
Incorporating Model Identifiability into Equation Discovery
of ODE Systems

Dirk J.W. De Pauw
KERMIT: Research Unit

“Knowledge-based Systems”
Department of Applied Mathematics,

Biometrics and Process Control
Ghent University

Coupure links 653
Gent, Belgium

dirk.depauw@ugent.be

Bernard De Baets
KERMIT: Research Unit

“Knowledge-based Systems”
Department of Applied Mathematics,

Biometrics and Process Control
Ghent University

Coupure links 653
Gent, Belgium

bernard.debaets@ugent.be

ABSTRACT
Equation discovery is a machine learning technique that tries
to automate the discovery of equations from measured data.
In this contribution an equation discovery system based on
genetic programming was developed in order to generate
mechanistic models for systems described by ordinary dif-
ferential equations. A problem often encountered with au-
tomatic model generation is that overly complex models are
generated that “overfit” the measured data. This issue was
addressed by incorporating a model identifiability measure
(expressing which fraction of the model parameters can be
given a unique value given the available data) into the fitness
function of the individuals. Using noisy artificially generated
data for a river water quality example case, it was shown
that the developed system was able to generate model equa-
tions that fitted the data well and were also fully identifiable.
Correct model equations were generated when starting from
a model with minimum prior knowledge but also when start-
ing from an overly complex model. As such, it was demon-
strated that the developed equation discovery system is able
to generate models with optimal complexity with regard to
the available data.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis, program modification

General Terms
Algorithms

Keywords
genetic programming, equation discovery, identifiability,
model complexity, overfitting

1. INTRODUCTION
Building mathematical models has long been of interest to

scientists and practitioners. Indeed, models not only allow
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to describe the current and future behaviour of a system
but are also considered valuable learning and instructing
tools. In many fields of science and engineering, intense
research is focused on the study of dynamic systems which
will also be the subject of this research. These systems,
that change over time, are often modelled using ordinary
differential equations (ODEs).

For each modelling exercise two steps can be distinguished.
In a first step, a valid model structure needs to be found,
based on background knowledge about the system, which
describes the relationships between the measured variables
and how they change over time. In a subsequent step, ac-
ceptable values for the model parameters need to be deter-
mined. Modern-day modelling focuses mainly on the sec-
ond step, very often selecting a model structure from lit-
erature and assuming it to be valid. The reason why the
first step is often not properly addressed is that it can be a
very time-consuming exercise to generate and test different
model structures.

In order to automate the model building process, several
machine learning techniques were developed during the past
decades. Equation discovery is such a technique that tries
to automate the discovery of equations from measured data
[13, 21]. This technique is closely related to inductive pro-
cess modelling [12, 4] in which models are automatically
constructed drawing heavily on system knowledge encoded
in, for example, a library of candidate model structures or
substructures. Much progress has been made in this field
of research, especially on how to incorporate domain knowl-
edge into the algorithms, e.g. by using context-free gram-
mars and high level model description languages [20, 1, 19].
This contribution, however, focuses on another frequently
encountered problem in equation discovery and inductive
process modelling, namely model complexity and overfitting
issues.

Several researchers have remarked that automatic model
building algorithms tend to produce overly complex mod-
els [11, 3]. These models tend to fit the training data very
well but perform poorly when confronted with new data.
This problem is often referred to as overfitting. The most
common method used to deal with this issue is to include
a measure of complexity in the objective function that is
used to determine how well a model describes the training
data set. Several complexity measures have been proposed,
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most of them being a function of the length of the generated
equation and/or the number of parameters or variables [20,
11, 7, 9]. As such, complex models are penalized when they
are compared to less complex models that describe the data
equally well. The idea behind this approach is closely related
to the concept of parsimony and Occam’s razor principle
which states that the explanation of any phenomenon should
make as few assumptions as possible, eliminating those that
make no difference in the observable predictions of the ex-
planatory hypothesis or theory.

