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ABSTRACT
We present our first results concerning the de novo evolution
of motility and tactic response in systems of digital organ-
isms. Our model organism was E. coli and the behavior of
interest was gradient following, since this represents simple
decision-making. Our first experiments demonstrated the
evolution of a tactic response, both when provided with a
hand-coded system to remember previous gradient concen-
trations and without this crutch where the organisms must
determine how to store previous values on their own. In our
second set of experiments we investigated two different ro-
tation strategies, random and systematic, and found no sig-
nificant performance difference between the two strategies.
These experiments served as a stepping-stone and proof-of-
concept of the infrastructure needed for our future work on
the evolution of simple intelligence.

Categories and Subject Descriptors
I.2.0 [Computing Methodologies Artificial Intelligence]:
General; I.6.0 [Computing Methodologies Simulation

and Modeling]: General

General Terms
Experimentation

Keywords
Digital evolution, chemotaxis, Avida, gradient following, ex-
perimental evolution
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1. INTRODUCTION

1.1 Intelligence and evolution
Computer scientists have long worked toward the goal of

producing computational systems that are capable of flexi-
ble, complex behaviors. This goal has proven elusive, since
the design of such intelligent systems has been remarkably
difficult. Historically, the fields of philosophy and artificial
intelligence (AI) have both addressed the question of intel-
ligence with a focus on what may be termed propositional
intelligence (knowing that) rather than behavioral intelli-
gence (knowing how). This attention to high-level, human-
like intelligence and cognition has led many AI researchers
to use top-down methods to produce hand-designed, special-
purpose solutions to particular problems. Despite some im-
pressive successes, the promise of AI to produce general-
purpose, flexible systems remains largely unfulfilled.

An evolutionary standpoint can provide a different per-
spective on the problem of intelligence. Evidence indicates
that, just as the modern human body evolved from other,
earlier morphologies, human intelligence evolved from other
pre-existing forms of intelligence. Therefore, instead of un-
dertaking the daunting task of designing an artificially in-
telligent system from the top down, perhaps a more advan-
tageous approach is to create the circumstances in which
intelligence can evolve, and allow the process of evolution to
find the design.

The field of AI has explored various types of cognition,
often taking inspiration from animals, both vertebrates and
invertebrates. However, even relatively simple brains, such
as those of insects or nematode worms, may have complex
interconnections that, although deeply studied, remain in-
completely understood. The idea at the center of the cur-
rent study is to step far back in evolutionary history, and far
down in complexity, to examine behaviors and mechanisms
that demonstrate intelligence in a much simpler form: simple
decision-making. Briggman et al. [10] propose that decision-
making can apply to a “spectrum of goal-driven behaviors,”
ranging from complex (conscious choices with expectation
of reward) to simple (predictable reflexes). A motile organ-
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ism’s ability to orient relative to sensory stimuli is among
such reflexive behaviors. A fundamental form of orienta-
tion is following gradients—the change of some property over
distance—in the environment. The ability to navigate envi-
ronmental gradients is essential for even the simplest motile
organisms, and is likely a building block for more complex
movement-related behavior, such as navigation.

Here, we report our initial steps in exploring the de novo
evolution of motility and tactic response in systems of digi-
tal organisms, and a group of first experiments that provide
proof of concept and point toward future work. This work
is only the first step in a much larger research initiative, and
is centered on building infrastructure that will facilitate the
ongoing investigation of simple intelligence. We focus on
gradient following as simple decision-making, using E. coli
as the model organism. There are a number of compelling
reasons for using an organism like E. coli as the starting
point for investigating decision-making. It is a simple, well
studied, and highly successful organism. More importantly,
in relation to decision-making, E. coli is able to obtain in-
formation from its environment and use the information it
gathers in order to survive, moving through the environment
and orienting to sensory stimuli.

1.2 Tactic responses and bacterial chemotaxis
In biology, gradient following is often referred to as tactic

response or taxis (plural taxes) [11]. Motile microorganisms
and cells show sensory responses to a range of environmen-
tal stimuli, including light, sound, gravity, magnetic fields,
and chemical signals. The distinction is often made between
taxes, applied to motile cells and organisms, and tropisms
(an in-place orientation toward or away from a stimulus),
applied to organisms that are firmly attached to a substrate
and so are incapable of locomotion. Taxis may be either
positive, in which movement is toward the stimulus, or neg-
ative, involving movement away from the stimulus. Taxes
are also often classified on the basis of the stimulus, such
as light (phototaxis), heat (thermotaxis), or chemical agents
(chemotaxis) [11]. In a broad sense, taxes function to move
the cell or organism toward substances or conditions that are
in some way beneficial, and away from situations or agents
that may be harmful.

