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ABSTRACT
Semi-supervised clustering with instance-level constraints is
one of the most active research topics in the areas of pattern
recognition, machine learning and data mining. Several re-
cent studies have shown that instance-level constraints can
significantly increase accuracies of a variety of clustering al-
gorithms. However, instance-level constraints may split the
search space of the optimal clustering solution into pieces,
thus significantly compound the difficulty of the search task.
This paper explores a genetic approach to solve the problem
of semi-supervised clustering with instance-level constraints.
In particular, a novel semi-supervised clustering algorithm
with instance-level constraints, termed as the hybrid genetic-
guided semi-supervised clustering algorithm with instance-
level constraints (Cop-HGA), is proposed. Cop-HGA uses a
hybrid genetic algorithm to perform the search task of a high
quality clustering solution that is able to draw a good bal-
ance between predefined clustering criterion and available
instance-level background knowledge. The effectiveness of
Cop-HGA is confirmed by experimental results on several
real data sets with artificial instance-level constraints.
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1. INTRODUCTION
Clustering analysis works to classify a set of unlabeled in-

stances into groups such that instances in the same group
are more similar to each other, while they are more different
in different groups. In its traditional literature, clustering
analysis was considered as an unsupervised method for data
analysis, which performs under the condition that no in-
formation is available concerning memberships of instances
to predefined groups [1]. However, it was known that some
background knowledge such as instance-level constraints can
be obtained easily in many real-world applications and sev-
eral recent studies have also shown that these instance-level
constraints can significantly increase accuracies of a vari-
ety of clustering algorithms. Clustering analysis under the
condition that some limited instance-level constraints are in-
corporated for guiding the clustering of the data was termed
as semi-supervised clustering with instance-level constraints,
which has become one of the most active research topics in
the areas of pattern recognition, machine learning and data
mining [2] [3].

Semi-supervised clustering with instance-level constraints
has gained some real-world applications such as GPS-based
map refinement, person identification from surveilance cam-
era clips and landscape detection from hyperspectral data [2]
[3]. However, semi-supervised clustering with instance-level
constraints is not exempt from any drawbacks. One dis-
advantage of semi-supervised clustering with instance-level
constraints is that instance-level constraints tend to split the
search space of the optimal clustering solution into pieces
that compounds the difficulty of the search task. Whereas
commonly-used hill-climbing search methods can only guar-
antee a local optimal clustering solution. The above dis-
advantage of semi-supervised clustering with instance-level
constraints motivates us to adopt genetic algorithms to per-
form the search task.

This paper explores the genetic approach to solve the
problem of semi-supervised clustering with instance-level con-
straints. In particular, a novel semi-supervised clustering al-
gorithm, termed as the hybrid genetic-guided semi-supervised
clustering algorithm with instance-level constraints (Cop-
HGA), is proposed. Cop-HGA uses a hybrid genetic algo-
rithm to perform the search task of a high quality cluster-
ing solution that is able to draw a good balance between
predefined clustering criterion and available instance-level
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background knowledge. To the best knowledge of the au-
thors’, very few works have been done on using genetic al-
gorithms to solve the problem of semi-supervised clustering
with instance-level constraints.

The remainder of this paper is divided into 5 sections.
Section 2 briefly introduces the related work for this paper.
Section 3 defines the problem of semi-supervised clustering
with instance-level constraints. Section 4 goes into details
of describing genetic-guided semi-supervised clustering al-
gorithm with instance-level constraints. Our experimental
results on several real data sets and their analysis are given
in section 5. Section 6 concludes this paper.

2. RELATED WORK
Traditional clustering algorithms are unsupervised under

the condition that no information is available concerning
memberships of instances to predefined groups. However,
if no information about memberships of instances is avail-
able, clustering analysis is an ill-posed combinatory opti-
mization problem and no single clustering algorithm is able
to achieve high quality clustering solutions for all kinds of
data sets. A large number of studies have been concentrated
on improving the robustness and stability of clustering al-
gorithms. Among them is semi-supervised clustering algo-
rithms that incorporate some prior background knowledge
about memberships of instances into the original framework
of traditional unsupervised clustering algorithms. It should
be noted that these prior background knowledge can some-
times be obtained naturally from application domains with-
out accessing any human interaction. For example, to seg-
ment movies such that all the frames in which the same actor
appears are grouped. Due to the continuous nature of most
movies, faces extracted from successive frames in roughly
the same location can be assumed to come from the same
person. Another example is to segment images using clus-
tering algorithms. Two pixels have a high probability to be
grouped together if they are spatially connected. Many re-
cent studies have demonstrated that these prior background
knowledge can significantly improve accuracies of clustering
algorithms [2] [3]. Clustering algorithms incorporate these
prior background knowledge in a constrained format, which
may come from several different sources such as partial la-
bels, instances relationships and spatial contiguity.