Another approach for dealing with model complexity is
to analyze the model’s identifiability. Such analysis can be
used to determine how many model parameters can be given
a unique value given the quality and quantity of the avail-
able data. A model for which not all parameters can be given
unique values is said to be unidentifiable and overparame-
terized. This is an undesirable model property since over-
parameterization is the root cause of overfitting. The rea-
son why overparameterized models tend to perform poorly
when confronted with new data is that the unidentifiable pa-
rameters need to be given values that cannot be determined
from the data. Typically literature values are assumed which
might not correspond to the true system values.

Model identifiability can be regarded as an aid that can
assist in the construction of models that fit the data and
have an optimal complexity. A study in which identifiabil-
ity analysis was applied manually can be found in [8] where
it was used to reduce the complexity of an existing model.
In this paper, model identifiability will be used in a genetic
programming based equation discovery system in order to
deal with complexity and overfitting issues and, as such, im-
prove the practical usefulness of the automatically generated
models.

2. A GENETIC PROGRAMMING BASED
EQUATION DISCOVERY SYSTEM

Genetic programming is an evolutionary algorithm that
can be used to build “programs” that perform a user-defined
task. Within the context of equation discovery, these “pro-
grams” are mathematical models that are used to describe
a measurement data set as good as possible. Several au-
thors have already demonstrated that genetic programming
can be used successfully in the search for new or improved
mathematical models [10, 2]. The following subsections will
describe the equation discovery system developed and used
for this research in more detail.

2.1 Individual representation
The task of the equation discovery system described here

is to find models that can be written as sets of first order
ordinary differential equations. The models are also required
to be “mechanistic”, meaning that the model parameters are
required to have a physical meaning.

Probably the most commonly used structure to represent
individuals in genetic programming is a tree structure. This
structure has also been used here to represent the equations
of the variables selected for discovery. Since the system sup-
ports the discovery of several equations simultaneously, each
genetic programming individual consists of set of trees in
which each tree represents one equation. For this applica-
tion binary trees are used, composed of interconnected op-
erator and terminal nodes. The operator nodes can be any

of the four classical arithmetic operators: add, subtract, di-
vide and multiply, while the terminal nodes can represent
different model quantities like: parameters, inputs or other
model variables.

Rather than starting from scratch to build a model, a
model revision approach is followed here in which the mod-
eller supplies the system with an initial model that is be-
lieved to be a good representation of the system under study.
As such, the modeller is able to supply existing domain
knowledge to the system and outline the global structure
of the model, i.e. define the variables and processes involved
in the system. A similar approach was used in [17] where its
usefulness was clearly demonstrated. Once the initial model
is specified, the modeller has to define for which variables the
equations need to be discovered (or modified) and for which
variables the equations of the initial model are considered
“correct” and need not be modified.

Beside the definition of an initial model, the user can also
supply domain knowledge in another way. For each equation
to be discovered, it can be specified which model variables
this equation can be function of and which of the four oper-
ators are allowed.

2.2 Mutation and crossover operators
Genetic programming, like many other evolutionary algo-

rithms, tries to mimic the processes of natural evolution in
order to evolve the individuals of a population into new in-
dividuals. This is accomplished through the use of genetic
operators like mutation and crossover.

When developing mutation and crossover operators within
the context of equation discovery an important aspect of
mechanistic modelling should not be neglected, namely the
unit consistency of the equations. What is meant by this is
that the units of the right-hand side of an equation should
match the units of the left-hand side. Unit consistency is
especially important when models are considered in which
parameters are allowed to appear several times in the equa-
tions, something that occurs in most models. The require-
ment of unit consistency greatly affects the design of the
mutation and crossover operators.

A mutation operator typically acts on a single parent in-
dividual to form an offspring individual. In our implemen-
tation, a mutation is performed by selecting one node of the
tree at random and replacing it (and its subtree) with a new
randomly generated subtree. For unit consistency, the root
node of the newly generated subtree should have identical
units as the node that it replaces. A new subtree is con-
structed in an iterative way by randomly choosing either an
operator node or a terminal node. If an operator node is
generated, random subtrees for each of the operator’s child
nodes are generated. The probability of choosing an opera-
tor is taken to be 0.4. This causes slightly more terminals to
be generated resulting in relatively compact subtrees. Dur-
ing the construction of subtrees, the mutation operator also
allows new parameters to be added to the model. This al-
lows to increase the complexity of the model equations but
is often also required for reasons of unit consistency.