Chemotaxis in bacteria was first described by T.W. Engel-
mann and W.F. Pfeffer [3, 7] in the late 19th Century, but its
molecular mechanisms were not understood until the 1960’s
[2, 8]. Chemotaxis may be an ancient process, predating the
evolutionary divergence of eubacteria (gram-negative, gram-
positive, blue-green algae) and archebacteria (e.g., methane
bacteria) [25]. Over a century of research has provided many
important insights into the details of bacterial chemotaxis.

The chemotactic response is driven by attractants, sub-
stances that the bacteria tend to move toward, and repel-
lants, substances that the bacteria tend to move away from.
When no attractant or repellant is present, or when the
concentration of attractant or repellant is uniform—that is,
when there is no gradient—a bacterium such as E. coli tends
to swim in a relatively smooth, straight line for a number of
seconds (called a “run”); it then “tumbles” for a fraction of
a second, rolling and spinning, and then swims in a straight
line again, now in a new, random orientation. In contrast
to this behavior, bacteria tumble less frequently when en-
countering increasing concentrations of an attractant (i.e.,
they swim longer runs), and tumble more often when the

attractant concentration is decreasing [4, 8]. Simply put,
bacteria tend to swim in the same direction for longer peri-
ods of time when the situation is improving, but will return
to the “random walk” behavior if the situation is not im-
proving [7]. This behavior applies both in a spatial gradient
(i.e., a higher chemical concentration on one side than on
the other) and in a temporal gradient (i.e., a higher con-
centration now than earlier). Evidence indicates that, for
small cells such as E. coli, the sensing itself is temporal, not
spatial; that is, concentrations are sensed over time, instead
of comparing two simultaneous sense values at the front and
back of the cell [7]. Some researchers regard this as akin to
a simple “memory:” the cells can compare the present with
the past, and respond accordingly [13].

1.3 Taxis inspired methods in computation
Tactic response has served as the impetus for many com-

putational approaches that vary widely in their aims, inspi-
rations, and methods. The pervasiveness of tactic responses
in animals motivates biomimetic approaches to robot control
and navigation. Such biomimetic approaches focus either on
capturing aspects of the animal’s behavior for some engineer-
ing application, or on testing hypotheses about mechanisms
related to the animal’s behavior. Chemotaxis in lobsters has
been implemented on robots, both for control that emulates
the lobster’s performance for underwater tasks applied to
such functions as autonomous mine countermeasures [5], and
to test hypotheses about the lobster’s chemotaxis algorithms
[18]. Morse et al. [21] implemented an autonomous robot
that performed phototaxis, controlled by a simulated neural
network; the robot’s mechanical configuration and network
controller were patterned after those thought to produce
chemotaxis in the nematode worm, C. elegans. Webb and
colleagues designed and tested robots based on phonotaxis
in crickets [30, 31], and chemotaxis in ants [26, 32]. Kod-
jabachian and Meyer [19] evolved an artificial insect to fol-
low an odor gradient, using “simple geometry-based cellular
encoding” to evolve developmental programs that generated
complex recurrent neural networks.

Other approaches are based on the idea of tactic response,
but emulate the general behavior of taxis instead of a spe-
cific biological instance of it. Christensen and Dorigo [12]
evolved neural network controllers for cooperative mobile
robots that integrated phototaxis and hole-avoidance behav-
ior. Floreano and Mondada [17] combined neural network
and evolutionary computation methods to evolve a robot
that could navigate to a battery charger; the charger’s loca-
tion was indicated by the presence of a light tower above the
battery area and an area of black floor covering the charger
area. Using a genetic algorithm approach, Beer and Gal-
lagher [6] evolved a continuous-time recurrent neural net-
work (CTRNN) that allowed an artificial agent to perform
chemotaxis, moving from arbitrary initial locations and ori-
entations to a “food patch” at the center of a square arena.
Watson et al. [29] evolved neural network controllers for
robots to perform Braitenberg-like phototaxis [9], moving
to a lamp in the center of a rectangular pen.