In this paper, we are mainly interested in instance-level
constraints, which were known as a more natural repre-
sentation of prior background knowledge in some scenarios
and easier to be collected than accurate labels of instances.
For example, in image retrieval systems with user feedback,
users are more willing to provide whether a set of retrieved
instances are similar or not than to specify labels of in-
stances. Instance-level constraints place restrictions on pairs
of instances with regards to their memberships. The concept
of instance-level constraints was firstly introduced into the
area of clustering analysis in [4], [5] and [3]. To improve the
performance of traditional K-means clustering algorithms,
two kinds of constraints: Must-link constraints and Cannot-
link constraints were proposed and added into the origi-
nal framework of traditional K-means clustering algorithm.
Among these two kinds of instance-level constraints, Must-
link ones represent that two instances must be partitioned
into the same group, while Cannot-link ones specify that two
instances must not be placed into the same group. Other
kinds of constraints such as space-level constraints [6] have

also been suggested. In this paper, only Must-link and
Cannot-link instance-level constraints are considered because
of their simplicities and wide applications. There are two
widely used approaches for unsupervised clustering algo-
rithms to incorporate instance-level constraints. The first
one is to place restrictions on assignments of instances to
guarantee that assignments of instances satisfy all given
constraints [5] [4]. A variate of this kind of approaches is
semi-supervised clustering with penalty that works to pe-
nalize clustering solutions according to the degrees in which
they violate the given instance-level constraints [7] [8]. The
second one is to learn a distance metric from all available
instance-level constraints such that instances in the learned
distance space are more suitable for the clustering of the data
[9]. For more information about semi-supervised clustering
algorithms with instance-level constraints, we recommend
two PhD thesis [2] [3] and one recent survey about semi-
supervised clustering with instance-level constraints [10].

3. PROBLEM DEFINITION
Clustering analysis works to classify a set of unlabeled in-

stances into groups such that instances in the same group
are more similar to each other, while they are more differ-
ent in different groups. Many feasible approaches have been
proposed to classify a set of unlabeled instances into groups
and most of them belong to the following three categories:
data partitioning, hierarchical clustering and model-based
clustering. This paper is mainly interested in K-means clus-
tering algorithm, which is one of the most famous data parti-
tioning algorithms. Therefore, in this paper data clustering
algorithm works to search for a partition of all instances
such that the minimization of the within-cluster variation
can be achieved. Let D = {xi, x2, ...., xL} represent a set
of L instances with m features, xij denote the jth feature
of the instance xi and K be the number of groups that
has been known beforehand. A partition of the data set
C = {C1, C2, ...., CK} satisfies:

Ci ∩ Cj = ∅ (i 6= j) and ∪K
i=1 Ci = D (1)

Based on the above definitions, the within-cluster variation
of the partition C of the data set can be calculated as:

s(C) =
LX

i=1

KX
k=1

"
δ(xi, Ck) ·

mX
j=1

(xij − ckj)
2

#
(2)

where

ckj =

PL

i=1 δ(xi, Ck) · xijPL

i=1 δ(xi, Ck)
(3)

for k = 1, ...., K, j = 1, ...., m and

δ(xi, Ck) =

�
1 if xi ∈ Ck;
0 if otherwise;

(4)

K-means clustering algorithm employs the following steps to
search for a partition C of the data set such that the mini-
mization of the within-cluster variation of instances can be
achieved: 1. Cluster centroids are updated based on the
labels of all instances. 2. All instances are reassigned and
relabeled into its closest cluster centroid. Traditional K-
means clustering algorithm is very fast, therefore has been
widely applied into the areas of pattern recognition, ma-
chine learning and data compression. However, traditional
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K-means clustering algorithm can only converge to a local
optimal clustering solution. Moreover, the accuracy of K-
means clustering algorithm may be not high enough if the
distribution of instances is elongated [1].