As is mostly the case, the crossover operator used in this
system acts on two parent individuals to form two new off-
spring individuals by interchanging subtrees between the
parents. From the first parent a node (and its attached
subtree) is selected at random and exchanged with a node
(and its subtree) of the second parent. For unit consistency,
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only nodes with identical units as the node selected from
the first parent are allowed to be selected from the second
parent. As such, the newly created individuals are always
unit consistent.

As already discussed above, several equations are allowed
to be discovered simultaneously. It was chosen to give each
of the equations of an individual only a 50% chance of being
affected by mutation or crossover. This approach was re-
quired in order to give good equations a fair chance of being
transferred to offspring individuals without being affected by
the, mostly, destructive mutation and crossover operations.

2.3 Fitness determination
Each model generated by the equation discovery system

is assigned a fitness value based on two components: model
fit and identifiability. Both measures are calculated after
the model has been calibrated, i.e. a value is determined
for each of its parameters by minimizing the squared dif-
ference between model prediction and measured data. This
minimization was performed using the Simplex optimization
algorithm [16].

In order to judge the fit of the model to the data, the
model efficiency criterion (also called Nash-Sutcliffe crite-
rion) was used [15]:

ME = 1−
Pn
i=1

“
Yi − Ŷi

”2

Pn
i=1

`
Yi − Ȳ

´2 , (1)

where Yi is an observation, Ŷi a predicted value and Ȳ the
average of all n observations. For a perfect fit, this statis-
tic results in a value equal to one. The (theoretical) lower
bound of ME is negative infinity and for ME values lower
than zero, the model-predicted values are worse than the
observed mean. In our application, negative ME values are
also assigned a value of zero.

Model complexity is quantified using the collinearity in-
dex identifiability measure [5, 8]. This measure quantifies
the linear dependency between the sensitivity functions of
the model variables to the model parameters. A model pa-
rameter set is said to be unidentifiable when its collinearity
index exceeds 15 [5]. In such case, strong parameter correla-
tions exist and unique parameter values cannot be assigned.
In our approach, the fraction of identifiable parameters is
determined for each generated model and serves as a mea-
sure for model complexity. A model that is fully identifiable
will have an identifiability measure of one while a model
that does not contain any identifiable parameters will have
a value of zero.

Finally, the fitness measure assigned to each model is the
sum of the model efficiency and the fraction of identifiable
parameters. Since both quantities have a value between zero
and one, the highest fitness value obtainable is two. This
corresponds to a perfect fitting model that is fully identifi-
able.

2.4 Main genetic programming algorithm
Several steps can be distinguished in a genetic program-

ming algorithm. As a first step, an initial population has to
be created. In our system this is achieved by creating off-
spring through mutation of the initial model that is supplied
to the system. It was chosen to work with a population size
of 100 individuals. Once the population is created, the fit-
ness of each of the models is determined and roulette wheel

Table 1: True and estimated parameter values and
initial conditions for the example case model

Name Unit True Estimated

BOD(t=0) mg.l−1 7.33 7.4244

DO(t=0) mg.l−1 8.5 8.5470

k1 min−1 0.3 0.3037

k2 min−1 0.4 0.4023

selection is used to select parent individuals. Using the
selected parents, offspring individuals are created through
crossover (40% probability) or mutation (60% probability).
This process of selection and offspring generation continues
until an offspring population of 100 individuals is formed.
In a next step, both populations are combined and the 100
most fit individuals retained in order to form the next parent
population. These step are repeated until 100 generations
are created at which point the algorithm terminates.

