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ABSTRACT

In this paper, we propose a new method to predict the risk
of an event very accurately from imbalanced data in which
the number of instances of the majority class is very larger
than that of the minority class and to identify the features
that are relevant for the target risk factor. To solve the
trade-off between the prediction rates of the majority and
the minority classes, three input parameters are used, which
supply the costs of misclassification of an instance from the
majority and the minority classes or the sensitivity threshold
of the minority class. To get relevant features and to utilize
the prior information about the relationship of a feature with
the target risk factor, a probabilistic model building genetic
algorithm called RPMBGA™ is employed. By applying the
proposed technique to the health checkup and lifestyle data
of Toshiba Corporation, we have found that the proposed
method improves the sensitivity of the minority class and
selects a very small number of informative features.
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1. INTRODUCTION

Today various organizations and companies are interested
in designing a system that can predict the risk associated
with an event of an entity, such as a person, a device and
a system, very accurately. Among the different types of
events, rare events, such as the abnormal behavior of a per-
son at a public place, a loan defaulter in a consumer finance
company, and the heart-attack of a person, are of special in-
terest because the prediction of a rare event is very difficult.
In this context, at first, an event is defined in terms of dif-
ferent features, and the target risk factor, such as behavior,
loan status, and blood pressure, is decided. Then data about
the features of the events are collected from different enti-
ties where the labels of the target risk factor are known. The
value of the target risk factor in an event indicates whether
the event is normal or rare; the interpretation of the nor-
mal event and the rare event depends on the problem. For
example, in a consumer finance company, a loan defaulter
is a rare event and a person who has repaid the loan is a
normal event whereas in a video surveillance system, the
abnormal behavior of a person is a rare event and the nor-
mal behavior of a person is a normal event. The collected
data usually contains a very high number of normal events
but a very small number of rare events; that is, the data are
imbalanced, and the normal events form the majority class
while the rare events form the minority class. Hereafter, the
data of an event is referred to as an instance, and the value
of the target risk factor in an instance is referred to as a
class label.

In designing a risk prediction system, the first step is to
design a model that is trained using a collection of labeled
instances from the majority and the minority classes. The
main constituent of the model is a classifier, such as IB1 [1],
k-nearest neighbor (kNN) classifier [3], naive-Bayes classi-
fier, decision tree (C4.5) [15], neural network [16], and sup-
port vector machine (SVM) [18]. Learning of a model means
the learning of the values of different parameters of the con-
stituents, such as the number of the nearest neighbors (k) in
the kNN classifier, and the values of the weights of different
instances (support vectors) in SVM. Sometimes, the learn-
ing of a model involves the selection of a subset of features
(hereafter, referred to as a feature subset) that are highly re-
lated with the target risk factor. In that case, the goodness
of a candidate feature subset is evaluated using a classifier
and a scoring method [10, 11, 12, 13].



Next step is to evaluate the model. After a model is
learned, its performance is evaluated by using validation
data that are not used during the learning of the model,
and this performance gives an estimate of how accurately
the model will predict the label of the target risk factor.
Sometimes, the accuracy measured using a cross-validation
technique during the learning of the model is used as a mea-
sure of the performance of the model on unseen data.

1.1 Challenges of the task

Very accurate prediction of the class label of an instance
using a model that is learned on imbalanced data is very dif-
ficult because during the learning of the model, the majority
class biases the model toward it, and the learned model very
often fails to accurately predict the class label of an instance
from the minority class. In some cases, it has been found
that all the instances from the majority class are correctly
classified by the model but none of the instances from the
minority is correctly classified. If a model is designed by
focusing on the accurate prediction of the instances from
the minority class, the model will misclassify a very large
number of instances from the majority class. That is, most
traditional methods face a trade-off between the accurate
prediction of an instance from the majority and the minor-
ity classes—when the prediction rate of one class increases,
the prediction rate of the other class decreases.

