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ABSTRACT

In this paper, a multiobjective (MO) learning approach to image
feature extraction is described, where Pareto-optimal interest point
(IP) detectors are synthesized using genetic programming (GP). IPs
are image pixels that are unique, robust to changes during image
acquisition, and convey highly descriptive information. Detecting
such features is ubiquitous to many vision applications, e.g. object
recognition, image indexing, stereo vision, and content based im-
age retrieval. In this work, candidate IP operators are automatically
synthesized by the GP process using simple image operations and
arithmetic functions. Three experimental optimization criteria are
considered: 1) the repeatability rate; 2) the amount of global sep-
arability between IPs; and 3) the information content captured by
the set of detected IPs. The MO-GP search considers Pareto domi-
nance relations between candidate operators, a perspective that has
not been contemplated in previous research devoted to this prob-
lem. The experimental results suggest that IP detection is an ill-
posed problem for which a single globally optimum solution does
not exist. We conclude that the evolved operators outperform and
dominate, in the Pareto sense, all previously man-made designs.

Categories and Subject Descriptors

I.4.7 [Image Processing and Computer Vision]: Feature Mea-
surement—feature representation, invariants; I.2.2 [Artificial In-

telligence]: Automatic Programming—program synthesis

General Terms

Algorithms, Experimentation, Performance, Theory.

Keywords

Multiobjective optimization, Interest point detection

1. INTRODUCTION AND MOTIVATION
Currently, many computer vision systems rely on the detection

of stable and informative features on digital images [7, 15, 22, 24].
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The simplest features are known as interest points (IP), also re-
ferred to as singular points or key points. Researchers normally
design specialized operators to detect IPs [11, 12, 20], or choose
one of the detectors currently available within computer vision lit-
erature [4, 29]. Nevertheless, designing an operator is not a trivial
task, and selecting between previously proposed methods can be
overwhelming due to the large number of proposed methods. This
paper presents a Genetic Programming (GP) approach that auto-
matically synthesizes several IP detectors using a multiobjective
(MO) problem formulation. Here, eight operators are presented,
each designed using the MO-GP approach based on Pareto opti-
mality. As a result, it is possible to articulate novel insights regard-
ing this well-known computer vision problem; such as the appar-
ent conflict between reasonable evaluation criteria, and the inferior
performance of man-made designs when compared with the exper-
imental Pareto-optimal set.

The remainder of this paper proceeds as follows: Section 2 gives
an introduction to the IP detection problem, reviews previously
proposed operators, discusses how IP detection can be evaluated
and introduces the proposal of the current work. Afterwards, three
performance criteria that can be experimentally evaluated are de-
fined in Section 3. Section 4 presents a brief overview of MO opti-
mization. Section 5 discusses how IP detectors can be synthesized
through GP, and details the MO proposal. Finally, experimental re-
sults are presented in Section 6 and concluding remarks are given
in Section 7.

2. INTEREST POINT DETECTION
Historically, work devoted to IP detection is a result of computer

vision research devoted to the corner detection problem. A com-
mon taxonomy of corner detection methods employs three classes:
contour based methods [1], parametric model based methods [21,
17] and intensity based methods [16, 2, 8, 6, 28, 5, 23]. The class
of corner detectors that operate directly on the intensity image are
more appropriately referred to as interest point detectors, a subtle
difference. Corners are point features located at line and surface
junctions (e.g. L, T, Y and X junctions) [17, 24]. On the other
hand, IPs may include such features, as well as others that are less
obvious to human interpretation. A measure of how interesting an
image region is, can be computed using a specially designed op-
erator K : ℜ+ → ℜ, where different region detectors employ
different operators. A detector refers to the complete algorithmic
process that extracts interest points. On the other hand, an operator

only computes the interest measure for each image pixel. Applying
K to an image I yields what can be understood as an interest im-

age I∗. Afterwards, most detectors follow the same basic process:
a) non-maxima suppression that eliminates pixels that are not lo-
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cal maxima; and b) a thresholding step that obtains the final set of
points; see Figure 1. Both of the final steps are tuned empirically, a
procedure also applied in the current work.