3. EXAMPLE CASE
Surface water contamination can be regarded as a serious

problem throughout the whole world, affecting both devel-
oped and underdeveloped countries. One of the most promi-
nent manifestations of surface water contamination with or-
ganic waste is a reduction of the dissolved oxygen concen-
tration. Indeed, as the organic waste is decomposed by bac-
teria, oxygen in the water is consumed, leaving the water
“oxygen depleted”. Such oxygen-depleted water may not be
able to support aquatic life that depends on the oxygen for
survival.

In 1925, a relatively simple model describing the decreased
oxygen concentration downstream of a polluting discharge
was proposed by Streeter and Phelps [18]. Although their
model is based on several assumptions, it is still often used
as the basis for more complicated river water quality models.
The model consists of two differential equations:

∂BOD

∂t
= BODin − k1.BOD (2)

∂DO

∂t
= k2.(DOsat −DO)− k1.BOD (3)

where BOD (biochemical oxygen demand) is the amount of
oxygen required to decompose a certain amount of organic
waste (mg.l−1), BODin the waste inflow rate (mg.l−1.min−1),
k1 a degradation rate (min−1), DO the dissolved oxygen
concentration (mg.l−1), k2 the reaeration rate (min−1) and
DOsat the oxygen saturation constant (mg.l−1). Eq. (2) de-
scribes the change in BOD concentration downstream of the
discharge which is determined by the waste inflow rate and
the speed at which bacteria degrade the waste. The change
of DO concentration is described by Eq. (3) and is driven
by the reaeration of the water through its contact with the
air and the oxygen consumption due to the bacterial waste
decomposition.

Fig. 1 shows simulation results of BOD and DO using
the “true” parameter values and initial conditions given in
Table 1 for a river with a flow rate of 20 m.min−1. Note that
Table 1 does not list values for BODin and DOsat which are
assumed to be model constants and are assigned a value of
1 mg.l−1.min−1 and 11 mg.l−1, respectively.

Synthetic measurement data (also shown in Fig. 1) was
constructed by adding normally distributed noise to the sim-
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Figure 1: Synthetic data and simulated BOD and
DO concentrations for a river with a flow rate of
20 m.min−1

Table 2: Model efficiency and identifiability criteria
values for the true, initial and generated models

Model Model efficiency Identifiability
True 0.9892 1
Complex initial 0.9892 0.7142
Complex generated 0.9895 1
Simple initial 0.6516 1
Simple generated 0.9896 1

ulation results. In practice, BOD measurements are per-
formed offline in the lab, based on water samples taken
from the river. Therefore, a measurement interval of 1 min
was chosen and a measurement noise standard deviation of
0.1 mg.l−1 assumed. For DO, measurements can be per-
formed using an online sensor that allows for more frequent
and more accurate measurements. Therefore, a measure-
ment interval of 0.5 min and a measurement noise standard
deviation of 0.05 mg.l−1 were chosen to generate the syn-
thetic dissolved oxygen measurements.

Based on the synthetic data, the model was calibrated.
The estimated parameter and initial condition values are
listed in Table 1. The model efficiency and identifiability
criteria values are listed in Table 2 (“True”). From these
values it is clear that the “true” model is identifiable and
results in a perfect fit. The fact that the model efficiency
criterion does not reach one is normal and is caused by the
presence of noise on the measurements.

4. RESULTS
The example case presented in the previous section was

used to test the ability of the equation discovery system to
construct a model that fits the data well and, at the same
time, is fully identifiable. For this, two tests were conducted,
each test starting from another initial model with different
model efficiency and identifiability properties.