In addition, all the features that characterize an instance
are not always relevant for the distinction of the instances of
the majority class from those of the minority class. The irrel-
evant features sometimes affect negatively the performance
of a model learned using other relevant features. Moreover,
acquiring the values of these irrelevant features sometimes
may cost money and time. That is why, sometimes selection
of a relevant feature subset is done during model selection.
Given n features, there are 2" — 1 candidate feature sub-
sets. When the number of features and/or the number of
instances in a data set is (are) very large, the exhaustive
search for the optimal feature subset is not possible because
the search space becomes huge, and the computation time
becomes high. Instead, a global heuristic search algorithm,
such as genetic algorithm (GA) [6, 7] may be used to gener-
ate candidate feature subsets. However, not all the heuris-
tic methods return an optimal feature subset with a very
small number of features selected in it. When the number
of features is very large, approximately half of the features
are selected in each candidate feature subset of a genetic
algorithm. A very small number of selected features may
sometimes provide the insights into the problem at hand.

Sometimes, some features of a data set are known to be
associated with the target risk factor. However, the relation-
ships of other features with the target factor are unknown.
In that case, we need to find a feature subset with the known
and the unknown features that in combination with a clas-
sifier will predict the label of a test instance very accurately.
Most traditional methods of feature subset selection do not
take into account this aspect of the data.

1.2 Some related works

For classification of imbalanced data, various techniques
have been used during the learning of a classifier. These
techniques include resizing training sets [9, 8], adjusting mis-
classification costs [4], learning rules for skewed data (RLSD)
[20], and cost sensitive boosting [17]. In resizing training
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sets, either the minority class is over-sampled or the ma-
jority class is under-sampled. In both cases, the misclassi-
fication rate of the samples of minority class will decrease
but the misclassification rate of majority class will increase.
In adjusting misclassification costs, higher cost is set to the
misclassification of a sample from the minority class. In
cost sensitive boosting, genetic algorithm is used to search
the optimum cost setup of each class. However, these meth-
ods have not focused on identifying a subset of important
features from the data.

1.3 Summary of the proposed method

To solve the trade-off between the prediction rates of the
majority class and the minority class by a model on imbal-
anced data, a three-parameter input unit is proposed, which
supplies either the costs of misclassification of an instance
from the majority and the minority classes or the sensitivity
threshold of the minority class. Based on the values of these
three input parameters, an appropriate scoring method is
applied. If the costs of misclassification are supplied, an ag-
gregated cost of misclassification of instances by the model
is provided; otherwise, a score is returned by combining the
sensitivity and the specificity information. When the sen-
sitivity returned by the model is lower than the threshold,
a normal score is returned that balances the sensitivity and
specificity to some extent; otherwise, a scaled up score is
returned. In this paper, we present some functions that can
be employed to calculate the appropriate fitness score.

To get a very relevant feature subset and to utilize the
prior information about the relationships of a feature with
the target risk factor, a feature subset generation method
based on probabilistic model building genetic algorithm (PM-
BGA) [14] is proposed. The method generates candidate fea-
ture subsets by sampling a probability vector in which each
value specifies the probability of a feature being selected in
a candidate feature subset. The prior information about the
feature is used during the initialization and the update of the
probability vector. A candidate feature subset is evaluated
using the method described previously. The feature subset
generation method starts with randomly generated feature
subsets in each of which approximately half of the features
of the data are selected but successively modifies the num-
ber of selected features in the candidate feature subsets and
finally terminates with a highly relevant feature subset.

1.4 Effectiveness of the proposed method

The effectiveness of the proposed method is demonstrated
by performing some experiments on health checkup and life-
style data of Toshiba Corporation. It has been found that
the proposed system improves the area under ROC curve
(AUC) as well as the G-score and selects a very small number
of informative features.

2. METHOD

The important features are identified from the imbalanced
data by using a supervised learning method that utilizes
a classifier, a score calculation method, and three evalua-
tion parameters (w1, w2, 0). Among the evaluation parame-
ters, w1 and ws are the misclassification costs of an instance
from the majority and the minority classes, and 6 € [0, 1]
is the threshold of sensitivity of the minority class. That
is, the evaluation parameters provides a vector of values
of (w1, w2, ). If the misclassification costs are known, the



vector of values becomes (w1, w2,0); if the misclassification
costs are unknown, the vector becomes (0, 0, 9).