Definition 1. Let K be an image operator that is applied to an
image I , thus generating an interest image K(I) = I∗. Then, a
pixel x ∈ I is tagged as an IP if the following conditions hold,

[K(x) > max {K(xW)|∀xW ∈ W, xW 6= x}] ∧ [K(x) > h] ,
(1)

where W is a neighborhood of size n × n around x and h ∈ R is
a threshold.

The first condition in Eq. (1) accounts for non-maximum sup-
pression and the second is the thresholding step; experiments in
this work use n = 5 while h is operator dependent. The threshold
h cannot be set a priori because the GP can design very different
kinds of operators. Therefore, a maximum of 500 IPs are selected
from an image for every operator K produced by the GP process.
After obtaining an interest image I∗

i all the pixels in I∗

i are sorted
in descending order and h is set to the value of the 500th highest
pixel.

Several improvements to the described process have been pro-
posed, including a space-time analysis [10] and detection that ac-
counts for color information [27]. Color and temporal information
are not addressed in the present work; however, doing so is not
beyond the scope of the proposed approach.

2.1 Popular IP operators
Some detectors base their interest measure K on the local auto-

correlation matrix A, which characterizes the gradient distribution
around each image pixel,

A(x, σI , σD) = σ
2
D·GσI

∗
»

L2
x LxLy

LxLy L2
y

–

, (2)

where σD and σI are the derivation and integration scales respec-
tively, Lu(x, σD) is the Gaussian derivative in direction u of image
I at point x given by

Lu(x, σD) =
δ

δu
GσD

∗ I(x) , (3)

Gσ is a Gaussian smoothing function with standard deviation σ;
σD = 1 is used unless noted otherwise. Detectors based on A
include those proposed by Harris and Stephens [6], Förstner [5],
and Shi and Tomasi [23] with their corresponding interest measures
given by

KHarris&Stephens(x) = det(A)− k · Tr(A)2 , (4)

KF orstner(x) =
det(A)

Tr(A)
, (5)

KShi&Tomasi(x) = min {λ1, λ2} , (6)

where λ1, λ2 are the two eigenvalues of A. The definition of A is
taken from [22], used with the Improved Harris detector.

Beaudet [2] proposed the determinant of the Hessian, that is pro-
portional to the Gaussian surface curvature, as an interest measure

KBeaudet(x) = Ixx(x)· Iyy(x) − I
2
xy(x) , (7)

where Iu(x) is the image derivative in direction u. Wang and Brady
[28] characterize the curvature response using the Laplacian and
the gradient magnitude,

KWang&Brady(x) = (∇2
I(x))2 − s|∇I(x)|2 . (8)

Kitchen and Rosenfeld [8] present an operator defined as the prod-
uct between the magnitudes of the gradient and the gradient’s change
of direction,

KK&R(x) =
Ixx(x)I2

y(x) + IyyI2
x − 2IxyIyIx

I2
x + I2

y

. (9)

It is obvious that the possible models for detecting interesting fea-
tures are quite diverse, and still yet there are others, e.g. based on
catastrophe theory [19], power law models [3], and simple analysis
of local intensity variations designed for fast detection [11].

2.2 How to evaluate IP detection
IPs are commonly defined as image pixels that exhibit a high

degree of local image variation with respect to a particular local
measure. However, this definition is ambiguous regarding how IPs
should be interpreted semantically. For instance, it is reasonable
to state that IPs must be unique, distinctive, robust and invariant.
Nevertheless, all of these properties can be interpreted in different
ways and comprehensive measures are not trivially defined. Hence,
a simpler task is to list a set of traits that IPs are expected to exhibit
and then verify if a given detector can locate points that fulfill those
traits. Kenney et al. [7], for example, define a set mathematical ax-
ioms that can be evaluated analytically. These axioms are based
on specific properties of the autocorrelation matrix and how it re-
lates with an idealized image corner. They demonstrate that Shi &
Tomasi’s detector [23] is the only one that satisfies all four axioms.
However, two observations are relevant. First, the axioms assume
that an image corner is the only interesting image feature, which
cannot be true in many real-world scenes. Second, Kenney et al.

assume that the autocorrelation matrix is essential for IP detection,
which is only shown to be true for an optical-flow problem and it
is not evident that it will be true in other domains, such as object
recognition or image indexing.