There are many feasible approaches for improving the ro-
bustness of traditional K-means clustering algorithm. Among
them is the recently proposed semi-supervised clustering al-
gorithm that incorporates instance-level constraints into the
original framework of traditional K-means clustering algo-
rithm [4] [8]. Instance-level constraints represent whether
pairs of instances should or should not be classified into the
same groups. Two widely used instance-level constraints are
Must-link constraints and Cannot-link constraints. Among
these two kinds of instance-level constraints, Must-link ones
represent that two instances must be partitioned into the
same group, while Cannot-link ones specify that two in-
stances must not be placed into the same group. Let Con

be the set of instance-level constraints that can be denoted
as follows:

Con(i, j) =

8<: 1 if xi and xj is Must-linked;
−1 if xi and xj is Cannot-linked;
0 if otherwise;

(5)

We use the following function to check whether the partition
C of the data set satisfies a given instance-level constraint
Con(i, j):

δ(C, Con(i, j)) =8<: 1 if xi and xj are in the same group, but Con(i, j) = −1
1 if xi and xj are in different groups, but Con(i, j) = 1
0 if otherwise;

(6)
Therefore, given a partition C = {C1, C2, ...., CK} of the
data set, its number of unsatisfied instance-level constraints
can be calculated as follows:

V con(C, Con) =
L−1X
i=1

LX
j=i+1

δ(C, Con(i, j)) (7)

If the clustering solution C completely satisfies all given con-
straints Con, then

V con(C, Con) =
L−1X
i=1

LX
j=i+1

δ(C,Con(i, j)) = 0 (8)

otherwise,

V con(C, Con) =
L−1X
i=1

LX
j=i+1

δ(C,Con(i, j)) > 0 (9)

If all instance-level constraints should be satisfied1, K-means
clustering algorithm with instance-level constraints can be
viewed as the following constrained combinatory optimiza-
tion problem:

min

(
LX

i=1

KX
k=1

"
δ(xi, Ck) ·

mX
j=1

(xij − ckj)
2

#)
(10)

subject to

L−1X
i=1

LX
j=i+1

δ(C, Con(i, j)) = 0

1hard constraints.

The existing constrained K-means clustering algorithm (Cop-
Kmeans) [4] searches for a clustering solution that satisfies
all given constraints with the following steps employed: 1.
Cluster centroids are calculated based on labels of instances.
2. All instances are relabeled with its nearest feasible clus-
ter under the condition that the assignment does not break
any instance-level constraints. If no feasible cluster is avail-
able for the assignment of an instance, backtracking and
reassigning until a feasible assignment is reached. Con-
strained K-means clustering algorithm outperforms tradi-
tional K-means clustering algorithm without instance-level
constraints. However, it at least has three major draw-
backs. First, constrained K-means clustering algorithm is a
hill climbing search method that can only guarantee a local
optimal clustering solution. Second, when the number of
instance-level constraints is large, effects of unconstrained
instances become weak. The algorithm turns into finding
a partition of the data that satisfies all given constraints,
but not the one to minimize the predefined clustering crite-
rion [3]. Third, assignments of instances into groups are
order-sensitive and backtracking is sometimes very time-
consuming [11]. Apart from Cop-Kmeans, another state-
of-the-art K-means clustering algorithm with instance-level
constraints is the pairwise constrained K-means clustering
algorithm (PCKmeans) [8], that uses a greedy search method
to optimize the following objective function:

min
KX

k=1

LX
i=1

"
δ(xi, Ck)

NX
j=1

(xij − ckj)
2

#
(11)

+λ ×

"
L−1X
i=1

LX
j=i+1

δ(C,Con(i, j))

#
where λ is called as the incurred cost that is used to mea-
sure how much penalty should be added into the tradi-
tional within-cluster variation clustering criterion if a pair-
wise instance-level constraint is violated. In [8], the value
of λ is provided by the user. The optimization process of
PCKmeans is very similar to the traditional K-means clus-
tering algorithm, but no backtracking step is required and
part of instance-level constraints can be violated in its final
clustering solution. Like Cop-kmeans, PCKmeans is only
able to guarantee a local optimal clustering solution.