The classifier classifies the data corresponding to the se-
lected features in a feature subset using a cross-validation
method and returns the classification statistics: the num-
bers of true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN), which are then utilized
by the score calculation method. For classification of imbal-
anced data, the weights of the majority class and the mi-
nority class play a vital role. If no weights are provided, the
classification statistics will be biased by the majority class.
Even it may happen that all the instances from the major-
ity class are correctly classified but none from the minority
class are correctly classified. In this case, different feature
subsets will get the same fitness score. If the weights of mis-
classification are not provided as the evaluation parameters
(when wq and w2 are both zero), these weights should be
determined from the distribution of the classes.

The score calculation method utilizes the classification
statistics and the three evaluation parameters and returns
the goodness score of a feature subset, i.e., how good the
selected features are for the classification of the instances.

2.1 Generation of candidate feature subsets

The proposed feature subsets generation method is based
on random probabilistic model building genetic algorithm
(RPMBGA) [11, 12], a variant of genetic algorithm. RPM-
BGA is a global search heuristic like genetic algorithm but
it maintains a vector of probabilities of the features in ad-
dition to a population of a set of candidate feature subsets
and generates new solutions (feature subsets) by sampling
the probability vector instead of using crossover and muta-
tion operations of genetic algorithm. Each candidate feature
subset in the population is a vector of Os and 1s. If a value
in the vector is 1, the corresponding feature is selected; oth-
erwise, the feature is not selected. For example, if a data set
has 10 features, (1,0,1,0,1,0,1,0,0,1) is a candidate feature
subset in which the first, the third, the fifth, the seventh,
and the tenth feature are selected. A value P(Xj,t) in the
vector of probabilities indicates the probability of the fea-
ture X; being selected in a candidate feature subset in gen-
eration t. In our proposed method, the prior information
about the features is utilized during the initialization of the
probability vector and the update of the probability vector.
Since the proposed method is an extension of RPMBGA, we
call this proposed method RPMBGA™. The pseudocode of
RPMBGAT™ is as follows:

Procedure RPMBGA™
BEGIN
Initialize different controlling parameters;
Initialize probability vector;
Generate N feature subsets by sampling the
probability vector;
Evaluate each feature subset in N;
WHILE termination_criteria NOT satisfied
BEGIN
Select S top ranked feature subsets from the
population of previous generation;
Update probability vector;
Generate O new feature subsets by sampling
the updated probability vector;
Evaluate each feature subset in O;
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Generate new population by combining N and O;
END
Get the top ranked feature subset;
END

First, the values of various controlling parameters, such
as the population size (N), offspring size (O), selection size
(S), and maximum number of generations, are set. Next the
probability vector is initialized in the following ways:

P(X;,0) = { (1)

where p; is the prior information about the relationship of
the feature with the target risk factor. When no information
is known about the relationship of the feature with the target
factor, the probability is set to 0.5, which means that the
feature may or may not be selected as an important feature.
Given a probability vector, a candidate feature subset is
generated in the following way:
Procedure GenerateFeatureSubset(P(X,t))
/¥P(X,t) is the vector of probabilities at generation ¢.*/
BEGIN
FOR i=1 to n /*n=number of features*/
BEGIN
Generate a random number r € [0, 1];
IF (P(X;,t) > r) THEN
X[i]=1;
ELSE
X[i]=0;
END
Get the candidate feature subset X;
END

pi if p; > 0;
0.5 otherwise

Then the candidate feature subsets are evaluated using a
classifier and a scoring method that utilizes the three evalu-
ation parameters. Detailed description about the evaluation
of a feature subset is given in next subsection. If the ter-
mination criterion, such as the maximum number of genera-
tions has passed or the best feature subset in the population
has reached the optimum fitness, is not satisfied, the S top
ranked feature subsets are selected, based on the goodness
scores of the candidate feature subsets in the population,
for the update of the probability vector. Using the selected
candidate feature subsets, the probability vector is updated
in the following way:

if p; > 0;