Another way that IP detection can be evaluated is to use a set of
experimentally testable properties. Schmid et al. [22] introduced
two such measures: 1) the repeatability rate; and 2) the amount of
information conveyed by the local neighborhood around each IP.
The former is a measure of invariance with respect to changes in
the imaging conditions. While the latter quantifies the amount of
dispersion when image information around each IP is mapped to
a predefined descriptor space. The experimental comparison con-
ducted by Schmid et al. showed that an “improved" Harris detec-
tor KHarris yields the best overall performance score. However,
the experimental setup given in that work has several shortcom-
ings. First, several detectors are left out of the comparison, such
as the determinant of the Hessian proposed by Beaudet [2]. Sec-
ond, Schmid et al. estimate the information content based on the
local jet at each IP [9]. However, subsequent results by Mikola-
jczyk and Schmid [14] suggest that the SIFT descriptor [13] gives a
more complete and discriminant characterization of image content.
Thirdly, even if repeatability and information content are reason-
able criteria, other properties could be desirable. For instance, the
amount of global separability between detected IPs, which repre-
sents the dispersion of IPs within an image [20, 25, 26]. Finally,
the evaluation presented by Schmid et al. does not study the rela-
tionship between each criteria, i.e., whether or not conflicts exist
between the objectives and how those conflicts might be accounted
for.

Still yet, the choice of a detector is also influenced by the spe-
cific requirements of an application. An example can be seen in the
work by Rebai et al. [20] where IPs are desired to be centered on
higher level semantic concepts in order to simplify a subsequent ob-
ject recognition stage. Li et al. [12], for instance, develop a new IP
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Figure 1: A look at interest point detection: Left, an input image I; Middle, interest image I∗; Right, detected points after non-

maximum suppression and thresholding superimposed on I .

selection scheme that is adapted to improve performance in weakly
textured images. Their scheme is tested on a face recognition task
with good results. Lepetit et al. [11] implement a point detection
method designed for a real-time computation used for efficient and
robust feature matching. Weijer et al. [27] perform color boosting
in order to facilitate IP detection on color images. Two final exam-
ples are the works by Davison et al. [4] and Yang et al. [29]. In
each of those works, the amount of point dispersion is considered
paramount to their application of monocular SLAM and image reg-
istration respectively. In both cases, the authors select a previously
proposed detector. However, it is reasonable to assume that a fea-
ture detector that is optimized considering the special requirements
of each problem domain could help to improve the systems’ overall
performance. Summarizing, because of the large amount of differ-
ent IP detection methods proposed thus far, choosing a detector can
be a non-trivial task. Thence, many researchers have attempted to
design detectors that fulfill their application’s specific requirements
using several criteria.

2.3 Proposal
The present work presents a MO-GP approach that can automati-

cally design IP operators. The MO formulation allows for the inclu-
sion of different types of performance criteria within the evaluation
process. Additionally, conflicts between objectives are accounted
for in a principled manner by defining optimality based on Pareto
dominance relations. Thus, the proposed scheme permits the algo-
rithm to generate a set of optimal solutions from which a system
designer may choose from. Finally, this paper presents several IP
operators which despite their unorthodox sequence of operations
are able to yield a higher performance than standard computer vi-
sion detectors [22].

3. MEASURES OF PERFORMANCE
The following performance criteria are considered by the pro-

posed MO-GP search: 1) the repeatability rate; 2) the amount of
global separability; and 3) the information content provided by the
set of detected IPs. Additionally, the MO formulation allows the
incorporation of other measures in a straightforward manner.

3.1 Repeatability rate
The stability is measured through the repeatability rate that esti-

mates how detection is independent of the imaging conditions [22].
An interest point x1 detected in image I1 is repeated in image Ii

if the corresponding point xi is detected in image Ii. In the case
of planar scenes, a relation between points x1 and xi can be es-
tablished with the homography H1,i, where xi = H1,ix1, see

Figure 2: A 3D point is projected onto points x1 and x2 on

images I1 and I2 respectively. x1 is said to be repeated by xi,

if a point is detected within a neighborhood of xi of size ǫ. For

planar scenes x1 and xi are related by the homography H1,i.