Taking their inspiration from a single cell, Onsum and
Arkin [24] developed a collaborative control algorithm based
on the behavior of a human neutrophil (white blood cell).
The algorithm controlled an autonomous robot tracking a
target by averaging the outputs of individual sensors located
on the robot’s periphery, sending the resulting single signal
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to the robot’s actuators. Dhariwal et al. [15] developed
a robotic implementation of a “biased random walk” as ob-
served in the motion of E. coli, conducting experiments both
in simulation and on a robot. They compared their biased
random walk approach to traditional gradient descent meth-
ods, and found that, although gradient descent was faster,
the biased random walk performed better with multiple and
dissipative sources, and provided better boundary coverage.

Some computational systems are concerned primarily with
modeling or exploring the underlying biology. Eyiyurekli et
al. [16] developed a software system that simulates chemo-
taxis based cell aggregation in 2D, and implements cell be-
haviors such as chemical diffusion and detection, motility,
proliferation, adhesion, and cell life cycle stages. The emer-
gence and evolution of signal transduction networks was ex-
plored by Soyer et al. [28] using a generic signal transduction
model to evolve the chemotactic response in silico.

2. METHODS

2.1 Avida: Overview
The Avida software system [20, 23] is a widely used digital

evolution platform. In digital evolution [1], a form of evolu-
tionary computation, a population of computer programs—
“digital organisms”—is placed in a computational environ-
ment. The digital organisms self-replicate, mutate, and com-
pete, so the processes occurring in Avida are an instance of
evolution and not a simulation [14]. Digital evolution can
be used both to provide a better understanding of biologi-
cal processes and to apply lessons learned from biology to
computational and engineering problems.

Avida constructs a discrete two-dimensional world as a
grid of cells. Avida places a population of individual dig-
ital organisms into this world, with at most one organism
per grid cell. An individual organism consists of a “genome”
(a circular set of assembly-like instructions) and a virtual
CPU. The CPU contains three general purpose registers,
two heads (FLOW, used as a target for jumps, and IP, used
as an instruction pointer), and two stacks. Execution of
the instructions in the organism’s genome acts upon the el-
ements of the virtual CPU, and instruction execution incurs
a cost, in virtual CPU cycles. Performing logic operations,
gathering information or resources from the environment, or
changing orientation is accomplished by execution of Avida
instructions. The instruction set is easily extensible, allow-
ing for great flexibility in adding new instructions to expand
the system’s capabilities.

Replication in Avida occurs by copying the parent organ-
ism’s genome into a block of memory that will become the
offspring’s genome. The copying is imperfect, however, lead-
ing to differences between the parent’s genome and that of
its offspring. These differences, or mutations, can take the
form of an instruction changing, or an instruction’s insertion
or deletion. The Avida instruction set itself is robust, so
that any program will be syntactically correct even with the
ocurrence of mutations [22]. When an organism replicates,
its offspring is placed into a random grid cell, terminating
any organism that was previously occupying the grid cell.
In this way, the organisms compete for the limited space in
the set of grid cells, and organisms that are able to replicate
more quickly will have a greater proportion of descendants
within the population. Organisms also accumulate merit
bonuses by performing tasks that are specified by the user.

Merit is used to determine fitness; organisms with higher
fitness are allotted more virtual CPU cycles in an update,
allowing them to execute more quickly and replicate sooner
than organisms with lower fitness. Fitness in Avida is, then,
implicit rather than calculated by an explicit fitness func-
tion, as is seen in many evolutionary computation methods.

2.2 Motility and taxis in Avida
Until recently, Avida organisms (or Avidians) did not have

the ability to move: an organism spent its entire lifetime in
the same grid cell. Each Avidian has a facing, meaning the
direction in which it is oriented. Facings for Avidians are
discrete, in multiples of 45 degrees, as in the eight main com-
pass directions (north, northeast, east, etc.). Some instruc-
tions were already present that allow an organism to turn
right or left in different amounts. Several changes were made
to the Avida instruction set in order to (1) implement fun-
damental motility, (2) create a simplified environment with
an idealized gradient, (3) provide for sensing the gradient
concentration, both with and without hand-coded memory
supplied by the instruction, and (4) test different rotation
strategies for gradient following.