. _J pi
P(Xit+1) = { otherwise

Y(P(Xi,t), M(Xi,t)) (2)

where p; is the prior information about the relationship of
the feature X; with the target risk factor, M(X;,t) is the
probability distribution of the feature X, in the selected
candidate feature subsets, and ¥ (P(X;,t), M(X;,t)) is a
function that returns a value between 0 and 1. Various
methods have been proposed in literature for the update
function ¥ (P(X;,t), M(X;,t)); for example, in PBIL [2],
Y(P(X;,t), M(X;,t)) is defined in the following way:

¢(P(Xi7t)7 M(Xht)) = aP(Xivt) + (1 - a)M(Xi7t) (3)
where o € [0,1] is called learning rate and fixed through

each iteration. In RPMBGA [12], that function is defined
as follows:

Y(P(Xi,t), M(Xi,t)) = aBP(Xi, 1)+ (1—a)(1 _ﬂ)M(Xiitg
4



Yes o
Calculate sensitivity
No Is
sensitivity
Return the total cost: greater than
fw,, w,, TP, TN, FP, FN) 09
Yes No
Return the scaled up score:
o\, TP, TN, FP, FN)
Return the normal score:

f(TP. TN, FP, FN)

—

End

Figure 1: Steps for calculation of score of a feature
subset

where a € [0, 1] is called learning rate and fixed through each
iteration, and 3 € [0, 1] is a random number and changes at
each iteration. Due to the inclusion of an extra random
parameter less than 1.0, ¥(P(X;,t), M(Xi,t))rpmBca <
Y(P(X;,t), M(Xi,t))perr. Therefore, when the number of
features in a data set is huge, RPMBGA will return a smaller
size feature subset than PBIL.

In the next step of RPMBGAT™, the newly generated fea-
ture subsets are evaluated. Afterward, the old population
and the newly generated feature subsets are combined to
generate new population. There are different strategies, such
as elitism, and CHC [5] to generate the new population. In
elitism, (N > O), and the top (N — O) feature subsets of the
old population are retained, and the remaining feature sub-
sets are replaced with the newly generated ones. In CHC,
O = N, and the new population is generated by selecting
the best N feature subsets from the combination of (N + O)
feature subsets.

After the termination of the algorithm, the selected fea-
tures in the top ranked feature subset are taken as the im-
portant features of the target risk factor.

2.2 Evaluation of a feature subset

During the classification of imbalanced data, a classifier
faces the trade-off between sensitivity and specificity. For
some applications high sensitivity is required; for some ap-
plications, high specificity is desired. In some cases, the
misclassification costs of an instance from the majority and
the minority class are known and a classification model is
desirable that minimizes the total misclassification cost. In
most cases, the misclassification costs are unknown but a
reasonable sensitivity is desired. Taking into account these
situations, we propose a method that returns an appropri-
ate score depending on the situation and the classification
statistics. The flowchart of our proposed method for calcu-
lation of the score of a feature subset is presented in Fig. 1.
Depending on the value of sensitivity threshold (6), either a
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total cost of the misclassified instances or a score using sen-
sitivity and specificity information is returned. Here some
examples of calculation of score are provided to show how
the system works. However, the proposed system is not lim-
ited to the following examples; other score calculation meth-
ods may be used. Two examples of total cost calculation are

given below:
flwi, w2, TP,TN,FP,FN) = w1 * FN + w2 x FP; (5)

and

f(wi,we, TP,TN, FP,FN) = \/w:i % (FN)2 + w2 * (F P)2.

(6)
Two examples of normal score f(T'P,TN,FP, FN) are as
follows:

G-score = +/(sensitivity * speci ficity);

(7)

and
AUC = %(sensitivity + speci ficity) (8)
where
sensitivity (T%PFN); and
specificity = __I'N
P Y = WNTFP)

Three examples of scaled up score are given below:

¢\, TP,TN,FP,FN) = /f(TP,TN,FP,FN); (9)

#(\,TP,TN,FP,FN) = A+ f(TP,TN,FP,FN); (10)

and
¢\, TP, TN,FP,FN)= A f(TP,TN,FP,FN) (11)

where f(TP,TN,FP,FN) € [0,1] is the normal score and
A > 1 is a scaled up parameter, say A = 2.