Figure 2. The repeatability rate measures the number of repeated
points between both images with respect to the total number of de-
tected IPs. A repeated IP is said to be detected at pixel xi if it lies
within a given neighborhood of size ǫ = 1.5 pixels. The set of
point pairs (xc

1,x
c
i ) that lie in the common part of both images and

correspond within an error ǫ is defined by

RIi
(ǫ) = {(xc

1,x
c
i) |dist (H1,ix

c
1,x

c
i ) < ǫ} . (10)

Thus the repeatability rate ri (ǫ) of points extracted from image Ii

with respect to points from image I1, is defined by:

rIi
(ǫ) =

|Ri (ǫ) |
min (γ1, γi)

, (11)

where γ1 = | {xc
1} | and γi = | {xc

i} | are the total number of
points extracted from image I1 and image Ii respectively.

3.2 Information content
Schmid et al. defined this measure relative to the likelihood of

a local descriptor computed at a given IP [22]. For every detected
IP x a corresponding local image descriptor γ is computed. There-
fore, if we consider that an IP detector identifies a set X of n inter-
est points, there will be a corresponding set of descriptors Γ, where
∀ x ∈ X ∃ γ ∈ Γ. Moreover, let Υ represent the space of all pos-
sible descriptors; thus, if the descriptors in Γ are crowded within
a small region of Υ, then the set X conveys a small amount of in-
formation content denoted by I, with the converse being true in
the opposite case. Therefore, when descriptors are used for image
matching problems then the set Γ that maximizes the probability
p(I |Γ) is the set of descriptors that best describes image I . Based
on information theory, I is obtained using the amount of entropy
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contained within the set of the descriptors Γ. Therefore, if we con-
sider a partition Υ = {Υj}, and the probability pj is given by the
histogram count of descriptors γ ∈ Υj from the set Γ, then the
information content of the set X of detected IPs in I is given by

I(Γ) = −
X

pj · log2(pj) . (12)

Therefore, it is necessary to select a local descriptor in order to
compute I. In the present work the SIFT descriptor is employed
because it compares favorably with other methods [14].

3.2.1 Scale Invariant Feature Transform: SIFT

The SIFT descriptor is based on the gradient distribution within
a detected region and it is computed in the following manner [13].
Assume that an IP is detected at image pixel x; then, an image patch
P centered on x is used to construct the corresponding descriptor γ
with the size of P 41×41 pixels in this work. The SIFT descriptor
represents a 3D histogram of gradient locations and orientations
on P , where the contribution to the location and orientation bins
is weighted by the gradient magnitude at each pixel. To build the
histogram, the location is quantized as a 4 × 4 grid within P , and
the gradient angle is quantized into eight orientation bins centered
at {0, π

4
, π

2
, ..., 7·π

4
}. Therefore, the SIFT descriptor has a total of

128 dimensions. The descriptor is robust to small distortions and
localization errors. Additionally, the descriptor is normalized by
the square root of the sum of squared components to account for
illumination invariance.

In order to compute an entropy measure a 128-dimensional grid
is required, something that is computationally infeasible. To sim-
plify the computation process each SIFT dimension is considered
to be independent and a mean entropy value Iµ of all 128 dimen-
sions is used to estimate an operator’s information content. SIFT
values are normalized between [0, 1] and each dimension is divided
into 40 bins to compute the entropy value.

3.3 Global separability
It is also appropriate to use an entropy based measure for the

amount of point dispersion. In this case, the entropy is computed
from the partition I = {Ij} of the spatial dimensions of the im-
age plane. Hence, D is the entropy value of the spatial distri-
bution of detected interest points within the image, D(I, X) =
−P

Pj · log2(Pj), where Pj is approximated by the 2D histogram
of the position of IPs within I . The image is divided into a 2D grid
where each bin has a size of 8 × 8 pixels. Because point disper-
sion depends on the manner in which non-maximum suppression
is carried out, a window size of 5 × 5 was used for every detector
discussed here.

4. MULTIOBJECTIVE OPTIMIZATION
In this work, IP detection is studied in MO terms because of

the possible conflicts between the previously defined performance
criteria. Multiobjective optimization is a principled approach to
solving problems where objectives present conflicts between them.
When a MO problem lacks a closed form solution, it is necessary to
rely on computational search methods in order to obtain an approxi-
mation for the true Pareto-Optimal Set. One approach is to employ
MO evolutionary algorithms (MOEAs) which are capable of per-
forming parallel and distributed search. Nowadays, state-of-the-art
MOEAs are expected to converge towards representative sampling
of the true Pareto Front. However, real-world problems present
serious challenges for these search algorithms, such as non-linear
and disconnected objective spaces, constraint satisfaction, isolated
minima, and combinatorial aspects, to name but a few. These and

Figure 3: Decision and Objective spaces for MO optimization.