2.2.1 Fundamental motility
The initial implementation of motility for Avidians was

based on the tumble-and-run chemotaxis behavior as ob-
served in bacteria such as E. coli, described earlier. Typi-
cally, an Avida run results in all grid cells being occupied by
an Avidian; to allow room for movement to occur, a popu-
lation cap was implemented that limits the total population
size to a user-defined number of organisms. When the cap
is reached, organisms are “killed” at random. We added two
new instructions to provide motility itself, MOVE (move)
and TUMBLE (tumble). The move instruction moves the
organism one grid cell in the direction that the organism
is currently facing. If there is already an organism in the
destination grid cell, the two organisms exchange places;
the displaced organism is completely passive. The tumble
instruction selects a facing at random and reorients the or-
ganism to that facing. Seven of the eight possible facings are
available to be selected; it is not possible for the organism
to remain in the same orientation following the execution of
a tumble.

2.2.2 Idealized gradient, sensing, and rotation

Idealized gradient. Living organisms are surrounded by
gradients that involve different sensory modalities, and that
are subject to differing types of dispersal (e.g., diffusion,
turbulence) depending on the environment and the often
complex dynamics within it. This complexity can produce
behavior in organisms that is difficult to interpret and un-
derstand. Controlling for those environmental factors has
been an important part of the study of microorganisms (see,
e.g., [4, 7]). Within the digital world of Avida, those poten-
tially confounding factors can be controlled, and environ-
ments constrained, in order to better illuminate the behavior
of the digital organisms.

The notion behind the idealized gradient is that a simple,
easily calculated quantity can be used to establish the gradi-
ent within the environment, removing the need for complex
artificial physics. New sensing instructions, easily added to
the Avida instruction set, function as “black boxes:” the or-
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Figure 1: Example of distance as an idealized gradient. The
“concentration” source location is at the top of the hill. Note
that it is not necessary for the peak to be in the center of
the environment.

ganism itself has access only to information that is placed in
its virtual CPU registers, not to the information that is used
inside the instruction to produce that information. All input
values and calculation details are hidden from the organism
inside the instruction, just as our own brain’s computation is
hidden from us. For example, humans do not have cognitive
access to either the physical properties of the input from a
light stimulus, or to the visual system’s step-by-step compu-
tational processing of that input. We have access only to the
output of the computation, i.e., our perception of the stim-
ulus. Similarly, the Avidian has access only to the output
of its sensing instructions. This detail makes it possible to
implement instructions that permit the Avidians to “sense”
any salient feature or quantity within the environment.

In the current study, the Euclidean distance between two
grid cells, the organism’s position and a “target” location,
provided the gradient. “Target” is used here in the sense of a
source of a sensory stimulus. The distance between the cur-
rent and target locations is analogous to the concentration of
a particular attractant that the organism will move toward
(Figure 1). The fact that distance is a high-level construct
makes no difference in this context: the Avidian “senses”
the distance as a simple integer value. This sensed “concen-
tration” is placed into a virtual register by the associated
instruction, making that value available for processing. As
previously discussed, the (x, y) coordinates of the organism’s
and target’s positions and all the other calculation details
are hidden from the organism inside the instruction’s imple-
mentation; the only information available to the organism is
the current concentration (distance to target).

Sensing. At birth, each Avidian was given a target grid
cell in a random location at least a user-specified minimum
distance away. Since the target grid cell is analogous to an

attractant source, the instruction that was implemented to
“sense”the distance between the organism and its target grid
cell is equivalent to an idealized sensory system. In biological
systems, both the sensory system and the organism’s interest
in the particular attractant would have evolved. In digital
evolution, it is reasonable to allow some capabilities to be
provided from the start, if those capabilities are not the
central concern of the investigation. Since the current study
focuses on motility and tactic response, it is reasonable to
allow the sensory system and the effect of the attractant
to be available at the offset, since the evolution of those
mechanisms is not within the scope of the current work.