3. EXPERIMENTS AND RESULTS
3.1 Data set

In co-operation with occupational health physicians in
Toshiba Corporation, Japan, we analyze the anonymized
health checkup and life style data of the employees in Toshiba
Corporation by employing the proposed system. We are
working on this analysis as a part of the health promo-
tion project started in 2007. From the health checkup and
lifestyle database, we extracted the data of those employ-
ees who had health checkup and lifestyle data of the last
seven years and did not have any missing information. The
query resulted in 6475 records (instances). Among those em-
ployees under investigation, 1347 employees had high blood
pressure (labeled as either red or yellow), and the remain-
ing employees had blood pressure within the normal range.
Total number of features in the data set is 320.

3.2 Setup of the experiments

Various experiments are performed on the data set using
genetic algorithm, RPMBGA and RPMBGA™ with C4.5,
SVM or the kNN classifier. For C4.5 and SVM, we use the
WEKA [19] implementation with the default settings, and



for KNN, we use our own implementation with Euclidean dis-
tance and k = 5. Since the number of instances is very large
compared to the number of features, we use 10-fold cross-
validation technique to evaluate the goodness of a feature
subset. As a normal evaluation score, we use the geomet-
ric mean of the sensitivity and the specificity (7), and as a
scaled-up score, we use (9) with A = 2. We assume that
the costs of misclassification of a high blood pressure per-
son as normal person and a normal person as a high blood
pressure person are unknown and set the sensitivity thresh-
old 6 to 0.5. The settings of other parameters are as fol-
lows: population size=100, elite size=2, selection size=50%,
a (RPMBGA and RPMBGA™)=0.9, crossover and muta-
tion probabilities for GA are 0.8 and 0.1, and maximum
number of generations per run=20. For GA, RPMBGA,
and RPMBGAT™, 10 independent runs are performed.

For genetic algorithm, the initial population is generated
randomly but we restrict the number of selected features in
each candidate feature subset to 50. Without this restric-
tion, GA terminates with approximately half of the features
being selected. We use one-point crossover and bit muta-
tion in GA to generate new feature subsets. Due to lack
of prior information about the relationships of the features
with blood pressure, each value in the probability vector
of both RPMBGA and RPMBGA™ is initialized with 0.5;
therefore, the number of selected features in each feature
subset in these two algorithms will be higher than that in
GA. For all the three methods, elitism is used to generate
new population; the best two feature subsets of the previous
generation survive for the next generation, and the remain-
ing 98 feature subsets are replaced with the newly generated
ones. In each run, the algorithm terminates when both the
sensitivity and the specificity are 1.0 (=100%) or the maxi-
mum number of generations has passed.

3.3 Results

3.3.1 Classification statistics

The results obtained by applying various classifiers and
feature selection methods are shown in Table 1. The col-
umn ‘Features’ indicates the feature selection method used
in the experiments; ‘All features’ means all the features are
used while ‘Single feature’ means the best feature in the
dataset that results in the highest G-score. A feature selec-
tion and/or a classifier is (are) evaluated in terms of sen-
sitivity, specificity, accuracy, AUC, and geometric mean of
sensitivity and specificity (G-score).

First the classifiers are employed without any feature se-
lection. As it can be seen that the accuracy is totally influ-
enced by the majority class; specificity is very high but the
sensitivity is very low. SVM obtains the lower sensitivity as
well as the G-score. C4.5 and kNN relatively improve the
sensitivity of the minority class but this sensitivity is still
lower than the specificity. Next the kNN classifier is applied
to the data of single attributes to determine whether there
exists any single attribute that has higher classification abil-
ity. Interestingly, it has been found that there exists a single
attribute that has better data separation capability than all
other attributes.

In order to obtain a better feature subset, genetic algo-
rithm is applied with C4.5, SVM or the kNN classifier. In
the experiments, we have found that the use of SVM with
GA is meaningless because for every feature subset, the SVM
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Table 2: Number of selected features

Method Classifier Min Max Avg BestG
GA C4.5 21 45 29 28
GA kNN 16 34 24 29
RPMBGA kNN 3 29 14 25
RPMBGA™ kNN 3 33 14 4

perfectly classifies all the instances from the majority class
but none from the minority class. Comparatively better re-
sults in terms of AUC and G-score are obtained with C4.5.