A solution parametrization x is mapped by a vector function ~f
into a vector in objective function space. The highlighted points

on the boundary of Λ are elements of the Pareto Front.

other considerations makes MO problem solving a non-trivial task
when it is applied in real-world situations.

In MO optimization it is necessary to consider two different and
complimentary spaces: one for decision variables and another for
the objective functions, see Figure 3. In the case of real valued

functions, these two spaces are related by the mapping ~f : Rn →
Rk . Constraints on the objective vector ~f(x) = [f1(x), ..., fk(x)]
define a feasible region Ω ⊂ Rn in the decision space along with
its corresponding image Λ ⊂ Rn on the objective function space.
Now, the following concepts define the concept of optimality in
a MO optimization problem 1. The optimum is thereby found at
the frontier of the objective space called the Pareto Front, while
the values of the corresponding decision variables in Ω are called
the Pareto-Optimal Set. The optimal solutions satisfy the non-
dominance relations as defined below [18].

Definition 2. Pareto dominance: Given k objectives and an or-

dered set N = {1, ..., k}, an objective vector ~fu is said to domi-

nate another objective vector ~fv (written as ~fu � ~fv) ⇔ ∀ i ∈ N ,
fu

i ≤ fv
i ∧ ∃ j ∈ N | fu

j < fv
j .

Definition 3. Pareto optimality: A solution vector x
∗ ∈ Ω is

optimal if ∀ x ∈ Ω it is true that ∀ i ∈ N, fi(x
∗) = fi(x)

∨ ∃ i ∈ N | fi(x
∗) < fi(x).

Definition 4. Pareto-Optimal Set: For a multiobjective prob-

lem ~f(x), the set of Pareto optimal solutions is given by the set

P∗ =
n

x ∈ Ω | ∄ x
′ ∈ Ω that ~f(x′) � ~f(x)

o

.

Definition 5. Pareto Front: For a multiobjective problem with

an objective vector ~f(x) with a pareto optimal set P∗, the Pareto
Front is defined as PF∗ = {u = (f1(x), ..., fk(x))|x ∈ P∗}.

5. SYNTHESIS OF IP OPERATORS

5.1 Previous work
Previous work by Trujillo & Olague proposed an automatic de-

sign process for IP operators using GP [25, 26]. In those works,
however, a mono-objective problem was formulated by combining
the repeatability score and the amount of global separability into a
single objective function. Using two solutions as examples, Tru-
jillo & Olague were able to confirm that the GP-based design is
capable of synthesizing reliable and competitive operators. One of

1A minimization problems is described without loss of generality.
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the operators performed a simple Difference-of-Gaussian filtering
(DoG), while the other was a modified version of the Hessian op-
eration proposed by Beaudet.

KIPGP1(x) = Gσ=2 ∗ (Gσ=1 ∗ I − I) , (13)

KIPGP2(x) = Gσ=1 ∗ [Lxx(x)·Lyy(x) − L
2
xy(x)] . (14)

In the latter case, the Hessian-based operator provides a similar
improvement to the one proposed by Schmid et al. for the Harris
detector [22]. However, the previous proposal by Trujillo & Olague
does not account for the interdependencies or possible conflicts be-
tween the different objectives employed as part of the evaluation
process. Moreover, it is not evident how other objectives can be
added to the mono-objective formulation proposed in that earlier
work. These considerations reveal that a more comprehensive for-
mulation is required, which is addressed in this paper.

5.2 Multiobjective approach
The design of IP operators using a GP process is proposed as

follows. The function set F and the terminal set T are defined in
such a way that it is conceivable that the GP search process can
build any of the operators K discussed in Section 2.1 as well as
other, possibly novel, designs.