Genetic algorithm is a class of heuristic search algorithms
based on the mechanism of nature selection. It has been
widely applied into the area of data analysis such as data
clustering, feature selection and machine vision. In this pa-
per, we explore the genetic algorithm to optimize the objec-
tive function (11). The following section will go into details
of describing genetic-guided semi-supervised clustering with
instance-level constraints.

4. GENETIC-GUIDED SEMI-SUPERVISED
CLUSTERING WITH INSTANCE-LEVEL
CONSTRAINTS

This paper adopts a hybrid genetic algorithm to solve
the problem of semi-supervised clustering with instance-level
constraints. We term this algorithm as the hybrid genetic-
guided semi-supervised clustering algorithm with instance-
level constraints (Cop-HGA). Like the standard genetic al-
gorithm, Cop-HGA maintains a population of coded candi-
date clustering solutions during its search. There are several
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effective approaches for encoding candidate clustering solu-
tions in the existing literature of genetic-guided clustering
algorithms [12]. In this paper, we use the string-of-group

encoding strategy because of its simplicity and wide applica-
tions. In string-of-group encoded genetic-guided clustering
algorithms, each chromosome in the population is considered
as an integer string of length L, where L is the number of
instances of being partitioned and each element in the chro-
mosome represents the label of the cluster that an instance
is classified into. Let {x1, x2, ...., xL} be a set of instances
and K is the number of groups that has been known before-
hand, a candidate solution can be coded as: {I1, I2, ..., IL},
where Ij is the label of the cluster into which the instance
xj is partitioned and Ij ∈ {1, 2, ...., K}. For example, the
chromosome {1, 2, 3} and the chromosome {2, 2, 1} rep-
resent candidate clustering solutions {{x1}{x2}{x3}} and
{{x1, x2}{x3}} respectively.

Cop-HGA uses the formula (11) to calculate fitness values
of all candidate clustering solutions in the population. It is
noted that candidate solutions with smaller values of the ob-
jective function are considered as better candidate clustering
solutions. This is because the purpose of Cop-HGA is to find
a partition of a set of instances such that the objective (11)
is minimized. In formula (11), the value λ is used to bal-
ance between the clustering criterion and the instance-level
constraints. It was known that different data sets may have
different ”best” values of λ [8]. In this paper, the setting of
the value λ is based on the assumption that clustering cri-
terion and prior background knowledge contribute equally.
Therefore, Cop-HGA sets the value of λ as the average value
of the square distance from an instance to its cluster cen-
troid. Let M be the number of candidate solutions in the
population and C(i) denote the ith candidate clustering so-
lution in the population, then λ is set as:

λ =

PM

i=1 s(C(i))

M × L
(12)

Our experimental results indicated that Cop-HGA can al-
ways perform well if λ is set as the average value of the
square distance from an instance to its cluster centroid. In
this paper, Cop-HGA uses the tournament selection opera-
tor and its tournament size is fixed to 2. The tournament
selection operator works with the following steps employed:
two candidate solutions are randomly selected from the pop-
ulation and let them compete, then the one with the smaller
within-cluster variation is considered as the winner and se-
lected. The best candidate solution in each generation is
directly copied into the new population at the next gener-
ation. It is noted that commonly used one-point crossover
operator of genetic algorithm is discarded from Cop-HGA.
This is because one-point crossover operator frequently re-
produces low-quality clustering solutions that violate many
instance-level constraints. For example, given two clustering
solutions {1, 2, 1} and {2, 1, 2}, and one Must-link constraint
that the instance x1 and the instance x2 must be classified
into the same group. It is known from the definition of
Must-link constraints that both clustering solutions satisfy
the Must-link constraint. However, their offsprings {1, 2, 2}
and {2, 1, 1} reproduced by the one-point crossover operator
will break the Must-link constraint that the instance x1 and
the instance x2 must be classified into the same group.