Finally, RPMBGA and the proposed RPMBGA™ are ap-
plied to the data set with the kNN classifier. In terms of
sensitivity, AUC and G-score, these two methods are much
better than the previous methods, and the RPMBGA™ ob-
tains the best results. In comparison with the results of
all features using C4.5 classifier, RPMBGA™ improves the
sensitivity by 28% and G-score by 26%.

3.3.2  Selected features

In Table 2, the number of selected features by GA, RPM-
BGA and RPMBGAT™ are presented. In the table, ‘Avg’
means an average value, and a value in the column ‘BestG’
indicates the number of selected features in the feature sub-
set that has the highest G-score. Though GA and RPMBGA
are very much competitive in terms of classification statis-
tics, RPMBGA and RPMBGA™ on the average always come
up with a feature subset that has a very small number of
features selected. Since the feature subset having the high-
est G-score is selected as the most important feature subset,
RPMBGA™ is better than other two methods. Starting from
the initial population where each feature subset has about
50% of the features selected, RPMBGA or RPMBGA™ suc-
cessively reduces the size and finally terminates with a fea-
ture subset in which several features selected.

By analyzing the selected features, it has been found that
the blood pressures of previous years have a great influence
on the blood pressure in the following year. The four fea-
tures that result in higher G-score are the diastolic (low
blood) pressures in the sixth and the third most recent year,
and the systolic (high blood) pressure in the fourth and the
first most recent year. In addition to blood pressure, it has
been found that the weight in the third most recent year also
influences the blood pressure in the most recent year. To de-
termine the influence of other factors on the blood pressure,
the proposed system should be applied after removing the
data of the blood pressures in the previous years.

4. CONCLUSION

In this paper, we have focused on identification of impor-
tant features from the imbalanced data using a population
based global search heuristics. To maintain the balance be-
tween the sensitivity and the specificity, we have proposed
a new evaluation technique that results in higher G-score as
well as higher AUC. In addition to these, we have presented
frameworks about how to incorporate the prior information
about the features during selection of the important features
from data. Using RPMBGA™ with the new evaluation tech-
nique, we have found that the acquired AUC or the G-score
as well as the sensitivity of the minority class is much better
than GA-based method, and the number of selected features
in the best feature subset is very small. These experiments



Table 1: Classification statistics

Features Classifier Sensitivity = Specificity ~ Accuracy AUC G-score
All features C4.5 0.36 0.85 0.75 0.61 0.56
All features SVM (RBF) 0.0 1.0 0.79 0.5 0.0
All features SVM(Linear) 0.29 0.95 0.81 0.62 0.53
All features kNN 0.34 0.69 0.61 0.51 0.48
Single feature kNN 0.47 0.72 0.67 0.59 0.58
GA C4.5 0.37£0.02  0.88+0.01 0.7740.01 0.63£0  0.57+£0.01
GA SVM (RBF) 0.0+0.0 1.0£0.0  0.7940.0 0.5+0.0 0.0+0.0
GA kNN 0.31+£0.01 0.90£0.01 0.78+0.01 0.614+0.01  0.5340.01
RPMBGA kNN 0.56+0.01 0.76£0.01 0.72+0.01 0.66+0.01  0.6540.01
RPMBGA™ kNN 0.64+0.02 0.70+0.01 0.69£0.01 0.67+0.01 0.82+0.01

strongly suggest that RPMBGA™ is very much effective in
selecting important features from the data containing huge
number of features.

Due to very long execution time of the algorithm, we have
performed a limited number of experiments on the health
checkup and lifestyle data. In our future works, we want
to perform more experiments on the data. In addition, it
has been found that the sensitivity of the minority class can
be improved by reducing the size of the majority class by
applying a suitable instance subset selection method. In
our future works, we want to apply the proposed method
to the data that has been downsized by reducing the in-
stances from the majority class. We also want to perform
some other comparative experiments employing some deter-
ministic search algorithms.
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