F = {+, | + |,−, | − |, |Iout|, ∗,÷, I2
out,

√
I, log2(Iout),

k · Iout,
δ

δx
GσD

, δ
δy

GσD
, Gσ=1, Gσ=2} ,

T = {I,Lx, Lxx, Lxy, Lyy, Ly} ,

where I is the input image, and Iout is any of the terminals in T or
the output of any of the functions in F , Lu is the image derivative
along direction u, Gu are Gaussian smoothing filters, δ

δu
GσD

the

derivative of a Gaussian function2, and the constant k = 0.05. In-
dividual solutions are evaluated using the following cost functions
defined for minimization:

• Global separability: f1(K) =
1

exp(D(I, X) − c1)
.

• Information content: f2(K) =
1

exp(Iµ(Γ) − c2)
.

• Stability: f3(K) =
1

rK,J (ǫ) + φ
.

The constants were set experimentally to ǫ = 0.001, c1 = 10
and c2 = 2.8. Because these measures are based on experimental
performance, a training set is required to compute a performance
score. Therefore, rK,J(ǫ) is the average repeatability rate of an op-
erator K computed on a training sequence J . On the other hand,
D(I, X) and Iµ(Γ) are computed using only the base image of
J . Previous results by Trujllo & Olague [26] suggest that using
only one image sequence during the evaluation process is enough
to produce robust and general operators. In the proposed MO ap-
proach, the selection and survival strategy must account for Pareto
dominance relations. Therefore, the SPEA2 algorithm, a third gen-
eration MOEA, is used to perform population management [30].
SPEA2 uses a fitness assignment that accounts for both domination
and non- domination relations between individuals in both the cur-
rent population and the population archive. Diversity preservation
is achieved by using a k-th nearest neighbor clustering algorithm
that penalizes individuals that reside in densely populated regions
of objective space. Additionally, the algorithm uses a fixed-size
archiving approach and a truncation scheme that promotes diver-
sity by removing individuals that have the minimum distance to

2All Gaussian filters are applied by convolution.

its neighbors. Finally, it preserves boundary solutions by using a
carefully designed selection operator.

5.3 A set of testable hypothesis
This work considers multiple criteria concurrently within the op-

timization process and deals with conflicts between these criteria
comprehensively. In order to experimentally study these conflicts
and interdependencies between the proposed objectives, the follow-
ing hypothesis are proposed:

1. Hypothesis A: The criteria of information content and point

dispersion do not represent conflicting objectives for an av-

erage image (referred to as HA hereafter).

2. Hypothesis B: The properties of global separability and re-

peatability represent conflicting objectives for an average

image (HB).

3. Hypothesis C: The properties of information content and
repeatability represent conflicting objectives for an average

image (HC).

Each of these hypothesis was formulated in order to experimen-
tally test if conflicts can be confirmed or denied between each pair
of IP performance measures. It is assumed that if a Pareto Front is
observed then this is taken as positive evidence that a single non-
dominated solution does not exist. In all three cases a reference is
made to the idea of an average image, which is intended to refer
to most images of real-world scenes, which is conceptually useful.
Each hypothesis is intuitive, for instance HA suggests a strong cor-
relation between global separability and information content, be-
cause most scenes do not contain a repetitive structure that covers
all of the image. In other words, the local regions around most IPs
are expected to be different if detected IPs are spread out across the
image. On the other hand, in the case of HB it is simple to conceive
a degenerative detector that identifies IPs crowded together on iso-
lated portions of the image that manages a high repeatability rate.
Finally, HC is based on the assumption that HA is true from which
a similar argument to the one described for HB can be derived. In
sum, falsifying HA, HB and HC could be done experimentally us-
ing the MO-GP implementation described here.

6. EXPERIMENTATION AND RESULTS
The algorithm was programmed using the Matlab toolbox GPLAB3.

The Matlab code was coupled with an implementation of the SPEA2
selection algorithm, written in C++, provided by the Platform and

Programming Language Independent Interface for Search Algo-

rithms4. The image sequence used for training was the Van Gogh
set of a planar scene with rotation transformations provided by the
Visual Geometry Group at Oxford University, along with Matlab
source code to compute the repeatability rate5. The control pa-
rameters for the MO/GP search are presented in Table 1. The MO
search was carried out four times for each experimental configura-
tion; in each case a different maximum depth was allowed for the
corresponding program trees. The following subsections describe
the experiments conducted for each of the three hypothesis: HA,
HB and HC. In each case, three operators are presented and sam-
ple IPs are shown on the training image. Additionally, the Pareto
Front found in each experiment is shown. In order to verify the
generality of the measures for global separability and information

3http://gplab.sourceforge.net/index.html, GPLAB A Genetic Pro-
gramming Toolbox for MATLAB by Sara Silva
4http://www.tik.ee.ethz.ch/sop/pisa/
5http://www.robots.ox.ac.uk/ vgg/research/
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content, the Pareto dominance relations were tested on eight addi-
tional test images shown in Figure 4. The Pareto-Optimal set of
solutions showed a consistent performance on these tests.