We added a new instruction to the Avida instruction set,
SENSE- TARGET- DISTANCE (s-t), that “senses” the cur-
rent distance between the organism and its target, deter-
mines if any merit bonus is to be given to the organism,
and places distance information into the organism’s regis-
ters. The organism receives a merit bonus for executing the
instruction. The sense-target instruction reward structure is
aimed at providing a large incentive for executing the sense
instruction. An organism’s total merit bonus reflects how
much of the distance between its initial position and its tar-
get the organism travels during its lifetime. An organism
receives the maximum merit bonus if it reaches its target
exactly; lesser distances covered are rewarded proportion-
ally. Merit bonuses accrue based on an organism’s improv-
ing its situation: the organism receives the bonus if it is
now closer to its target than during the previous execution
of s-t. The reward structure does not give larger rewards
to organisms that start farther away from their targets; the
distance between the initial position and the target is nor-
malized. Organisms are not “punished” for poor behavior,
i.e., there is no penalty for movement away from the target.
The sensing instruction is not directly coupled to the move-
ment instructions, nor are the organisms compelled to utilize
the sensory information. The reward structure encourages
evolution to make use of movement, since the merit bonus
increases only when an organism is closer to its target than
when the instruction was last executed, and the fact that
the sensory information is completely reliable, i.e., there is
no noise, encourages the organisms to evolve tactic behav-
ior. The instruction also provides for a small hand-coded
“memory:” the instruction loads the current distance into
one register and the previous distance into a second regis-
ter, making the two values available for comparison.

We also implemented a slightly different version of the
sensing instruction that did not provide hand-coded mem-
ory. The SENSE-TARGET-INSTANT (s-t-i) instruction is
identical to s-t except that s-t-i does not place the previ-
ous distance value into a register, and so provides only the
“instantaneous,” or current, sense value. The result is that
the Avidian does not automatically have sensed values from
two different times available for comparison. Organisms us-
ing this instruction rather than the original s-t must evolve
a rudimentary memory process: due to the random place-
ment of targets relative to organisms, memory is required
for an Avidian to move closer to its target and accumulate
a larger merit bonus.

2.2.3 Rotation strategies
As a first demonstration of how motility in Avida can

be used, we performed experiments that compared the effi-
cacy of two different rotation or orientation strategies in the
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Table 1: New Avida instructions used for experiments.

Experiment Instructions used

Taxis, sense-target, move,
hand-coded memory tumble

Taxis, sense-target-instant,
evolved memory move, tumble

Rotation strategy, sense-target, move,
random tumble-and-move

Rotation strategy, sense-target, move,
systematic rotate-right-one-and-move

context of simple gradient following. The effectiveness of
the new tumble instruction was compared to that of an ex-
isting rotation instruction, ROTATE-RIGHT-ONE (r-r-1 ),
that changes the organism’s facing by one 45 degree turn to
the right (clockwise). These two strategies allow compari-
son between a random strategy (tumble) and a systematic
strategy (r-r-1 ). To minimize the possibility of multiple
turns occurring before the execution of a move, two special-
ized instructions were implemented, based on the existing
rotation instructions. These instructions combined a turn,
either a tumble or a r-r-1, with a move immediately follow-
ing. TUMBLE-AND-MOVE (t-m) combined the random
tumble and an accompanying move, and ROTATE-RIGHT-
ONE-AND-MOVE (r-r-1-m) paired a single rotation of 45
degrees to the right with an immediate move. Compelling
an organism to move immediately after a turn prevented the
organisms from executing multiple consecutive turns, thus
preserving the distinction between the random and system-
atic rotation schemes.

3. EXPERIMENTS AND RESULTS

3.1 Experimental design
Each Avida experiment seeded the population with a sim-

ple self-replicating organism, i.e., an organism with only the
capability to replicate. This seed organism’s genome con-
sists of 100 instructions, composed of a short copy loop and
a large number of no-op instructions. Other instructions can
appear only through mutations. All experiments used the
default Avida mutation rates, with a 0.0075 copy-mutation
probability per copied instruction, and insertion and dele-
tion mutation probabilities of 0.05 per divide (overall 0.085
genomic mutation rate for a length-100 organism) [23].

Each population was placed into a 100×100 cell bounded
grid, with a population cap of 1000 organisms. The sparse
population served to minimize organism interactions in move-
ment, since the grid was only 10% full. Experiments ran for
100,000 updates (approximately 10,000-15,000 generations),
with 50 (taxis experiments) or 100 (rotation strategies ex-
periments) replicates. The experiments utilized four differ-
ent instruction sets, each consisting of the 26-instruction
default Avida instruction set [23] and the sense, movement,
and rotation instructions that were appropriate to the spe-
cific treatment. Table 1 summarizes the sensing and move-
ment instructions used for each experimental treatment.