As a first test, an initial model that fitted the data well but
is not fully identifiable (“Complex initial” in Table 2), was
supplied to the system. For the organic pollution degrada-
tion, a Monod type kinetic was chosen rather than the first
order degradation of the “true” model. The reaeration rate

Table 3: Estimated parameter values and initial con-
ditions of the generated model starting from the
complex model

Name Unit Value

BOD(t=0) mg.l−1 7.4749

DO(t=0) mg.l−1 8.5282

pc1 mg.l−1.min−1 1.0380

k1max min−1 0.3139

pc2 min−1 0.3913

pc3 min−1 -0.4097

was also assumed to be more complex and to be described
by two terms, one term due to the river’s hydraulics and
one term due to the wind speed and river depth. The model
equations are as follows:

∂BOD

∂t
= BODin

−k1max.
BOD

BODhalf +BOD
.BOD (4)

∂DO

∂t
=

„
k2h +

k2w

h

«
(DOsat −DO)

−k1max.
BOD

BODhalf +BOD
.BOD (5)

where k1max is the maximum degradation rate (min−1),
BODhalf the BOD concentration at which half of the degra-
dation rate is reached (mg.l−1), k2h the reaeration contribu-
tion due to the river’s hydraulics, k2w the reaeration contri-
bution due to the wind (m.min−1) and h the river depth (m).
The identifiability analysis showed that only 70% of the pa-
rameters were identifiable and that strong correlations exist
in two parameter groups: [k1max; BODhalf ] and [k2h; k2w;
h].

Using the initial model defined by Eqs. (4) and (5), the
equation discovery system converged to following model:

∂BOD

∂t
= pc1 − k1max.BOD (6)

∂DO

∂t
= pc2.(DOsat −DO)

−(pc2 + pc3 + k1max).BOD (7)

As can be seen from Table 2 (“Complex generated”), this
model is fully identifiable and fits the data as good as the
“true” model. Table 3 lists the estimated parameter values
and initial conditions.

Looking at the BOD equation (Eq. (6)), one can see that
it is identical to Eq. (2) of the true model. One observes
that the Monod kinetic has been removed from the initial
model and replaced by a first order degradation rate (k1max)
with value 0.3139 min−1 which corresponds to the degrada-
tion rate (k1) of the true model. Further, the BODin model
constant was removed from the model and replaced by a pa-
rameter, pc1, with identical units and an estimated value of
1.0380 mg.l−1.min−1. This values is close to the true BODin
value of 1 mg.l−1.min−1.

An analysis of the DO equation (Eq. (7)) shows that it
is also very similar to the DO equation of the true model
(Eq. (3)). The too complex reaeration rate term of the ini-
tial model has been removed from the model (along with its
parameters) and replaced with a rate (pc2) equal in value
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Table 4: Estimated parameter values and initial con-
ditions of the generated model starting from the
simple model

Name Unit Value

BOD(t=0) mg.l−1 7.4749

DO(t=0) mg.l−1 8.5430

ps1 mg2.l−2.min−1 11.3917

ps2 mg.l−1.min−1 3.4457

ps3 min−1 0.2799
ps4 − -1.1588

ps5 l.mg−1 -0.1035

to that of k2 of the true model. For the second part of the
equation, related to the BOD degradation, the Monod ki-
netic has been removed successfully. At first sight, this term
still appears to be more complex. However, closer inspec-
tion of the parameters and their value reveals that the sum
of parameters pc3 and pc2 almost equals zero and could thus
be removed from the model, making the equation identical
to the one from the true model.

A second test was performed using an initial model with
minimum prior system knowledge. A constant change of
BOD and DO over time was assumed:

∂BOD

∂t
= a (8)

∂DO

∂t
= b (9)

It is clear from Table 2 (“Simple initial”) that this model is
unable to adequately describe the generated data and better
equations need to be discovered. Some additional system
knowledge was provided to the equation discovery system:
both BOD and DO equations can be function of BOD and
DO and the use of model constants DOsat and BODin is
allowed in each of these equations.

The model that was generated by the system is given by
Eqs. (10) and (11), its estimated parameters values and ini-
tial conditions are listed in Table 4.

∂BOD

∂t
=

ps1 −BOD.ps2
DOsat

(10)

∂DO

∂t
= ps3. (DOsat + ps4.DO)

+ps3.ps5.BOD
2 (11)

The model efficiency and identifiability criteria for this
model (“Simple generated” in Table 2) show that the model
fits the data very well and that it is fully identifiable given
the available data.

