft assignment of −x and −1 to R1 and R2.

Our linear GP system uses a steady state control strategy with
binary tournament selection for choosing parents and negative bi-
nary tournament selection for replacement. The initial population
is generated by repeatedly creating random individuals with their
length chosen uniformly from the range [1, 50].

New individuals are constructed using mutation 10% of the time,
and subtree crossover 90% of the time; we use no reproduction. If
mutation is chosen, a parent individual is selected via tournament
selection, and an offspring is generated using either point mutation
or subtree mutation with equal probability. With point mutation
each instruction has a 1/` chance (where ` is the length of the pro-
gram) of being replaced by a randomly selected instruction. With
subtree mutation, a random point is chosen and all the instructions
after that point are replaced by a new randomly generated sequence
of instructions of length between 1 and 500 (the maximum allowed
length after crossover).

If crossover is chosen, we select two parents (again, via tour-
nament selection) and apply homologous two-point crossover with
50% probability, and subtree crossover with 50% probability. Sub-
tree (or variable length) crossover involves the selection of one
crossover point in each parent, and swapping the instructions fol-
lowing the crossover points. Since the crossover points are chosen
independently, the length of the swapped suffixes can be different,
leading to offspring of varying length. Homologous crossover [12,
Section 7.1.3] requires choosing two crossover points which are
used to divide both parents into three sections. The offspring is
then formed by swapping the “middle” sections of the two par-
ents, which means that the offspring is guaranteed to have the same
length as the parent donating the prefix and suffix portions.

3.2 Memory with Memory:
Soft assignment

There are numerous approaches that could be taken to combining
the old values with the new when performing assignments. In this
research we take a simple but flexible approach: weighted averag-
ing of the old value of a register with the new value being assigned.
In particular, if vold is the original value of the register, and vnew
is the new value being assigned to the register, the resulting value
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Instruction sets
F1 = A
F2 = A∪B
F3 = A∪B∪C
F4 = A∪B∪C∪D

Group Description Instructions
A Read input R1:=X, R2:=X

Plus, times R1:=R1+R2, R2:=R1+R2,
R1:=R1*R2, R2:=R1*R2

Accum. swap Swap R1 R2
B Constants R1:=0, R2:=0, R1:=1, R2:=1

Minus, R1:=R1-R2, R2:=R1-R2,
divides R1:=R1%R2, R2:=R1%R2
Copy to R1 R1:=R2, R1:=R3, R1:=R4,

R1:=R5, R1:=R6
Copy to R2 R2:=R1, R2:=R3, R2:=R4,

R2:=R5, R2:=R6
Copy from R1 R2:=R1, R3:=R1, R4:=R1,

R5:=R1, R6:=R1
Copy from R2 R1:=R2, R3:=R2, R4:=R2,

R5:=R2, R6:=R2
Swap R3 Swap R1 R3, Swap R2 R3

C Hard R1:=X(H), R2:=X(H)
input read
Hard R1:=0(H), R2:=0(H),
constants R1:=1(H), R2:=1(H)

D Negative R1:=-X, R2:=-X,
input read R1:=-X(H), R2:=-X(H)
Negative one R1:=-1, R2:=-1,

R1:=-1(H), R2:=-1(H)

Table 2: Linear GP instructions used in these experiments. All
assignments are soft except those suffixed with “(H)”. % is pro-
tected division, which returns its first argument if the second
is less that 10−6. The instructions are divided into four groups
of related instructions (A,B,C, and D, indicated by horizontal
lines). We used four progressively larger sets of instructions:
F1 (group A), F2 (groups A and B), F3 (groups A,B,C), and F4
(groups A,B,C,D).

vresult is given by

vresult = γvnew +(1− γ)vold (1)

where γ is a constant that indicates the assignment hardness, allow-
ing us to determine how “hard” or “soft” the assignment operator
is. If γ = 1, for example, we get a completely “hard” assignment,
and have traditional GP. For γ = 0.5, on the other hand, we have a
simple average of the new and old values. For γ = 0, instead, all
registers are effectively write-protected, making all instructions be-
have like no-ops. In this situation all programs compute the identity
function.