The primary performance metric is the best distance ra-
tio. The ratio is computed as 1 − db/di, where db is the
best distance to target (the distance value of the organism’s
closest approach to its target), and di is the initial distance
to target (the distance between the target and the organism
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Figure 2: Average best distance ratio for experiments us-
ing sense-target instruction (both the current and the previ-
ous sensed value are given to the organism, but compar-
isons must be performed in addition to this instruction)
and sense-target-instant (the organism must remember pre-
viously sensed values and perform comparisons in addition
to this instruction). The average represents all organisms
in the population at each update (total of approximately
1,000,000-2,000,000 total organisms per run), averaged over
all 50 replicates of each treatment.

at birth). Statistics track and store the best distance ratio
for each Avida organism, and compute the population’s av-
erage best distance ratio for each update. The best distance
ratio statistic actually reports the average best distance ra-
tio of the parents of the current population; this technique
serves to reduce possible biasing caused by such factors as
the proportion of “old”and“young”organisms in the current
population.

3.2 Results

3.2.1 Taxis with and without hand-coded memory
As illustrated in Figure 2, tactic behavior evolved success-

fully, both with and without the use of hand-coded memory.
The behavior emerged quite quickly, within the first one
to two thousand updates. The speed with which motility
emerged is demonstrated by the average best distance ratios
over all 100,000 updates for the two treatments, 0.8396 for
taxis with hand-coded memory and 0.7910 for taxis without
hand-coded (i.e., with evolved) memory.

The average best distance ratio for the last 50,000 updates
shows the overall success of the evolved taxis strategies,
0.9028 using hand-coded memory, and 0.8480 with evolved
memory. These highly successful strategies emerge quickly
and become relatively stable within the first 50,000 updates.
Although both treatments produce successful solutions, the
use of hand-coded memory produces significantly better per-
formance, as shown by a Mann-Whitney U -test comparing
the average best distance ratios at the ends of each experi-
mental run (N = 50, p = 4.9286 × 10−7).
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Figure 3: Average best distance ratio for tumble-and-move
and rotate-right-one-and-move instructions. The figure
shows the average best distance ratio over the entire pop-
ulation, for 100 replicates of each instruction set. Experi-
ments ran for 100,000 updates (approx. 10,000-15,000 gen-
erations).

3.2.2 Varying rotation schemes
Both the random (tumble) and systematic (r-r-1 ) rota-

tion strategies worked well in the experimental environment
(Figure 3). The average best distance ratios for the last
50,000 updates were similar, 0.9004 using the t-m instruc-
tion, and 0.8926 using r-r-1-m. The t-m instruction appears
to slightly outperform r-r-1-m, but a Mann-Whitney U -test
shows the difference of the best distance ratios after 100,000
updates is not significant (N = 100, p = 0.2856).

4. DISCUSSION
The experiments that evolved simple taxis demonstrated

two key points. First, the experiments served as proof of
concept. The digital organisms will evolve motility and ex-
ploit that capability when placed in an environment where
movement provides an adaptive advantage (Figure 4). Sec-
ond, the experiments showed that hand-coded memory is
useful, but not necessary for taxis to emerge. The hand-
coded memory provided by the s-t instruction was part of
the instruction itself. The instruction placed all the infor-
mation the organism needed (i.e., the current and previ-
ous sensed values) in the correct virtual registers, so the in-
formation was immediately available for further processing.
Evolution still needed to find how to handle the information
appropriately—with a comparison—but no additional mech-
anism for storing or retrieving the information was needed.
This made the task of evolving the information processing
portion of the tactic response much simpler, since it required
mutating fewer instructions into the genome. In contrast,
the s-t-i instruction provided no such extra help. The in-
struction placed the current sense information into a virtual
register, but not the prior sense value. This one change
compelled evolution to discover the mechanisms for storing
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Trajectory, hand−coded memory
Target location, hand−coded memory
Initial location, hand−coded memory 
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Figure 4: Sample trajectories of evolved organisms using
sense-target instruction (both the current and the previ-
ous sensed value are given to the organism, but compar-
isons must be performed in addition to this instruction)
and sense-target-instant (the organism must remember pre-
viously sensed values and perform comparisons in addition
to this instruction). The trajectories suggest that the or-
ganisms are using the sensed information to track to their
target locations.

and retrieving previously sensed information by changing
the genome. This was clearly more difficult than the other
condition, but it is exciting to see how evolution was able
to produce successful solutions in the absence of hand-coded
memory.