A new genetic operator, termed as One-step Constrained
K-means operator (OCK), is proposed to speed up the con-

vergence of Cop-HGA. OCK works with the following steps
employed: 1. The centroids of clusters are calculated based
on labels of instances; 2. Instances are reassigned into its
closest feasible groups under the guidance of cluster cen-
troids and instance-level constraints. If no feasible cluster is
available for the assignment of an instance, then the instance
is assigned into its closest cluster or the cluster such that the
number of violated instance-level constraints is minimal. Let
I denote a candidate clustering solution in the population
and Ij denote the label of the instance xj to be assigned
and {x1, x2, ..., x(j−1)} be a set of instances that have been
assigned before the assignment of the instance xj . The num-
ber of violated instance-level constraints if the instance xj

is assigned into the kth group can be calculated as follows:

A(Ij = k) =

j−1X
l=1

δ(Ij , Il) (13)

where

δ(Ij , Il) =

8<: 1 if Con(j, l) = 1 and Il 6= k;
1 if Con(j, l) = −1 and Il = k;
0 if otherwise;

(14)

for k = 1, 2, ...., K. After the values of {A(Ij = k), k =
1, ...., K} are calculated, OCK identifies all possible feasible
assignments of the instance xj according to:

Q = {k|A(Ij = k) = 0, k = 1, 2, ..., K} (15)

If Q is not an empty set, then the instance xj is assigned
into its closest feasible cluster, that is:

Ij = arg min
k∈Q

‖xj , ck‖
2 (16)

otherwise, the instance xj is assigned into its closest cluster
or the cluster such that the number of violated instance-level
constraints is minimal, that is:

Ij =

�
arg mink={1,2,...,K} ‖xj , ck‖

2 if rand(1) < a;
arg mink={1,2,...,K} A(Ij = k) if otherwise;

(17)
where {c1, c2, ..., cK} are the centroids of clusters and a is
the control parameter that is used to determine which as-
signment strategy is adopted.

5. EXPERIMENTS

5.1 Experimental settings
Five real data sets from UCI Machine Learning Repository

[13] were selected to test the performance of Cop-HGA: Iris
data set (150 instances, 4 features, 3 clusters), Glass data
set (214 instances, 9 features, 6 clusters), Thyroid data set
(215 instances, 5 features, 3 clusters), Wisconsion data set
(699 instances, 9 features, 2 clusters) and Pima data set (768
instances, 8 features, 2 clusters). Parameters settings in ex-
periments were set as follows: Population size of Cop-HGA
was fixed to 500 for Iris data set, Glass data set, Thyroid
data set and 1000 for Wisconsion data set, Pima data set.
The standard mutation operator of genetic algorithm was
adopted and its mutation rate was set as 0.01. The tour-
nament selection operator was used and its tournament size
was fixed to 2. All experiments were independently exe-
cuted for 30 runs and their average results were reported.
Instance-level constraints were generated through randomly
selecting two instances from data sets and checking their
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labels2. If their labels were the same, then a Must-link con-
straint connecting these two instances was generated; other-
wise, a Cannot-link constraint was achieved. The accuracy
of a clustering solution was measured by the Rand Index
approach as follows [14]:

‖I(i)
, I

(acc)‖ =
2 · (n00 + n11)

n · (n − 1)

where n11 is the number of pairs of instances which are both
in the same group in I(i) and also both in the same group
in I(acc) and n00 denotes the number of pairs of instances
which are in different groups in I(i) and also in different
groups in I(acc) and I(acc) is the accurate partition that was
known for all tested UCI data sets.

5.2 Performance of Cop-HGA
First, we fixed the control parameter a to 0.3 and stud-

ied clustering accuracies of Cop-HGA under different num-
bers of instance-level constraints. Experimental results of
Cop-HGA were compared with those obtained by two state-
of-the-art constrained K-means clustering algorithms: Cop-
kmeans [4] and CPKmeans [8] and another two unconstrained
K-means clustering algorithms: K-means clustering algo-
rithm and Genetic K-mean algorithm (GKA) [15]. The re-
sults were shown in Figure 1. The first phenomenon ob-
served from Figure 1 was that instance-level constraints can
significantly improve clustering accuracies of both traditional
K-means clustering algorithm and genetic-guided K-means
clustering algorithm. Another phenomenon observed from
Figure 1 is that Cop-HGA outperforms Cop-kmeans and
CPKmeans. For example, if 500 instance-level constraints
are added, Cop-kmeans can achieve around 94% accuracy
for Iris data set, 80% accuracy for Glass data set, 83% for
Thyroid data set, 94% accuracy for Wisconsion data set and
67% accuracy for Pima data set and CPKmeans can achieve
96% accuracy for Iris data set, 75% accuracy for Glass data
set, around 77% accuracy of Thyroid data set, 95% accu-
racy for Wisconsion data set and around 70% accuracy for
Pima data set. The results of Cop-HGA are the best for all
five data sets. Its clustering accuracies are around 99.5% for
Iris data set, 88.0% accuracy for Glass data set, 97.5% for
Thyroid data set, 96.2% accuracy for Wisconsion data set
and around 75.0% accuracy for Pima data set.