Analyzing the BOD equation (Eq. (10)) shows that the
true model equation was discovered. This becomes clear
when considering the estimated parameter values of Table 4.
Indeed, ps1/DOsat equals 1.0356 mg.l−1.min−1 which corre-
sponds to BODin and ps2/DOsat equals 0.3132 min−1 which
corresponds to the k1 degradation rate of the true model.

In contrast to the BOD equation, the DO equation of
the true model was not discovered by the system. However,
it has to be remarked that both models describe the data
equally well and are both fully identifiable. The main differ-
ence between Eqs. (3) and (11) is that the DO equation of
the generated model is function of BOD2 instead of BOD.

Further, an additional scaling factor (ps4) is introduced to
the DO variable in the equation. Beside these differences,
the general structure of both equations is very similar.

5. DISCUSSION
The results presented above show that the equation dis-

covery system is able to generate useful models that not only
fit the synthetic data well but are also fully identifiable. By
introducing the identifiability criterion as a component of
the fitness measure, models without an excessive amount
of parameters are formed. However, in some instances ad-
ditional simplifications could have been made to the equa-
tions. For example, in Eq. (7) the sum of parameters pc3
and pc2 almost equals zero and could have been removed
from the model. Also, in Eq. (10) the ratios ps1/DOsat and
ps2/DOsat could have been replaced by single parameters.
Such simplifications cannot be performed automatically by
the system yet, but it is clear that such functionality would
improve the quality of the generated models.

An increasingly important topic in genetic programming is
code bloat, which is the excessive growth of individuals due
to pieces of code that do not contribute to the fitness of the
individuals. The introduction of an identifiability measure
clearly prevents the models to grow too excessively, although
some code bloat (with respect to the model variables) can
still be observed. For example, an equation term DO/DO
equals one and would have no meaning if multiplied with
another equation term. Much research has been performed
with respect to code bloat issues and several solutions have
been proposed [14]. With respect to equation discovery, a
symbolic analysis and simplification of the equations might
be a way to solve these problems.

As was shown with Eq. (11), the equation discovery sys-
tem does not always generate model equations that are iden-
tical to the ones that were used to generate the data (al-
though most of the time it does). However, these equations
describe the data equally well and are also fully identifiable.
This issue is certainly not problematic since it is logical to
assume that alternative model structures can exist that de-
scribe a certain data set equally well. One option to deal
with such alternative model structures would be to design a
discriminating experiment and gather new data which would
allow to decide on the most likely model [6].

The research performed in this study has been on a case
of artificially generated data based on a known model. Al-
though this step is required to illustrate and prove that the
system can discover correct equations, a more challenging
task would be to work with real-world data and an unknown
system model. However, before such cases are considered,
the system will need to be extended with support for power,
exponent, trigonometric and other more complicated func-
tions. This will improve the chance of the system to find
adequate models for real-world cases since many processes
exist that can be described by these functions.

6. CONCLUSIONS
In this contribution, an equation discovery system based

on genetic programming was developed in order to generate
mechanistic models for systems described by ordinary dif-
ferential equations. Using a model identifiability measure as
one of the components of the fitness function, the issues of
overfitting and model complexity were addressed.
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Another important aspect of the developed system is that
only unit consistent equations are generated, i.e. the units of
the left-hand side of the equation match those of the right-
hand side. This requirement had also implications for the
design of the crossover and mutation operators.

Background knowledge about the system under study can
be supplied to the equation discovery system in the form
of an initial model. This enables the modeller to supply a
model that is believed to be a good representation of the sys-
tem. Using this model as a template, the initial population
of the genetic programming algorithm is generated.

Using noisy artificially generated data for a river water
quality example case, it was shown that the developed sys-
tem was able to generate model equations that fitted the
data well and were also fully identifiable. Correct model
equations were generated starting from an initial model that
was too simple but also from one that was too complex, il-
lustrating the ability of the equation discovery system to
generate models with optimal complexity with regard to the
available data.
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