Figure 4: Images used to test the evolved operators.

Figure 5: Experimental results of HA. Top: Pareto front and

comparison with previous detectors. Bottom: Entropy com-

puted in each SIFT dimension for operators Ka, Kb and Kc.

6.1 Experiments: HA
In this configuration the MO optimization focuses on f1 and f2.

Figure 5 presents the outcome of the experimental runs. Three
inflection points can be seen in the Pareto Front, denoted as Ka,
Kb and Kc; see Table 2. Also shown are the performance of sev-
eral IP operators, including those evolved using a mono-objective
approach by Trujillo & Olague: IPGP1 and IPGP2 [25, 26].
Other operators included for comparison are those proposed by
Beaudet [2], Harris & Stephens [6], Förstner [5], and Kitchen &
Rosenfeld [8]. IPs detected with each operator are also shown,
as well as those detected with the Harris & Stephens approach.

Figure 6: Experimental results of HB. Pareto front and com-

parison with previous detectors.

Figure 7: Experimental results of HC. Top: Pareto front and

comparison with previous detectors. Bottom: Entropy com-

puted in each SIFT dimension for operators Ku, Kv and Kw.

The first obvious assertion is that all previous operators are domi-
nated by the Pareto-Optimal set of solutions that were found. This
could be expected from the evolved operators of Trujillo & Olague
that do not explicitly account for information content; however,
the Harris & Stephens detector performs worse than anticipated.
The plots of Figure 5 suggest that HA is false. However, making
such an assertion has to be done with caution because of two ob-
servations. First, it is obvious that f2(Ka) > f1(Kb). However,
the difference in global separability could be dismissed because
f1(Ka) ≈ f1(Kb). Second, a comparison between Kb and Kc

shows that f1(Kc) > f1(Kb), and a Kolmogorov-Smirnov test be-
tween each SIFT dimension of Γb and Γc suggests that regarding
f2(Kb) ≈ f2(Kc) could also be judicious. Therefore, if the Pareto
dominance relations are analyzed under these considerations then
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Table 1: General parameter settings for the MO/GP search.
Parameters Description and values
Population size 200.
Iterations 50.
Initialization Ramped Half-and-Half.
Crossover & Mutation prob. Crossover prob. pc = 0.85;

mutation prob. pµ = 0.15.
Max depth 3,5,7 9 levels.
Archive size The SPEA2 archive size: 100.
Selection size The amount of individuals

selected by SPEA2: 100.

Kb could be seen as a solution that dominates all other solutions
found. Hence, the authors conclude that not enough evidence ex-
ists to reject HA.

6.1.1 Discussion

The results related to information content are unexpected. The
operator Ka, which is inversely proportional to the curvature along
one of the principal directions, transmits the least amount of infor-
mation. Even more unexpected is the fact that operator Kc conveys
the most information content even if the IPs detected are mostly
crowded together. Therefore, Figure 5 shows the entropy in each
SIFT dimension computed for each Γa, Γb and Γc. This plot shows
that for Ka, several dimensions are poorly distributed, while at the
same time others have a high amount of dispersion. These results
suggest an interesting possibility because the descriptors in Γa are
all very similar in so many SIFT dimensions. Hence, it may be pos-
sible to extract a representative global-SIFT descriptor for an entire
image. Experiments using the test images in Figure 4 show that
every image responds similarly to this operation.