While having the advantages of simplicity and flexibility, this
does introduce yet another parameter into the GP system. We make
no attempt at comprehensively optimizing that new parameter here,
but do perform extensive tests using a set of four values of γ: 1.0,
0.7, 0.5, and 0.3.

3.3 Target polynomials
We applied this new system to several classes of polynomial

symbolic regression problems, using target polynomials of several
different degrees for each class. In total we will test each value of γ

x+ x2 + x3 + x4 + x5 + x6 + x7 (3)

x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

+ x10 + x11 + x12 + x13 (4)

Table 3: Examples of two regular polynomials (see Equa-
tion (2)), having degrees 7 and 13 respectively.

x+ x2 + x3 + x4 (5)

x+ x2 + x3 + x4 + x6 + x7 (6)

x+ x2 + x3 + x4 + x6 + x7 + x8 + x9 (7)

x+ x2 + x3 + x4 + x6 + x7 + x8 + x9 + x12 (8)

x+ x2 + x3 + x4 + x6 + x7 + x8 + x9 + x12

+ x15 (9)

Table 4: Polynomials generated using randomly chosen coeffi-
cients from the set {0,1}.

and each instruction set on a total of 16 different symbolic regres-
sion problems of three different types, with degrees ranging from 4
to 15 for each of these three classes.

The simplest class of problems we explored were “regular” poly-
nomials of the form

∑
1≤n≤d

xn = x+ x2 + x3 + · · ·+ xd (2)

We used six target polynomials of this form, having degrees d = 5,
7, 9, 11, 13, and 15; two examples are listed in Table 3. Low-
degree polynomials of this type have commonly been used in GP
studies [8, 12].

A slightly more complex class of problems had coefficients that
were randomly generated from the set {0,1}.1 Thus they are es-
sentially the same as the “regular” polynomials, but with random
terms removed. We used five such polynomials, with degrees 4, 7,
9, 12, and 15; the specific polynomials are listed in Table 4.

Finally, we created a third class of polynomials by adding −1 in
the set of possible coefficients; these are listed in Table 5.

Note that in each class the polynomials of higher degrees are
“extensions” of the lower degree polynomials in the sense that the

1All random coefficients used in our test polynomials were gener-
ated via http://www.random.org.

1− x+ x2 + x3− x5 (10)

1− x+ x2 + x3− x5 + x8− x9 (11)

1− x+ x2 + x3− x5 + x8− x9 + x10 + x11 (12)

1− x+ x2 + x3− x5 + x8− x9 + x10 + x11

− x12 (13)

1− x+ x2 + x3− x5 + x8− x9 + x10 + x11

− x12 + x15 (14)

Table 5: Polynomials generated using randomly chosen coeffi-
cients from the set {−1,0,1}.
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γ Estimated Lower Upper
success rate

1.0 8.148% 7.686% 8.635%
0.7 10.578% 10.057% 11.122%
0.5 9.429% 8.935% 9.948%
0.3 7.679% 7.231% 8.153%

Table 6: Estimates of the success rates for each of the four
assignment hardnesses using Wilson’s method for computing
(95%) confidence intervals for binomial probabilities. We de-
fine a success to be a run where the best fitness was less than
1.05, or an average error of less than 0.05 for each of the 21 test
cases.

higher degree polynomials are equal to the lower degree polynomi-
als plus some new higher order terms. For example, the degree 7
polynomial (Equation (6)) from Table 4 is the degree 4 polynomial
(Equation (5)) with two additional terms (x6 + x7).

3.4 Evaluating fitness
For each target polynomial the fitness is the sum of the absolute

error of the evolved function on 21 evenly spaced test points in the
range [-1, 1]: {−1.0,−0.9,−0.8, . . . ,0.8,0.9,1.0}. The target then
is to minimize this error. We define a success to be a run where the
best fitness was less than 1.05, or an average error of less than 0.05
over the 21 test cases.

4. RESULTS
To better understand what impact Memory with Memory and

the particular value of γ has on symbolic regression problems, we
performed 50 independent runs for each combination of

• 4 values of γ (1.0, 0.7, 0.5, 0.3)

• 4 instruction sets (F1-F4 from Table 2)

• 16 different polynomials (Section 3.3)

leading to a total of 12,800 runs and 512,000,000 fitness evalua-
tions.