The rotation strategies results show that, at least in the
idealized, discrete environment of the current study, both
the random tumble and systematic r-r-1 rotation strategies
are “good enough:” there is no significant difference between
the performances of the two rotation schemes, as measured
by the average best distance ratios of the populations. This
result may initially seem surprising, since tumble is based on
an existing, successful biological orientation strategy, and r-
r-1 is highly artificial and biologically implausible, due to
its rigid constraints on both direction and degree of turn.
Figure 5 illustrates representative trajectories using each of
these two rotation strategies. The trajectory plots were gen-
erated using movement data collected from hand-coded or-
ganisms in Avida runs with no mutations. The t-m instruc-
tion, shown in Figure 5a, allows the organism to reach the
actual target location. The last step to the goal, however,
can be difficult: due to the random choice of the new orien-
tation, tumble has only a 1/8 probability of generating the
correct orientation to reach the goal on the next step. On
the other hand, r-r-1-m, as shown in Figure 5b, can never
reach the full distance to the goal, because of the constraint
of turning only 45 degrees before taking a step. Without
the ability to do two consecutive turns, the organism can,
at best, reach the grid cells one step away from the target.
These particular traits are a liability in the present context
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(a) TUMBLE-AND-MOVE
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(b) ROTATE-RIGHT-ONE-AND-MOVE

Figure 5: Representative trajectories for tumble-and-move and rotate-right-one-and-move. These trajectories were produced
from movement data gathered in Avida runs using hand-coded organisms, with mutations turned off. For ease of comparison,
the organisms were assigned the same initial and target locations.

only because the target location was implemented as a sin-
gle point; a more realistic implementation would allow the
target to cover a slightly larger area, for example a 2 × 2
square. The respective strategies’ difficulties notwithstand-
ing, the process of evolution found mechanisms that sufficed
in the idealized world of the experiments. This is a simple
demonstration of “satisficing” in the evolutionary process:
given a set of constraints, evolution will discover solutions
that work well enough in the given environment. The term
“satisficing” was coined by Herbert Simon, and is used to
refer to a decision-making strategy that attempts to meet
criteria of adequacy rather than to find an optimal solu-
tion. This is related to the concept of bounded rationality,
that takes into account the limitations of both knowledge
and cognitive capacity in making decisions [27]. Originally
used in the context of economics, the idea of satisficing is
a natural fit with evolutionary processes. In biological evo-
lution, there is not necessarily any additional advantage in
discovering a solution that is more than adequate; moving
toward a more “optimal” solution will occur either by chance
mutations or in response to changing selection pressures.

5. CONCLUSIONS
The work presented here represents the initial steps in

implementing motility in the Avida software system, and
demonstrates that it is possible to evolve simple motility and
related behavior. Future work will include implementation
of additional infrastructure, some of which will be aimed at
creating a richer, more complex environment where evolu-
tion can unfold. This will include moving from the discrete,
grid-based topology to a continuous, 3D topology, and us-
ing more complex, less idealized environments to enable ex-
ploring the relationship between sensors, environments, and
orientation strategies.

The fact that simple taxis evolved without the additional
assistance of hand-coded memory is particularly tantalizing,
suggesting that it may be possible to investigate aspects

of the emergence of memory during evolution using Avida.
Memory is generally considered an important component
of intelligence, so the evolution of memory will be of great
interest in the context of emerging intelligent behavior.

The introduction of movement into Avida opens up many
intriguing avenues of inquiry that were not previously pos-
sible using this software system. It is now possible to begin
to use the Avida digital evolution platform to look at on-
going questions in biology that relate to movement, such
as the evolution of efficient movement, foraging, and nav-
igation. These movement and decision-making problems
present great challenges, but also hold great potential for
offering insights into the evolutionary emergence of intelli-
gent behaviors, insights that can then be applied to compu-
tational problems.
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