5.3 Effectiveness of OCK operator
To demonstrate the potential of OCK operator, we fixed

the number of instance-level constraints to 300, the con-
trol parameter a to 0.3 and executed genetic-guided semi-
supervised K-means clustering algorithm with instance-level
constraints with the following four different genetic opera-
tors:

• Cop-HGA: hybrid constrained genetic-guided cluster-
ing algorithm with OCK operator;

• Cop-SGA: constrained genetic-guided clustering algo-
rithm with standard mutation operator;

• Cop-CGA: constrained genetic-guided clustering algo-
rithm with one-step constraint satisfaction operator;

• Cop-KGA: constrained genetic-guided clustering algo-
rithm with one-step K-means operator;

2For UCI data sets, the accurate labels of instances are avail-
able from the data sets.

The results were given in Figures 2-4. It can be observed
from Figures 2-4 that the standard mutation operator did
not perform well enough for semi-supervised clustering with
instance-level constraints. It was unable to effectively re-
produce new candidate clustering solutions that minimize
the within-cluster variation or the number of unsatisfied
instance-level constraints fast. One-step constraint satis-
faction operator performed better than the standard mu-
tation operator. It biased the search for clustering solutions
that satisfy the given instance-level constraints. Therefore,
Cop-CGA quickly found a clustering solution satisfying the
given instance-level constraints. However, the one-step con-
straint satisfaction operator neglected the objective of the
within-clustering variation, therefore was not be enough to
search for a high-quality clustering solution with a small
within-cluster variation. Unlike the one-step constraint sat-
isfaction operator, the clustering solution captured by con-
strained genetic-guided clustering algorithm with one-step
K-means operator (Cop-KGA) usually had a small within-
cluster variation, but sometimes a large value of the number
of unsatisfied instance-level constraints. This was because
the one-step K-means operator benefited for the minimiza-
tion of the within-cluster variation, but did not benefit for
the minimization of the number of unsatisfied instance-level
constraints. For all tested data sets, Cop-HGA performed
the best. It reproduced high quality clustering solutions that
drew a good balance between the clustering criterion and
the instance-level constraint fast. The above observations
let us know that OCK operator is better than the standard
mutation operator, the one-step constraint satisfaction op-
erator and the one-step K-means operator. It can speed
up the search of genetic-guided semi-supervised clustering
with instance-level constraints for a satisfactory clustering
solution that draws a good balance between the clustering
criterion and the instance-level background knowledge.

5.4 Effect of the control parameter
Lastly, the effect of the control parameter a on the per-

formance of Cop-HGA was studied. Figure 5 gives the ex-
perimental results. It can be observed from Figure 5 that
Cop-HGA with different control parameters a may lead to
clustering solutions with different accuracies. The value of
the control parameter a from 0.3 to 0.5 can always draw a
good balance between the clustering criterion and the back-
ground knowledge. Therefore, Cop-HGA under this value of
the control parameter a often achieved a high-quality clus-
tering solution.

6. CONCLUSION
This paper has considered semi-supervised clustering algo-

rithm with instance-level constraints as a constrained com-
binatory optimization problem and proposed a novel hybrid
genetic-guided semi-supervised clustering algorithm, termed
as Cop-HGA. Cop-HGA combines the robustness of genetic
algorithm and the rapidity of K-means clustering algorithm
for semi-supervised clustering with instance-level constraints.
The effectiveness of Cop-HGA and its OCK operator has
been confirmed by several real data sets with artificial instance-
level constraints.
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Figure 1: Comparisons between Cop-HGA, con-

strained and unconstrained clustering algorithms.
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(5) Wisconsion data set

Figure 2: Accuracies obtained by different genetic-

guided semi-supervised clusterings algorithms.
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Figure 3: Within-cluster variations obtained by dif-

ferent genetic algorithms.
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Figure 4: The numbers of unsatisfied constraints ob-

tained by different genetic algorithms.
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Figure 5: Clustering accuracies obtained by Cop-

HGA with different control parameters a.
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