4.1 Impact of soft assignment on fitness
Figure 1 shows the distribution of the best fitness values from

each of those 12,800 runs for each of the four values of the as-
signment hardness γ. γ = 0.7 has the best results of the four, with
γ = 0.5 second, and γ = 1 (traditional GP) and γ = 0.3 being statis-
tically indistinguishable.2 The plot also indicates that the variance
for the assignment hardnesses less than 1 are significantly smaller
than for traditional GP, meaning that using soft assignment gives us
more consistent results.

This is supported by the estimated success rates listed in Table 6.
Both γ = 0.7 and γ = 0.5 have significantly better success rates than
traditional GP (γ = 1.0). γ = 0.7, for example, has an estimated
success rate of over 10% across all the combinations we ran, while
the estimated success rate of traditional GP was just over 8%.

Figure 2 shows that the advantage of soft assignment is quite
consistent across a wide range of degrees. The median for γ = 0.7
and γ = 0.5 are better than for γ = 1 in all cases except the degree
4 polynomial (Equation (5)) and the combination of the two de-
gree 7 polynomials (Equations (3) and (6)) where they effectively
tie. γ = 0.7 also does better than γ = 0.5 for several degrees, and
2Throughout this paper all tests for statistical significance are at
95% confidence levels.
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Figure 1: Boxplot showing the distribution of best fitnesses
across all runs (all polynomial classes and degrees, all instruc-
tion sets). The differences in best fitnesses are statistically sig-
nificant (using a pairwise Wilcoxon test) for all pairs except
γ = 0.3 vs. γ = 1 (traditional GP). The differences in variances
are also statistically significant (using the Fligner-Killeen test of
homogeneity of variances).

never does worse. Note that the best (minimum) for traditional
GP is consistently nearly perfect (very nearly 0), while the soft as-
signment runs were generally unable to reach a perfect solutions.
This isn’t surprising given that soft assignment tends to encourage
refinement over time, which is likely to lead to approximate solu-
tions. Those approximations are generally very close in our runs,
but linear GP with soft assignment doesn’t seem to have the “killer
instinct” needed to finally reach the target, at least with the param-
eters used here.3 This tendency to approximate may account for
the advantage of hard assignment on the degree 4 polynomial; that
polynomial is sufficiently easy that traditional GP solves it exactly
with a high probability, while the Memory with Memory approxi-
mations are slightly worse. The variance trend noted earlier contin-
ues here, with the variance for traditional GP being similar in a few
cases, but dramatically greater in others (e.g., degree 13 cases).

Figure 3 shows the proportion of successful runs by degree. Here
again γ = 0.7 consistently does as well or better than all the other
settings, and γ = 0.3 and traditional GP typically do the worst.

With one exception, all the instruction sets F1-F4 had at least
moderate levels of success on the different polynomial classes.
As can be seen in Figure 4, the instruction set F1 was generally
incapable of solving any of the polynomials in the {-1, 0, 1}-
polynomial class.

Figure 5 plots the distribution of best fitnesses across the 40 gen-
erations for γ = 0.7 and traditional GP (γ = 1). To help clarify the
pattern, we plotted the application of a single instruction set (F2) to
a single polynomial (Equation (4), the regular polynomial of degree

3Given that we only used 40,000 fitness evaluations per run, it’s
entirely possible that more generations would allow our system to
further refine the solutions, but we haven’t explored the impact of
either increasing the population size or the number of generations.
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Figure 2: Boxplots of the best end-of-run fitness by degree for
γ ∈ {1.0,0.7,0.5}. There are several outlier fitness values be-
tween 12 and 26 that are not visible in this plot.

13). We again see that the variance is much smaller with soft as-
signment. We also see that the fitness improves much more quickly
in the early generations than traditional GP.