6.2 Experiments: HB
The experimental configuration is similar to the previous one.

In this case using the fitness measures f1 and f3, see Figure 6.
Indeed, the approximation of the Pareto Front for this experiment
shows that these objectives are in conflict. Furthermore, the results
show some interesting trends from the previously proposed IP op-
erators. First, most designs perform quite poorly concerning the
amount of IP dispersion. For example, the Harris & Stephens de-
tector approaches the Pareto Front in the Stability dimension, but
fails considerably in the amount of global separability. This illus-
trates that human designers are biased to a certain kind of problem
modeling. Normally, researchers focus mainly on detecting a spe-
cific and easily definable image feature, e.g. corners. Second, the
operators IPGP1 and IPGP2 that were proposed by Trujillo &
Olague dominate all other operators and IPGP1 in particular lies
on the approximated Pareto Front. Thus, it is evident that these
operators benefited from the fitness measure that incorporated the
amount of stability and global separability explicitly.

6.3 Experiments: HC
These experiments also produced a Pareto Front that exhibits a

conflict between the objectives f2 and f3. Moreover, the four man-
made operators used for comparison differ only in the amount of
stability while maintaining very similar information content. On
the other hand, each of the evolved operators achieve a different
performance. IPGP2 is similar, and slightly dominates the Harris
& Stephens operator, as well as the other man-made designs. While
IPGP1 has a low information content and exhibits a large degree
of stability, this gives it an extreme position on the Pareto Front
presented in Figure 7. Also shown in the figure are the entropy
comparisons between three different operators, Ku, Kv and Kw.

Table 2: Some of the operators found with the MO/GP search.
Experiment: HA

Ka = k2 · G2 ∗ G2 ∗
„

Ly

Lyy

«

Kb = k · G2 ∗ G2 ∗
s

log(G1 ∗ L)

G1 ∗ |Lx + Lyy|

Kc =

k · G1 ∗ I

G2 ∗ Lx · I
L2

yy · |LyyLxx +
√

Lxx| · |G1 ∗ I + |G1 ∗ L2
xy − Lyy||

−
˛

˛

˛

˛

log

„

G1 ∗ Lxy

||Ly − Lxx| − |Lx + Lyy||

«

− G1 ∗ Lyy

|Lxx|

˛

˛

˛

˛

Experiment: HB

Kp = G2 ∗
˛

˛G1 ∗ log(G1 ∗ I2
´

+

G2 ∗ (G1 ∗ I − I) +

˛

˛

˛

˛

G1 ∗ I

I

˛

˛

˛

˛

|2

Kq = G2 ∗ |G1 ∗ log(G1 ∗ I2) +

k · G2 ∗ |G1 ∗ I − I | +
˛

˛

˛

˛

G1 ∗ I

I

˛

˛

˛

˛

|2

Kr = G2 ∗
„

Ly

Lyy

«

Experiment: HC

Ku =
G1 ∗ G1 ∗ G2 ∗ |G1 ∗ I |

G2 ∗ |G2 ∗ G2 ∗ I |
Kv = ||Lyy + G1 ∗ G1 ∗ G1 ∗ I | + G1 ∗ Lxx|

Kw =
G2 ∗ G1 ∗ I

(Lyy · G2 ∗ Ly) · (G2 ∗ Lxx) · (k · G1 ∗ Lxx)

The comparison shows that even if the points detected by Ku are
more sparsely distributed accross the image, its corresponding en-
tropy value in most SIFT dimensions is far lower than the obtained
with Kv and Kw.

7. SUMMARY AND CONCLUSIONS
In this work a Multiobjective Genetic Programming algorithm

was described that synthesizes several IP operators using a single
program execution. The function and terminal sets rely on common
image operations used as primitives that allow the search process
to synthesize high-performance operators. Three well-established
performance criteria are employed during fitness evaluation. These
measures have been identified by the computer vision community
as useful in evaluating the performance of IP detectors, these are:
the repeatability rate, the amount of information content, and the
level of global separability of the detected IPs. In order to test the
MO problem formulation three hypothesis were given. These hy-
pothesis were proposed in order to determine wether conflicts exist
between the defined performance criteria. The experimental runs
suggest that conflicts do indeed exist, and that previously proposed
operators do not provide optimal solutions based on the Pareto cri-
terion for optimality. Therefore, based on the experimental evi-
dence it is concluded that IP detection constitutes an ill-posed mul-
tiobjective problem. Furthermore, the GP search, using the SPEA2
selection scheme, was able to generate a diverse set of Pareto op-
timal solutions, and several examples were presented that outper-
form man-made designs. Future work could focus on incorporating
other performance measures that are dictated by the requirements
of a specific application, this is possible because the proposed MO
scheme can be extended in a principled manner.
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