In Figure 6 we have the proportion of these F2-Degree 13 runs
that showed any improvement from one generation to the next.
γ = 0.7 shows a consistently higher proportion of improvements
across all the generations than traditional GP (γ = 1). Both the
hard and soft assignments showed a steady drop in the proportion
of runs showing improvement up to around generation 20, where in
both cases the slope flattens off somewhat. For γ = 0.7, however,
the proportion of runs stays almost constant in the later generations,
while it’s continuing to drop noticeably for traditional GP. At gen-
eration 40 the proportion of runs still showing improvement in any
given generation is over 30% for the soft assignment runs, while
it’s only around 10% for the traditional GP runs. It’s important to
realize that, however, most of these improvements in the later gen-
erations are quite small, as is suggested by Figure 5. Thus while
we would expect continued improvements in best fitness if we let
the soft assignment runs continue for additional generations, many
of those improvements would be extremely small improvements in
the evolved approximations.

4.2 Impact of soft assignment on length
Hard assignment is one potential source of ineffective or “intron”

code in GP, i.e., sequences of instructions which do work, but ulti-
mately have no impact on the program’s final output. An instruction
like R1:=0, for example, effectively undoes any preceding opera-
tions that collected results in R1, potentially making long sequences
of previous instructions ineffective. This suggests that hard assign-
ment could play a role in bloat [12, Section 11.3] by providing a
mechanism for program lengths to increase without improving (or
even changing) their functionality. With soft assignment, on the
other hand, every instruction has some impact on the future state
of the system. While an early instruction might have a very lim-
ited impact in a long program, it will have some impact, implying
that there is ultimately no truly ineffective code when using soft
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Figure 3: Proportion of successes by degree for each of the four
values of γ. The proportion of successes for a configuration is
the proportion of runs with that configuration that had a total
error of less than 1.05.

assignment. The ability for GP to use soft assignment to incre-
mentally approximate solutions, however, suggests that programs
could grow longer and longer over time as GP works to improve its
approximations.

Figure 7 shows the distribution of both mean and best-of-run
program lengths for all four values of γ across all the runs. Both
the mean and best-of-run program lengths were substantially larger
for γ = 0.7 and γ = 0.5 than for traditional GP. The maximum size
allowed after crossover (500) would push down the the amount the
ineffective code one would expect in traditional GP. In the case of
soft assignment, however, where all instructions have an impact and
where there are steady, if small, improvements in fitness over time
(as seen in Figures 5 and 6), there was presumably more fitness
correlated pressure to grow.

Figure 8 shows that the tendency for soft assignment to lead to
larger programs holds for all four function sets, and is much more
pronounced for F3 and F4 than F1 and F2. The best-of-run sizes
with F1 were substantially smaller than with the other three instruc-
tion sets for both traditional GP and γ = 0.7. The best-of-run sizes
in fact showed statistically significant differences across all four
function sets when using traditional GP. The best-of-run sizes were
much more similar, however, when using γ = 0.7, especially for F2
and F3; in fact, the differences were not statistically significant for
the pairs (F2, F3) and (F2, F4).

Table 7 shows the differences in the proportions of the different
instructions (from set F2) as they appeared in the best-of-run indi-
viduals for the 50 runs with F2 on the regular degree 13 polynomial
(Equation 4) between γ = 0.7 and traditional GP (γ = 1). Negative
values at the top of the table (e.g., R1:=X, R2:=X, and R1:=R1+R2)
all appear more frequently in the best-of-run individuals in the soft
assignment runs. This indicates, for example, that runs with soft
assignment used considerably higher proportions of reads from the
input variable. In traditional GP, such a read would completely
overwrite the contents of the register being read into, and would
consequently need to be used with some caution. In our Memory
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Figure 4: Distribution of end-of-run best fitnesses by class of
target polynomial, restricted to runs using the instruction set
F1. (All function sets had reasonable levels of success on all
test classes except F1 on the {-1, 0, 1}-polynomials.) The white
boxplots show the distribution for the {-1, 0, 1}-polynomials,
while the gray boxplots show the aggregate results for all the
polynomials in the other two classes.

with Memory system, however, such an instruction blends the con-
tents of a register with the input variable x (which is not in fact a
terrible approximation of the target function). Conversely, tradi-
tional GP was more likely to include the division instructions (near
the bottom of the table) as well as, to a lesser degree, subtraction
and multiplication. Given that neither division or subtraction are
needed to solve the problem, their increased presence in the tradi-
tional GP runs could help explain traditional GP’s generally poorer
performance on this problem.

5. CONCLUSIONS
In this paper we have introduced the idea of Memory with Mem-

ory GP, where we use “soft” assignments to registers instead of the
“hard” assignments used in most computer science (including tra-
ditional GP). Instead of having the new value completely overwrite
the old value of the register, these soft assignments combine the
two values, using a weighted average in the work reported here.

Our extensive empirical tests (a total of 12,800 runs) with sym-
bolic regression problems show that Memory with Memory GP al-
most always does as well as traditional GP, while significantly out-
performing it in several cases. Memory with Memory GP also tends
to be far more consistent, having much less variation in its best-of-
run fitnesses than traditional GP. The data suggest that Memory
with Memory GP works by successively refining an approximate
solution to the target problem. This means it can continue to im-
prove (if slowly) over time, but that it is less likely to get the sort of
exact solution that one might find with traditional GP. The use of
soft assignment also means that Memory with Memory GP is much
less likely to have truly ineffective code, but the action of succes-
sive refinement of approximations means that the average program
size is often larger than with traditional GP.
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Figure 5: Boxplots showing the middle 50% of the data for the
best fitness over time for γ = 0.7 and for traditional GP (γ =
1). These results are for a single instruction set (F2) and single
polynomial (Equation (4), the regular polynomial of degree 13).

6. FUTURE WORK
This is a first exploration of a new approach to state updates in

GP, and could only examine a handful of the many alternatives.
An obvious area for future exploration would be the specific im-

plementation of soft assignment. We used a weighted average be-
tween the previous and new value (Section 3.2), but one could, for
example, use moving averages, where only the last k values impact
the new value, allowing old values to be completely “forgotten”
over time. Other approaches such as non-linear combinations could
certainly be explored. We also didn’t perform a detailed exploration
of different values of γ, or its interaction with other parameters of
our evolutionary system.

Another issue not addressed here is whether it would be benefi-
cial to distinguish between different kinds of assignments, making
some soft and some hard. An instruction like R1:=R1+R2, for ex-
ample, already incorporates the old value of R1, and it could be
argued that soft assignment is unnecessary there. The instruction
R1:=R1*R2 also typically includes the old value of R1, but if R2:=0
then the old value of R1 is completely overwritten. Function sets
F3 and F4 both contain hard and soft versions of some assignments,
so we can get a sense of how evolution combines soft and hard as-
signment operators. A more sophisticated option would be to allow
each instruction to have its own value of γ which could be adjusted
over time via some process (e.g., evolution or backpropogation).

One of the challenges with soft assignment is that it makes the
evolved solutions harder to represent and analyze since every as-
signment is in fact a linear combination of two values. An inter-
esting possibility would be to start with γ < 1, but progressively
move it to 1 over the course of a run. This might have the effect
of smoothing the fitness landscape, but it’s not clear how easily the
system would transition from the approximations generated by soft
assignment to a successful (exact) solution using hard assignments.

Similarly, one could start with hard assignments, but when a run
appears stuck, decrease γ (making assignments softer) in the hope

1240



0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion of runs showing improvement
F2, Degree 13 regular poly

Generation

P
ro

po
rti

on
 o

f r
un

s 
w

ith
 im

pr
ov

em
en

t

l

l

l

l

l

l l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l l
l

l

l
l

l

l

l
l

l

l Gamma=1.0
Gamma=0.7

Figure 6: Proportion of runs showing improvement in best fit-
ness over time for γ = 0.7 and for traditional GP (γ = 1). Each
set of points is overlaid with a curve generated using local poly-
nomial regression fitting (a lowess curve). These results are
for a single instruction set (F2) and a single polynomial (Equa-
tion (4), the regular polynomial of degree 13).

of introducing a gradient or at least a neutral network that would
allow for additional progress, possibly increasing γ again when
progress has resumed.

Finally, an interesting direction to take this work is to look at
how it performs on noisy and dynamic problems, e.g., problems
where the target function changes over time.
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